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Recent results by Spitters et. al. suggest that quantum phase space can usefully be regarded as a
ringed topos via a process called Bohrification. They show that quantum kinematics can then be
interpreted as classical kinematics, internal to this ringed topos.

We extend these ideas from quantum mechanics to algebraic quantum field theory: from a net
of observables we construct a presheaf of quantum phase spaces. We can then naturally express the
causal locality of the net as a descent condition on the corresponding presheaf of ringed toposes:
we show that the net of observables is local, precisely when the presheaf of ringed toposes satisfies
descent by a local geometric morphism.

Introduction

A decade ago, it was suggested by Butterfield and Isham [2] that topos theory could provide a better
framework for formulating something like quantum logic. They noticed that while a quantum phase
space does not exist as an ordinary topological space, it does exist as a topos with an internal ‘space’, or
locale. This perspective allowed them to give a geometric formulation of the Kochen-Specker theorem,
which then precisely stated that this internal phase space had no global points.

Recently, this idea has been heavily extended by Döring andIsham, who go as far as trying to find
a complete topos-theoretic foundation for physics in theirsequence of articles [4]-[7]. In particular, in
[5] they show how to realize quantum kinematics internal to atopos, using a process called daseinisation
and an internal locale called the spectral presheaf.

Inspired by this, Spitters et al. [11] provided a similar, but different description of a quantum phase
space as a topos with a locale, using a procedure they called Bohrification. Equivalently, one may view
this phase space as a ringed topos, or even a topos with an internal C∗-algebra. Such a description of
a phase space fits in the modern approach to geometry, which traces back to Grothendieck who noticed
that a geometric space could be formalized by a (locally) ringed topos. Presently, the most advanced
theory of general geometry (as discussed in [16]) all revolves around regarding locally ringed (higher)
toposes as generalized spaces.

Where the spectral presheaf is used to describe quantum kinematics in [5], the authors of [11] use
Bohrification to describe quantum kinematics in a way that strongly resembles the description of classical
kinematics. In this text we will extend the Bohrification process from quantum mechanics to quantum
field theory: using the formalism of AQFT to describe a quantum field theory on a spacetimeX in terms
of a copresheaf of algebras of observables, we construct a presheaf of ringed toposes on the opens ofX,
called a Bohrified net on the spacetimeX.

Our main result is then a characterization of the causal locality of quantum field theory in these terms:
we show that this Bohrified net of toposes on spacetime satisfies – over any spatial hyperslice – descent
by local geometric surjections precisely if it comes from a causally local net.
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Bohrification

The main inspiration for the Bohrification process is the observation that a lot of information about a C∗-
algebra is contained in its commutative subalgebras. Indeed, in two major theorems about the structure
of quantum mechanics, commutative subalgebras play a main role. The first theorem, by Kochen and
Specker [13], states that for a Hilbert spaceH of dimension greater than 2, there exists no mapB(H)→
C for which the restriction to each of the commutative subalgebras ofB(H) is a ∗-homomorphism.
Furthermore, a famous theorem by Gleason [9] characterizesthe states onB(H) by their restrictions to
its commutative subalgebras: ifρ : B(H) → C is a linear map such thatρ(a+ ib) = ρ(a)+ iρ(b) for
all self-adjoint elementsa,b∈ B(H), thenρ is a state precisely when its restrictions to the commutative
subalgebras ofB(H) are states.

Both theorems show that the behaviour of maps on a C∗-algebra is (to some extend) encoded by their
localizations at the commutative subalgebras. This is one of the facts that are suggestive for Bohrifica-
tion: whenever one is interested in maps that are local in some sense, classes of such maps can be best
considered as presheaves on the corresponding local domain. The above theorems suggest that one is
interested in presheaves on the poset of commutative subalgebras.

Indeed, Spitters et. al. [11] assign to every C∗-algebraA (which we always assume to be unital) the
posetC(A) of commutative subalgebras ofA, ordered by inclusion, and consider the topos[C(A),Set] of
copresheaves onC(A). This topos can now be endowed with an internal ringA given by the copresheaf

C(A)
A
> Set

C > C

In fact, one can show that this internal ring is even an internal commutative C∗-algebra.
This identification of a quantum phase space with a ringed topos allows the authors of [11] to give

a clear topos-theoretic picture of quantum kinematics. Using a constructive version of Gelfand duality
[3], the internal ring (or commutative C∗-algebra)A can be realized as the ringC (ΣA,C) of continuous
functions on an internal localeΣA. An observable can then internally be described as a real-valued
function onΣA and a state can be given by a probability density onΣA. This internal description of
quantum kinematics is quite similar to the description of classical kinematics, where an observable is
given by a real-valued functionM → R on a manifoldM and states are usually described as probability
densities onM.

However, there is a significant difference between classical kinematics and this internal quantum
kinematics. Classical kinematics haspure states, whose probability densities are concentrated at one
point of M. As shown in [12], it is a direct consequence of the Kochen-Specker theorem that the locale
ΣA has no global points, which means that these pure states do not arise in the internal description of
quantum kinematics.

It is important to remark that the construction of a ringed topos from a C∗-algebra extends to acon-
travariant functor from a suitable category of C∗-algebras to the categoryRingToposof ringed toposes.
To be more precise, we can only construct such a functor if we consider∗-homomorphisms between
C∗-algebras that reflect commutativity. A∗-homomorphismh : A→ B is said to reflect commutativity if
h(a) andh(b) commute inB, precisely whena andb commute inA.

Only these particular∗-homomorphisms can be used to construct morphisms of ringedtoposes. Re-
call that a morphism(E ,OE ) → (F ,OF ) between ringed toposes consists of a geometric morphism
( f∗ ⊢ f ∗) : E → F and a ring homomorphismf ∗OF → OE in the toposE . It is precisely the direction
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of this internal ring homomorphism that forces us to restrict our attention to the morphisms that reflect
commutativity.

Indeed, a commutativity reflecting homomorphismh : A→ B induces a functor

C(B)
C(h)

> C(A)

D > h−1(D)

which in turn induces an essential geometric morphism(RanC(h) ⊢ C(h)∗) : [C(B),Set] → [C(A),Set].
Moreover, there is a canonical ring homomorphism

C(h)∗A
ε
> B

h−1(D)
εD=h

> D.

Here we see concretely why we need our morphisms to reflect commutativity and why we extend the
Bohrification construction to a contravariant functor: if we chose our Bohrification functor to be co-
variant, we would essentially have to give all the ring homomorphisms in the opposite direction, which
would only be possible if our∗-homomorphism were an embedding.

If we let CStarcr be the category of C∗-algebras with commutativity reflecting homomorphisms
between them, we can therefore describe Bohrification as a functorB : CStarop

cr → RingTopos. We can
refine this by noting that the topos[C(A),Set] is equivalent to the category of sheaves on a topological
space: ifC (A) is the posetC(A) with the upwards closed subsets as its opens, then there is anequivalence
between the categories[C(A),Set] andSh(C (A)). We can therefore also say that Bohrification assigns
to each C∗-algebraA a ringed space(C (A),A) and to each commutativity reflecting∗-homomorphism a
map of ringed spaces, so that it is actually a functor

B : CStarop
cr → RingSp→ RingTopos

to the category of ringed spaces.
The category of ringed spaces is easier to handle than the category of ringed toposes, especially in

the computation of limits: a limit of ringed spaces consistsof the limit of the underlying topological
spaces, endowed with a colimiting sheaf of rings. However, we keep implicitly identifying each ringed
space with the corresponding ringed topos.

Local nets

We will study the generalization of the previous constructions from quantum mechanics to quantum
field theory and from plain quantum kinematics to quantum dynamics, using algebraic quantum field
theory (AQFT) to describe a QFT. The idea of AQFT is to characterize a quantum field theory by the
assignment of algebras of local observables to each open subset ofX. These observables present what
can be measured by performing an experiment within that certain region of space and time.

The spacetimeX is given by a Lorentzian manifold, so that the tangent space in each pointx decom-
poses in a spacelike and a timelike region, separated by the lightcone of vectors whose length is 0. We
say that two points arespacelike separatedif there is no timelike or lightlike curve between them. In
Minkowski spaceR1+n, this means that the straight line between the two points is spacelike. Two subsets
U andV of X are spacelike separated if allx∈U , y∈V are spacelike separated.
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In this way, each openO in X has a causal complementO′ consisting of points that are spacelike
separated fromO. We say thatO is causally complete ifO′′ = O and denote byV (X) the poset of
causally complete opens, ordered by inclusion. In two-dimensional Minkowski space,V (X) consists of
the causal diamonds and the left and right wedges.

AQFT now describes a quantum field theory as a copresheafA : V (X)→ CStarinc to the category of
C∗-algebras with inclusions between them. This reflects the idea that within more space and time, more
observables can be measured. Moreover, one imposes the condition that for any two spacelike separated
opensO1 andO2 in X, the algebrasA(O1) andA(O2) mutually commute inA(O1∨O2), whereO1∨O2

denotes the smallest causally complete open containing both O1 andO2. This condition basically says
that relativistic independence (i.e. regions being spacelike separated) should imply quantum mechanical
independence (i.e. that two observables from separated regions commute). A copresheafA : V (X) →
CStarinc that satisfies this causal locality condition will be calleda local net.

In Minkowski space, the causal locality of a net has an important equivalent formulation in terms
of its restriction to a Cauchy surface. A connected hypersurface S in a Lorentzian space is said to be
a Cauchy surfaceif every timelike or lightlike curve intersectsS in precisely one point. This condition
formalizes the idea that the points onSgive a space at one specific time. In Minkowski space, any plane
spanned by only spacelike vectors forms a Cauchy surface.

One can restrict a local netA to a Cauchy surfaceS by noting that each connected openU ⊆ S is
contained in a smallest causally complete openOU ⊆ X. The restriction of a netA to Swill then be the
netA|S : V (S)→CStarinc that sends eachU to A(OU). With these definitions, one easily verifies that for
Minkowsi spaceX, a netA : V (X)→ CStarinc is local precisely when its restrictionA|S to any Cauchy
surfaceShas the property that for two disjoint opensU,V ⊆Stheir algebrasA|S(U) andA|S(V) mutually
commute. We use this alternative formulation of causal locality when we discuss the characterization of
locality in terms of Bohrified nets.

Bohrified nets

The formalism of AQFT thus describes a quantum field theory bya local netA : V (X) → CStarinc.
Since inclusions of C∗-algebras certainly reflect commutativity, we can compose this local net with the
Bohrification functorCStarop

cr → RingSp. This composition gives a presheafB(A) : V (X)op→ RingSp,
which we will call the Bohrified net. It sends an openO to the topos[C(A(O)),Set], endowed with
its tautological internal ring. For an inclusion of opensO1 ⊆ O2, the local netA gives an inclusion of
C∗-algebrasA(O1)⊆ A(O2). The corresponding morphism of ringed spacesB(A)(O2)→ B(A)(O1) then
consists of a geometric morphism

[C(A(O2)),Set]
<
⊥
>

[C(A(O1)),Set]

and a morphism of internal rings. Following the construction of the Bohrification functor, we see that
the geometric morphism is induced by the functorC(A(O2)) → C(A(O1)) that sends a commutative
subalgebraC⊆ A(O2) to the intersectionC∩A(O1).

If O is an open ofX, then the Bohrified net contains all information about whether elements commute
in A(O). This suggests that the causal locality of the original local net A should be reflected in terms of
its Bohrified netB(A). Indeed, we will show that the causal locality of a net of observablesA is related
to a descent condition on its Bohrified netB(A). To do this, we will impose two conditions on our net of
observables that often arise in discussions of AQFT (see forinstance [10]): we will require our nets of
observables to be both additive and strongly local.
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A netA is said to beadditiveif for any two spacelike separated opensO1 andO2 such thatO1∩O2 6=
/0, one has thatA(O1∨O2) = A(O1)∨A(O2); the algebraA(O1∨O2) is generated byA(O1) andA(O2)
in A(X). Being additive in some sense expresses the local characterof AQFT: the observables in two
small opensO1 andO2 suffice to describe everything that can be observed in the larger openO1∨O2

generated by them. For nets onR2, this condition follows from the so-calledsplit-property for wedges,
as discussed in [15].

A net A : V (X)→ CStarinc is strongly localif it is causally local and has the property that for any
two spacelike separated opensO1 andO2, and any pair of commutative subalgebrasC1 ⊆ A(O1) and
C2 ⊆ A(O2), one finds for the algebraC1∨C2 ⊆ A(O1∨O2) generated by them that(C1∨C2)∩A(O1) =
C1 and(C1∨C2)∩A2 =C2.

Strong locality is precisely the kind of locality conditionwe need in our main theorem. This condition
holds for nets satisfyingEinstein causality, which is one of the axioms for an AQFT imposed in [1]. A
netA : V (X)→ CStarinc is called Einstein causal if for any two spacelike separatedopensO1 andO2,
one has that the inclusionsA(O1)⊆ A(O1∨O2) andA(O2)⊆ A(O1∨O2) factor over the tensor product

A(O1∨O2)

A(O1) ⊂ >
⊂

>

A(O1)⊗A(O2)
∪

∧

< ⊃ A(O2).

<

⊃

In [1] it is argued that Einstein causality expresses that the subsystems localized atO1 andO2 are
completely independent: ordinary locality only states that it does not matter whether you first do a
measurement inO1 and then one inO2, or the other way around. Einstein causality adds to this that the
subsystems localized atO1 andO2 are even statistically independent: a stateρ1 on the system atO1 and
a stateρ2 on the system atO2 give a product stateρ1⊗ρ2 on composite system.
Our main result relates the above two conditions on a local net A to a more geometric condition on its
Bohrified netB(A). In particular, we find a natural way to express the causal locality of a netA in terms
of a descent condition onB(A).

Theorem. An additive net A: V (R1+n)→CStarinc on a Minkowski spacetime is strongly local, precisely
when the restriction of its Bohrified net B(A) to any Cauchy surface satifies descent bylocal geometric
surjections.

Recall that a local geometric morphism( f∗ ⊢ f ∗) : E → F is a geometric morphism such that the direct
image f∗ has a further right adjoint which is full and faithful (cf. [14] section C3.6). It follows directly
from its definition that a local geometric morphism is alwaysa geometric surjection. Local geometric
morphisms model ‘infinitesimal thickenings’: if a sheaf toposSh(X) has a local geometric surjection to
the pointSh(∗) = Set, thenX is the ‘infinitesimal thickening’ of a point, in the sense that there is a point
whose only neighbourhood is the whole spaceX. A strongly local net thus induces a Bohrified net which
is ‘infinitesimally’ close to being a sheaf.

We remark that this result clarifies one particular curiosity in the formalism of AQFT: it is a strange
aspect of AQFT that a local net does not satisfy a descent condition of any kind. Indeed, whenever one
considers a (co)presheaf on a topological space, one usually demands it to be a sheaf. However, we have
seen that the basic axioms for a local net on a spacetimeX do not make a single use of the covering
relation on the opens ofX.

By adding the additivity condition to the axioms of a local net, we did use coverings in the axioms of
AQFT. Still, even the additivity condition does not translate directly into a descent condition on the local
netA : V (X)→ CStarinc (see for instance [8]). In fact, it is typically hard to combine the causal locality
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of the netA with any kind of descent ofA. Our result now shows that one can one can naturally impose a
descent condition on the Bohrified netB(A), instead of the original netA. In fact, we see that the (strong)
locality of the netA is actually necessary to establish the descent ofB(A) by local geometric morphisms.
The statement therefore exhibits a tighter link between AQFT and the geometry of the spacetimeX than
becomes clear from looking at local nets only.

For an idea of the proof, letA be an additive, strongly local net and letS⊂ R
1+n be some Cauchy

surface. We consider the case where just two connected opensU andV cover their unionU ∪V in S. We
then find a descent morphism

B(A)|S(U ∪V)→ B(A)|S(U)×B(A)|S(U∩V) B(A)|S(V)

in the category of ringed spaces. Forgetting the ring structure, this descent morphism consists of a
geometric morphismf ∗ ⊣ f∗ between the corresponding toposes of copresheaves on the commutative
subalgebras.

Because the codomain of the Bohrified netB(A) is the category of ringed spaces, we find that this ge-
ometric morphismf ∗ ⊣ f∗ is ultimately induced by a functorf on the posets of commutative subalgebras.
In this case, the functorf is given by the functor

C(A|S(U ∪V))
f
> C(A|S(U))×C(A|S(U∩V))C(A|S(V))

that sends a commutative subalgebraC⊆A|S(U ∪V) to the pair of intersections(C∩A|S(U),C∩A|S(V)).
If U andV are disjoint, then the locality ofA implies thatA|S(U) andA|S(V) mutually commute in

A|S(U ∪V). This means that for any pair of commutative subalgebrasC1 ⊆ A|S(U), C2 ⊆A|S(V), there is
a smallest commutative subalgebraC1∨C2 in A|S(U ∪V) containing bothC1 andC2. This construction
gives a functor

C(A|S(U))×C(A|S(U∩V))C(A|S(V)) > C(A|S(U ∪V))

which is easily checked to be a left adjoint tof . In fact, if A is a strongly local net, then this left adjoint
is even full and faithful.

We can then lift this adjunction to the level of geometric morphisms: the fact thatf has a left adjoint
implies that the descent morphismf ∗ ⊣ f∗ has a further right adjoint. If the left adjoint tof is full and
faithful, then this extra right adjoint tof∗ is actually full and faithful, which means precisely that the
descent morphismf ∗ ⊣ f∗ is a local geometric morphism. We thus find that the Bohrified net satisfies
descent by a local geometric morhism if we have a cover of disjoint opens.

In the case thatU andV are not disjoint, the additivity of the local net allows us touseU ∩V and
the interiors ofU \V andV \U instead ofU andV to ‘cover’ the unionU ∩V. Indeed, the additivity
condition of the local netA states thatA|S(U) is generated byA|S(U ∩V) and A|S(U \Vo). We can
therefore essentially replaceU andV by these three disjoint opens, and apply the construction for the
case in whichU andV were disjoint. The result is again thatf has an extra left adjoint, which is full and
faithful, so that the geometric morphismf ∗ ⊣ f∗ is local.

Summarizing, we find for an additive, strongly local netA that the restriction of the Bohrified net
B(A) to a Cauchy surface satifies descent by local geometric surjections. Conversely, if the restriction
B(A)|S satifies this descent condition, then one can deduce thatA|S(U) andA|S(V) mutually commute
if U andV are disjoint opens of the Cauchy surfaceS. From this it follows that the netA is local and
actually even strongly local.
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Conclusion

We have related the causal locality of a net of observables toa descent condition on the corresponding
Bohrified net. This interplay between the causal locality ofnets of observables on one hand, and on
the other hand the locality of the Bohrified net in the sense ofsheaf theory, gives a relation between
the topology of the spacetime and the theory of AQFT. By assigning an active role to the spacetime
geometry, it gives AQFT a much more geometric flavour, which will be particularly important if one
tries to consider local nets on curved spacetimes, as is donein [1].

Our result might therefore add to the insights by Döring-Isham and Spitters et. al. that many aspects
of quantum theory have a natural formulation when one modelsa quantum phase space as a ringed
topos. In particular, it suggests that the ideas by these twogroups might have some useful applications
in quantum field theory.
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