CARMA: Collective Adaptive Resource-sharing Markovian
Agents

Luca Bortolussi Rocco De Nicola Vashti Galpin Stephen Gilmore
Saarland University IMT Lucca University of Edinburgh University of Edinburgh
University of Trieste
ISTI - CNR
Jane Hillston Diego Latella Michele Loreti Mieke Massink
University of Edinburgh ISTI - CNR Universita di Firenze ISTI - CNR
IMT Lucca

In this paper we present CARMA, a language recently defined to support specification and analysis
of collective adaptive systems. CARMA is a stochastic process algebra equipped with linguistic
constructs specifically developed for modelling and programming systems that can operate in open-
ended and unpredictable environments. This class of systems is typically composed of a huge number
of interacting agents that dynamically adjust and combine their behaviour to achieve specific goals.
A CARMA model, termed a collective, consists of a set of components, each of which exhibits a set of
attributes. To model dynamic aggregations, which are sometimes referred to as ensembles, CARMA
provides communication primitives that are based on predicates over the exhibited attributes. These
predicates are used to select the participants in a communication. Two communication mechanisms
are provided in the CARMA language: multicast-based and unicast-based. In this paper, we first
introduce the basic principles of CARMA and then we show how our language can be used to support
specification with a simple but illustrative example of a socio-technical collective adaptive system.

1 Introduction

Collective adaptive systems (CAS) typically consist of very large numbers of components which exhibit
autonomic behaviour depending on their properties, objectives and actions. Decision-making in such
systems is complicated and interaction between their components may introduce new and sometimes
unexpected behaviours. CAS are open, in the sense that components may enter or leave the collective at
anytime. Components can be highly heterogeneous (machines, humans, networks, etc.) each operating
at different temporal and spatial scales, and having different (potentially conflicting) objectives. We are
still far from being able to design and engineer real collective adaptive systems, or even specify the
principles by which they should operate.

CAS thus provide a significant research challenge in terms of both representation and reasoning about
their behaviour. The pervasive yet transparent nature of the applications developed in this paradigm
makes it of paramount importance that their behaviour can be thoroughly assessed during their design,
prior to deployment, and throughout their lifetime. Indeed their adaptive nature makes modelling essen-
tial and models play a central role in driving their adaptation. Moreover, the analysis should encompass
both functional and non-functional aspects of behaviour. Thus it is vital that we have available robust
modelling techniques which are able to describe such systems and to reason about their behaviour in
both qualitative and quantitative terms. To move towards this goal, we consider it important to develop
a theoretical foundation for collective adaptive systems that would help in understanding their distinc-

© L. Bortolussi et al.
This work is licensed under the
Creative Commons Attribution License.

N. Bertrand and M. Tribastone (Eds.): QAPL 2015
EPTCS 194, 2015, pp. 16 doi:10.4204/EPTCS.194.2

http://dx.doi.org/10.4204/EPTCS.194.2
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

L. Bortolussi et al. 17

tive features. In this paper we present CARMA, a language designed within the QUANTICOL projectﬂ
specifically for the specification and analysis of CAS, with the particular objective of supporting quanti-
tive evaluation and verification.

CARMA builds on a long tradition of stochastic process algebras such as PEPA [13]], MTIPP [12],
EMPA [2], Stochastic w-Calculus [[15]], Bio-PEPA [5]], MODEST [3]] and others [IL1, 4]]. It combines the
lessons which have been learned from these languages with those learned from developing languages
to model CAS, such as SCEL [8] and PALOMA [9], which feature attribute-based communication and
explicit representation of locations.

SCEL [8] (Software Component Ensemble Language), is a kernel language that has been designed to
support the programming of autonomic computing systems. This language relies on the notions of auto-
nomic components representing the collective members, and autonomic-component ensembles represent-
ing collectives. Each component is equipped with an interface, consisting of a collection of attributes,
describing different features of components. Attributes are used by components to dynamically organise
themselves into ensembles and as a means to select partners for interaction. The stochastic variant of
SCEL, called StocS [14], was a first step towards the investigation of the impact of different stochastic
semantics for autonomic processes, that relies on stochastic output semantics, probabilistic input seman-
tics and on a probabilistic notion of knowledge. Moreover, SCEL has inspired the development of the
core calculus AbC [1]] that focuses on a minimal set of primitives that defines attribute-based commu-
nication, and investigates their impact. Communication among components takes place in a broadcast
fashion, with the characteristic that only components satisfying predicates over specific attributes receive
the sent messages, provided that they are willing to do so.

PALOMA [9] is a process algebra that takes as starting point a model based on located Markovian
agents each of which is parameterised by a location, which can be regarded as an attribute of the agent.
The ability of agents to communicate depends on their location, through a perception function. This
can be regarded as an example of a more general class of attribute-based communication mechanisms.
The communication is based on a multicast, as only agents who enable the appropriate reception action
have the ability to receive the message. The scope of communication is thus adjusted according to the
perception function.

A distinctive contribution of the new language is the rich set of communication primitives that are
offered. CARMA supports both unicast and broadcast communication, and locally synchronous, but glob-
ally asynchronous communication. This richness is important to enable the spatially distributed nature of
CAS, where agents may have only local awareness of the system, yet the design objectives and adaptation
goals are often expressed in terms of global behaviour. Representing these rich patterns of communica-
tion in classical process algebras or traditional stochastic process algebras would be difficult, and would
require the introduction of additional model components to represent buffers, queues and other commu-
nication structures. Another feature of CARMA is the explicit representation of the environment in which
processes interact, allowing rapid testing of a system under different open world scenarios. The envi-
ronment in CARMA models can evolve at runtime, due to the feedback from the system, and it further
modulates the interaction between components, by shaping rates and interaction probabilities. Further-
more the large scale nature of CAS systems makes it essential to support scalable analysis techniques,
thus CARMA has been designed anticipating both a discrete and a continuous semantics in the style of
[L6].

The focus of this paper is the presentation of the language and its discrete semantics, which are
presented in the FUTS style [7]]. The structure of the paper is as follows. Section 2 presents the syntax

Ihttp://www.quanticol.eu

http://www.quanticol.eu

18 CARMA: Collective Adaptive Resource-sharing Markovian Agents

of the language and explains the organisation of a model in terms of a collective of agents that are
considered in the context of an environment. In Section 3 we give a detailed account of the semantics,
particularly explaining the role of the environment. The use of CARMA is illustrated in Section 4 where
we describe a model of a simple bike sharing system. Some conclusions are drawn in Section 5.

2 CARMA syntax

A CARMA system consists of a collective (N) operating in an environment (&’). The collective consists of
a set of components. It models the behavioural part of a system and is used to describe a set of interacting
agents that cooperate to achieve a set of given tasks. The environment models all those aspects which
are intrinsic to the context where the agents under consideration are operating. The environment also
mediates agent interactions.

We let SYS be the set of CARMA systems S defined by the following syntax:

S = Niné&

where N is a collective and & is an environment. The latter provides the global state of the system and
governs the interactions in the collective.
We let COL be the set of collectives N which are generated by the following grammar:

N == C|N|N

A collective N is either a component C or the parallel composition of two collectives (N || N).

A component C can be either the inactive component, which is denoted by 0, or a term of the form
(P,y), where P is a process and Y is a store. A term (P,7y) models an agent operating in the system under
consideration: the process P represents the agent’s behaviour whereas the store ¥ models its knowledge.
A store is a function which maps attribute names to basic values. We let:

e ATTR be the set of attribute names a, d’, ay,..., b, b, by,...;

e VAL be the set of basic values v, V', vi,...;

e I be the set of stores v,7,Y,...i.e. functions from ATTR to VAL.

We let COMP be the set of components C generated by the following grammar:

C:=0 | (Py)

We let PROC be the set of processes P, Q,... defined by the following grammar:

P.Q == nil act = o*[x](e)o
| kil | alr)(e)o
’ act.P | OC*[TE](?)G
PO | alz(@)e
| PlQ
| [x]P e = althisal|x]|v]|--
| A AEP) | 1 o= T|llease|-m|wAT|

In CARMA processes can perform four types of actions: broadcast output (o*[1)(€)G), broadcast
input (a*[1)(¥)0), output (a[r)(€)5), and input (a[7](¥)o). Where:

L. Bortolussi et al. 19

« is an action type in the set of action type ACTTYPE;

7 is an predicate;

e xis a variable in the set of variables VAR;

7 indicates a sequence of elements;

O is an update, i.e. a function from I" to Dist(I') in the set of updates ¥; where Dist(I") is the set
of probability distributions over I'.

The admissible communication partners of each of these actions are identified by the predicate 7.
This is a predicate on attribute names. Note that, in a component (P, y) the store y regulates the behaviour
of P. Primarily, ¥ is used to evaluate the predicate associated with an action in order to filter the possible
synchronisations involving process P. In addition, Y is also used as one of the parameters for computing
the actual rate of actions performed by P. The process P can change Y immediately after the execution
of an action. This change is brought about by the update o. The update is a function that when given a
store 7y returns a probability distribution over I' which expresses the possible evolutions of the store after
the action execution.

The broadcast output o* 7] <?>G models the execution of an action o that spreads the values result-
ing from the evaluation of expressions ¢ in the local store Y. This message can be potentially received
by any process located at components whose store satisfies predicate 7. This predicate may contain ref-
erences to attribute names that have to be evaluated under the local store. These references are prefixed
by the special name this. For instance, if loc is the attribute used to store the position of a component,
action

o*[distance(this.loc, loc) < L](V)o

potentially involves all the components located at a distance that is less than or equal to a given threshold
L. The broadcast output is non-blocking. The action is executed even if no process is able to receive
the values which are sent. Immediately after the execution of an action, the update ¢ is used to compute
the (possible) effects of the performed action on the store of the hosting component where the output is
performed.

To receive a broadcast message, a process executes a broadcast input of the form o*[n] (7)6. This
action is used to receive a tuple of values 7V sent with an action o from a component whose store
satisfies the predicate n[7 / 7] The transmitted values can be part of the predicate w. For instance,
o*[x > 5](x)o can be used to receive a value that is greater than 5.

The other two kinds of action, namely output and input, are similar. However, differently from
broadcasts described above, these actions realise a point-to-point interaction. The output operation is
blocking, in contrast with the non-blocking broadcast output.

Choice and parallel composition are the usual definitions for process algebras. Processes can be
guarded so that [7]P behaves as the process P if the predicate 7 is satisfied. Finally, process kill is used
to destroy a component. We assume that this term always occurs under the scope of an action prefix.

CARMA collectives operate in an environment &. This environment is used to model the intrinsic
rules that govern, for instance, the physical context where our system is situated.

An environment consists of two elements: a global store 7,, that models the overall state of the
system, and an evolution rule p. The latter is a function which, depending on the global store and
the current state of the collective, i.e. the configurations of each component in the collective, returns a
tuple of functions € = (u,, Uy,) known as the evaluation context where ACT = ACTTYPEU {o*|a €
ACTTYPE} and:

20 CARMA: Collective Adaptive Resource-sharing Markovian Agents

e 1, :I'x ACT — [0, 1], expresses the probability to receive a message;
o U, :I'xI"x ACT — R0, computes the execution rate of an action;

o U, :I'x ACT — X x COL, determines the updates on the environment (global store and collective)
induced by the action execution.

These functions regulate system behaviour. Function u,,, which takes as parameters the local stores
of the two interacting components, i.e. the sender and the receiver, and the action used to interact, returns
the probability to receive a message. Function p, computes the rate of an unicast/broadcast output. This
function takes as parameter the local store of the component performing the action and the action on
which interaction is based. Note that the environment can disable the execution of a given action. This
happens when the function i, (resp. t,,) returns the value 0. Finally, the function i, is used to update the
global store and to install a new collective in the system. The function u, takes as parameters the store
of the component performing the action together with the action type and returns a pair (o, N). Within
this pair, ¢ identifies the update on the global store whereas N is a new collective installed in the system.
This function is particularly useful for modelling the arrival of new agents into a system. All of these
functions are determined by an evolution rule p depending on the global store and the actual state of the
components in the system. For instance, the probability to receive a given message may depend on the
concentration of components in a given state. Similarly, the actual rate of an action may be a function of
the number of components whose store satisfies a given property.

3 CARMA operational semantics

In this section we define the operational semantics of CARMA specifications. This operational semantics
is defined in three stages. First, we introduce the transition relation ——. that describes the behaviour of
a single component. Second, this relation is used to define the transition relation —. which describes
the behaviour of collectives. Finally, the transition relation — will be defined to show how CARMA
systems evolve.

All these transition relations are defined in the FUTS style [7]. Using this approach, a transition
relation is described using a triple of the form (N,¢,.#"). The first element of this triple is either a
component, or a collective, or a system. The second element is a transition label. The third element is
a function associating each component, collective, or system with a non-negative number. A non-zero
value represents the rate of the exponential distribution characterising the time needed for the execution
of the action represented by £. The zero value is associated with unreachable terms. We use the FUTS
style semantics because it makes explicit an underlying Action Labelled Markov Chain, which can be
simulated with standard algorithms [[10] but is nevertheless more compact than Plotkin-style semantics,
as the functional form allows different possible outcomes to be treated within a single rule. A complete
description of FUTS and their use can be found in [[7].

3.1 Operational semantics of components

We use the transition relation —, C COMP x LAB x [COMP — R>] to define the behaviour of a single
component. In this relation [COMP — R>] denotes the set of functions from COMP to R>(and LAB is

L. Bortolussi et al. 21

the set of transition labels ¢ which are generated by the following grammar:

¢ o= ot (V),y Broadcast output
| o*[x](V),y Broadcast input
| alr)(V),y Unicast Output
| alr)(V),y Unicast Input
| tla[n](V),7] Unicast Synchronization
|

Z|o*[r](V),y] Broadcast Input Refusal

The first four labels are associated with the four CARMA input-output actions and they contain a reference
to the action which is performed (& or), the store of the component where the action is executed (7),
and the value which is transmitted or received. The transition label T[ct[x](7),7] is the one which
is associated with unicast synchronisation. The final label Z[a*[r](7),7] denotes the case where a
component is not able to receive a broadcast output. This arises at the level of the single component
either because the associated message has been lost, or because no process is willing to receive that
message. We will observe later in this section that the use of Z[a*[7t](7), 7] labels are crucial to handle
appropriately dynamic process operators, namely choice and guard.

The transition relation —¢, as formally defined in Table [1| and Table [2| is parametrised with respect
to an evaluation context €. This is used to compute the actual rate of process actions and to compute the
probability to receive messages.

The process nil denotes the process that cannot perform any action. The transitions which are in-
duced by this process at the level of components can be derived via rules Nil and Nil-F1. These rules
respectively say that the inactive process cannot perform any action, and always refuses any broadcast
input. Note that, the fact that a component (nil, y) does not perform any transition is derived from the
fact that any label that is not a broadcast input refusal leads to function @ (rule Nil). Indeed, @ denotes
the O constant function. Conversely, Nil-F1 states that (nil, y) can always perform a transition labelled
Z|o*[](V), 7] leading to [(nil,y) — 1], where [C ~— v] denotes the function mapping the component C
to v € R>¢ and all the other components to 0.

The behaviour of a broadcast output (o*[m](€)6.P,y) is described by rules B-Out, B-Out-F1 and
B-Out-F2. Rule B-Out states that a broadcast output o*[1](¢)c can affect components that satisfy
' = [[ﬂ]]ﬂ The action rate is determined by the evaluation context € = (u,, 11, lt,) and, in particular, by
the function p,. This function, given a store ¥ and the kind of action performed, in this case a*, returns
a value in R>¢. If this value is greater than 0, it denotes the execution rate of the action. However, the
evaluation context can disable the execution of some actions. This happens when u,(y,a*) = 0. The
possible next local stores after the execution of an action are determined by the update ¢. This takes the
store y and yields a probability distribution p = o(y) € Dist(I"). In rule B-Out, and in the rest of the
paper, the following notations are used:

e let P € PROC and p € Dist(I'), (P,p) is a probability distribution in Dist(COMP) such that:
1 P=Qkill A C=0
(Pp)(C) =1 () C=(Py) A PzQOlkill
0 otherwise

e let ¢ € Dist(CoMP) and r € R>¢, r- ¢ denotes the function € : COMP — R such that: € (C) =
r-¢(C)

ZWe let [-]y denote the evaluation function of an expression/predicate with respect to the store ¥.

22 CARMA: Collective Adaptive Resource-sharing Markovian Agents

(# Rl) (V),7]

Nil " Nil-F1
mily) Se® (nil,y) LI ity s 1] l
[l =% [@=7 p=olr) e=(ubnp)
(@ m)(T)o.py) CETT L ra)-(Pp)
N B-Out-F1
(@ m)(Pyo.py) DI o) V0.Ry) o 1]
[l =7 [P =7 (#l@i(V)y FABET)A

(*[n)(@)0.P.y) L @

[m[V/Xp=m nE® pEM p=0c[V/XN(r) &= (tp L i)
(@ [m)(F)0.P) ST) - (P77 p)

[mlV/Xp=m% nEm pEM €= (b b)

(0[] (F)0.P,pp) X mID)

B-In

B-In-F1
e [(@*[m](X)0.Pp) = 1= (11, 12, 0%)]

[mlV/Xp=m% (nFEmorpEm)

- B-In-F2
(@ [m)(F)0.pp) LEL
(Ao ml(V)n £ m)n]

(*[m)(F)0.Pp) e @

o #p
%[/3*[7’1](?)7%}

B-In-F4

(0*[m](¥)o.P,) e (@ [m)(¥)o.Pp) = 1]

Table 1: Operational semantics of components (Part 1)

L. Bortolussi et al. 23

Note that, after the execution of an action a component can be destroyed. This happens when the
continuation process after the action prefixing contains the term kill. For instance, by applying rule

B-Out we have that: (a*[m](v)o.(kill|Q),7) M@ [0 r].

Rule B-Out-F1 states that a broadcast output always refuses any broadcast input, while B-Out-F2
states that a broadcast output can be only involved in labels of the form o* [1](V), y or Z[B*[m](V), 7].

Transitions related to a broadcast input are labelled with o*[7,](7),71. There, ¥ is the store of
the component executing the output, o is the action performed, m; is the predicate that identifies the
target components, while Vs the sequence of transmitted values. Rule B-In states that a component
(o*[m](¥)0.P,75) can perform a transition with this label when its store 75 satisfies the target predicate,
i.e. 75 |= m;, and the component executing the action satisfies the predicate m,[v /%']. The evaluation
context € = (U, Uy, ly) can influence the possibility to perform this action. This transition can be per-
formed with probability p, (71,7, 0c").

Rule B-In-F1 models the fact that even if a component can potentially receive a broadcast message,
the message can get lost according to a given probability regulated by the evaluation context, namely
1 —u, (71,7, a). Rule B-In-F2 models the fact that if a component is not in the set of possible receivers
(2 & m) or the sender does not satisfy the expected requirements (y; = 7)) then the component cannot
receive a broadcast message. Finally, rules B-In-F3 and B-In-F4 model the fact that (o*[m,] (¥)0.P,)
can only perform a broadcast input on action ¢ and that it always refuses input on any other action type
B # o, respectively.

The behaviour of unicast output and unicast input is defined by the first six rules of Table 2] These
rules are similar to the ones already presented for broadcast output and broadcast input. The only dif-
ference is that both unicast output (Out-F1) and unicast input (In-F1) always refuse any broadcast input
with probability 1. The other rules of Table [2{ describe the behaviour of other process operators, namely
choice P+ Q, parallel composition P|Q, guard and recursion.

The term P + Q identifies a process that can behave either as P or as Q. The rule Plus states that
the components that are reachable by (P + Q,7), via a transition that is not a broadcast input refusal,
are the ones that can be reached either by (P,y) or by (Q, 7). In this rule we use 6] © % to denote the
function that maps each term C to % (C) 4+ 6»(C), for any 61, %> € [COMP — R>¢]. At the same time,
process P+ Q refuses a broadcast input when both the process P and Q do that. This is modelled by
Plus-F1, where, for each %] : COMP — R and %, : COMP — Rx¢, %] + %> denotes the function that
maps each term of the form (P+ Q,7) to €1((P,y)) - 62((Q, 7)), while any other component is mapped
to 0. Note that, differently from rule Plus, when rule Plus-F1 is applied operator + is not removed after
the transition. This models the fact that when a broadcast message is refused the choice is not resolved.

In P|Q the two composed processes interleave for all the transition labels except for broadcast input
refusal (Par). For this label the two processes synchronise (Par-F1). This models the fact that a message
is lost when both processes refuse to receive it. In the rules the following notations are used:

e for each component C and process Q we let:

c0-{ 0 £2"

Q|C is symmetrically defined.

e for each ¢ : COMP — R and process Q, €|Q (resp. Q| %) denotes the function that maps each
term of the form C|Q (resp. Q|C) to €' (C), while the others are mapped to 0;

e for each %) : COMP — R and %, : COMP — R, 41|%> denotes the function that maps each
term of the form (P|Q,) to €1((P,7)) - ¢2((Q, 7)), while the others are mapped to 0.

24 CARMA: Collective Adaptive Resource-sharing Markovian Agents

[7ly=7" [€ly=7V p=0(y) &=ty k)
a7 7).y 0
(a[z)(¢)o.Py)

ut
€ .ur(’}/?a) ’ (P7p)

2B (V) 1] Out-F1

(a[m)(€)o.Py) e (a[m](€)o.Py) 1]

[aly=n" [€ly=7 (£a[x)(V),y (+Ra[7)(V),7]
(a[n)(€)o.Py) e 0

Out-F2

[V /X p=m nEm rEm p=c[V/XI(r) €=l M)
(a[m)(®)o.Pp) LI hpa) - (P R).p)

In

#B (V)] In-F1

(a[m](¥)o.Pp) e [(a[m](¥)o.P) = 1]

[m[V/X]p=m (mEmorpFm) gy L2 AT 0 R) (V) n]
(am](F)o.Pp) LT, (@[m](T)0.P. 1) e 0

In-F3

Py L (07) SeC (+Ror[n) (V)Y
(P+0,7) S 6 0%

Plus

Ao [7)(V) 1] Ao [7)(V) 7]

e 6

(Py) et (0,7)

Plus-F1

P Lt Q1) L (£ A 7(T).Y
(PIQ,7) “+e G1|Q @ P|%;

Par

Blo* 7 , Zo* 7)
[o*[7](V),7] s(gl (Q’r}/) e A(V).1 8%2 Par-F1 AéP (P7Y) Lgcg
= ar- J Rec

1 6% (A7) e @

(P,y)

(P1O,7)

): Y) — 7& o* 7 P X|o*).
T|P, ¢ ar %[a*[n](i?) Y]
([] 7’}/) 7€ € ([E]P, ,},))

€

e [

Guard-F1

Y LF R[] (V)Y YER
Guard-F2 A 1) Guard-F3
ZERY

([7]P,7) Sre 0 ([xP,y) [([7]P.7) v 1]

Table 2: Operational semantics of components (Part 2)

L. Bortolussi et al. 25

Ao [x)(V).7]

o [7)(V)

Te M (PY)

I} (V)
0—¢0 (Py) = A, o e

2 Comp-B-In

* 7 “ 7’
PY) LoV 04 R (7)(V),] Ny CEO e @l

Comp N
(PY) e N Ny |y L,

e M

B-In-Sync
e MM

N (V). EJV” N o [7)(V).y gJVi N, o [7)(V).7, 8%0 Ny a*[ﬂ](_v))vyst/’/zi

a*[@)(V).7, 0 i 0
Ni (| Ny == (M0 | A1) @ (A A5°)

B-Sync

N a[ﬂ]<7>~,78</1/1 N, a[ﬂ]<7>,78</1/2 N alm)(V).7, g</V N, alm)(V).7, 8(/1/2
= Out-Sync Uy In-Sync
Y

[Y,)
Ni | Ny ——=¢ M || N2®N; || S Ny || N2 e M | N2 &Ny || A2

N t[o[x)(V >]s</V‘ N alz)(V)y eJV” N,

N, tlafx)(V >]e=/V‘ Ny a[z)(V). e=/V0 Ny
?7 . B i
e

alx|(V).y,

—n N

om

LG
(A7)
SN+ DN

Sync

A
SN+ DA

(NN
DN+ DA

%) %) S

Table 3: Operational semantics of collective

Rule Rec is standard. The behaviour of ([7]P, y) is regulated by rules Guard, Guard-F1, Guard-F2
and Guard-F3. The first two rules state that ([] P, ¥) behaves exactly like (P, ¥) when ¥ satisfies predicate
7. However, in the first case the guard is removed when a transition is performed. In contrast, the guard
still remains active after the transition when a broadcast input is refused. This is similar to what we
consider for the rule Plus-F1 and models the fact that broadcast input refusals do not remove dynamic
operators. In rule Guard-F1 we let [7]% denote the function that maps each term of the form ([7]P, y)
to €' ((P,y))) and any other term to O, for each ¢’ : COMP — R>(. Rules Guard-F2 and Guard-F3 state
that no component can be reached from ([7]P, y) and all the broadcast messages are refused when y does
not satisfy predicate 7.

3.2 Operational semantics of collective

The operational semantics of a collective is defined via the transition relation —,C COL x LAB X
[COL — Rsp|. This relation is formally defined in Table 3] We use a straightforward adaptation of
the notations introduced in the previous section.

Rules Zero, Comp-B-In and Comp describe the behaviour of the single component at the level
of collective. Rule Zero is similar to rule Nil of Table |1| and states that inactive component 0 cannot
perform any action. Rule Comp-B-In states that the result of a broadcast input of a component at
the level of collective is obtained by combining (summing) the transition at the level of components
labelled o*[7] (), 7 with the one labelled Z[o*[x](V'),7]. This value is then renormalised to obtain a
probability distribution. There we use ©.4" to denote Y yccor ¥ (N). The renormalisation guarantees a
reasonable computation of broadcast output synchronisation rates (see comments on rule B-Sync below).

26 CARMA: Collective Adaptive Resource-sharing Markovian Agents

Note that each component can always perform a broadcast input at the level of collective. However, we

are not able to observe if the message has been received or not. Moreover, thanks to renormalisation, if

*[x)(V
C Me A then @4 =1, 1i.e. .4 is a probability distribution over COL. Rule Comp simply states

that for the single component C # 0 all the transition labels that are not a broadcast input, the relation

i>g coincides with the relation ig.

Rules B-In-Sync and B-Sync describe broadcast synchronisation. The former states that two col-
lectives Ny and N, that operate in parallel synchronise while performing a broadcast input. This models
the fact that the input can be potentially received by both of the collectives. In this rule we let .47 || 45

denote the function associating the value .41 (N;) - 45 (N2) with each term of the form N; || N> and 0 with

7(V),
all the other terms. We can observe that if N Ms A then, as we have already observed for rule

Comp-B-In, ©.4 =1 and ./ is in fact a probability distribution over COL.

Rule B-Sync models the synchronisation consequent of a broadcast output performed at the level of
a collective. For each .47 : COL — R and .45 : COL — R, .41 & .45 denotes the function that maps
each term N to A1 (N) + A3(N).

At the level of collective a transition labelled a*[x](7V'),y identifies the execution of a broadcast
output. When a collective of the form N, || N, is considered, the result of these kinds of transitions must
be computed (in the FUTS style) by considering:

. : . V),
e the broadcast output emitted from Ny, obtained by the transition N, Ms N

* 7 .
e the broadcast input received by Ny, obtained by the transition N, Me M

@V,
o the broadcast output emitted from N, obtained by the transition N, ME Ny

e the broadcast input received by N,, obtained by the transition N, ng JVzi
Note that the first synchronises with the last to obtain .4{° || 45", while the second synchronises with the
third to obtain 4]’ || .45°. The result of such synchronisations are summed to model the race condition
between the broadcast outputs performed within Ny and N, respectively. We have to remark that above
A° (resp. A5°) is 0 when N (resp. N>) is not able to perform any broadcast output. Moreover, the label
of a broadcast synchronisation is again a broadcast output. This allows further synchronisations in a
derivation. Finally, it is easy to see that the total rate of a broadcast synchronisation is equal to the total
rate of broadcast outputs. This means that the number of receivers does not affect the rate of a broadcast
that is only determined by the number of senders.

Rules Out-Sync, In-Sync and Sync control the unicast synchronisation. Rule Out-Sync states that a
collective of the form N, || N> performs a unicast output if this is performed either in N; or in N,. This is
rendered in the operational semantics as an interleaving rule, where for each 4" : COL — Rxq, A" || N2
denotes the function associating .4 (N;) with each collective of the form N; || N, and 0 with all other
collectives. Rule In-Sync is similar to Qut-Sync. However, it considers unicast input.

Finally, rule Sync regulates the unicast synchronisations and generates transitions with labels of the
form t[ct[](V),7]. This is the result of a synchronisation between transitions labelled o[x](7V),7, i.e.
an input, and a[7](V), 7, i.e. an output.

In rule Syne, A4;*, 4,° and .#;' denote the result of synchronisation (7[ct[7] ('), 7)), unicast output
(ae[x](V),) and unicast input (& [](V'),y) within N; (k = 1,2), respectively. The result of a transition
labelled t[a[x](V'),7] is therefore obtained by combining:

e the synchronisations in Ny with N>: A}* || Na;

L. Bortolussi et al. 27

* 7)7 N
PJeN) =& = (i oot N ZN (e) = (0,N)

.) (V, .
Nin (1.p) “ 2% i N in (a(%,),p)

Sys-B

VY,
PeN) =€ = (iy) N 2PN () = (0,N)
AT, N in (0 (%))

Sys
Nin (%,p)

Table 4: Operational Semantics of Systems.

e the synchronisations in N, with Ny: Ny || A5
e the output performed by Ny with the input performed by N: A, || A5
e the input performed by N; with the output performed by N;: Jl/li || A5°.

To guarantee a correct computation of synchronisation rates, the first two addendi are renormalised by
considering inputs performed in N, and N respectively. This, on one hand, guarantees that the total rate
of synchronisation t[oc[7r](V), 7] does not exceed the output capacity, i.e. the total rate of ct[](V), 7 in
N; and N,. On the other hand, since synchronisation rates are renormalised during the derivation, it also
ensures that parallel composition is associative [7]].

3.3 Operational semantics of systems

The operational semantics of systems is defined via the transition relation —C SYS x LAB X [SYS —
R>o] that is formally defined in Table Only synchronisations are considered at the level of systems.

The first rule is Sys-B. This rule states that a system of the form N in (y,,p) can perform a broadcast
output when the collective N, under the environment evaluation € = (U, i,) = p(¥,,N), can evolve
at the level of collective with the label o* [](V'), Y to 4. After the transition, the global store is updated
and a new collective can be created according to function p,. In rule Sys-B the following notations are
used. For each collective N, .4 : COL — R, . : SYS — R>¢ and p € Dist(I') we let .4 in (p,p)
denote the function mapping each system N in (y,p) to A4 (N)-p(y). The second rule is Sys that is
similar to Sys-B and regulates unicast synchronisations.

4 CARMA at work

In this section we will use CARMA to model a bike sharing system [6} [17]. These systems are a recent,
and increasingly popular, form of public transport in urban areas. As a resource-sharing system with
large numbers of independent users altering their behaviour due to pricing and other incentives, they
are a simple instance of a collective adaptive system, and hence a suitable case study to exemplify the
CARMA language.

The idea in a bike sharing system is that bikes are made available in a number of stations that are
placed in various areas of a city. Users that plan to use a bike for a short trip can pick up a bike at a
suitable origin station and return it to any other station close to their planned destination. One of the
major issues in bike sharing systems is the availability and distribution of resources, both in terms of
available bikes at the stations and in terms of available empty parking places in the stations, where users
will park the bikes after using them.

28 CARMA: Collective Adaptive Resource-sharing Markovian Agents

In our scenario we assume that the city is partitioned in homogeneous zones and that all the stations
in the same zone can be equivalently used by any user in that zone. Below, we let {zo,...,z,} be the n
zones in the city, each of which contains k parking stations.

Each parking station is modelled in CARMA via a component of the form:

(G|R ,{zone = ¢, bikes = i,slots = j})

where
e zone is the attribute identifying the zone where the parking station is located;
e bikes is the attribute used to count the number of available bikes;
e slots is the attribute containing the total number of parking slots in the parking station.

Processes G and R, which model the procedure to get and refurn a bike in the parking station, respec-
tively, are defined as follow:

G [bikes > 0] get[zone = this.zone|(e){bikes + bikes— 1}.G

R 2 [slots > bikes] ret[zone = this.zone](e){bikes < bikes+ 1}.R

Process G, when the value of attribute bikes is greater than 0, executes the unicast output with action
type get that potentially involves components satisfying the predicate zone = this.zone, i.e. the ones that
are located in the same zong’| When the output is executed the value of the attribute bikes is decreased
by one to model the fact that one bike has been retrieved from the parking station.

Process R is similar. It executes the unicast output with action type ret that potentially involves
components satisfying predicate zone = this.zone. This action can be executed only when there is at
least one parking slot available, i.e. when the value of attribute bikes is less than the value of attribute
slots. When the output considered above is executed, the value of attribute bikes is increased by one to
model the fact that one bike has been returned in the parking station.

Users, who can be either bikers or pedestrians, are modelled via components of the form:

(Q,{zone = 1})

where zone is the attribute indicating where the user is located, while Q models the current state of the
user and can be one of the following processes:

B 2 move* [L](e){zone < U(zo,...,z1)}.B
+ stop*[L](e).WS
WS 2 ret [zone = this.zone|(e).P
p = go*[L](e).WS
wB £ get[zone = this.zone|(e).B

Process B represents a biker. When a user is in this state (s)he can either move from the current zone
to another zone or stop to return the bike to a parking station. These activities are modelled with the

3Here we use o to denote the unit value.

L. Bortolussi et al. 29

Min. bikes per Park
-------------- Max. bikes per Park
-------- Avg. bikes per Park

Bikes

60 80 100
Time

Figure 1: Simulation of bike scenario.

execution of a broadcast output via action types move and stop, respectively. Note that in both of these
cases, the predicate used to identify the target of the actions is L, denoting the value false. This means
that neither of the two actions actually synchronise with any component (since no component satisfies
). This kind of interaction is used in CARMA to model spontaneous actions, i.e. actions that render the
execution of an activity and that do no require synchronisation. After the broadcast move* the value of at-
tribute zone is updated by randomly selecting the next zone in {zo,...,z, }. With {zone <— U(zo,...,zx)}
we denote the update ¢ such that o(y) is the probability distribution giving probability % to each store
Y[zone <— z;]. This update models a random movement of the user among the city zones.

When process B executes broadcast stop™, it evolves to process WS. This process models a user who
is waiting for a parking slot. This process executes an input over ret. This models the fact that the user
has found a parking station with an available parking slot in their zone. After the execution of this input
process P is executed. The latter component definition models a pedestrian user. The user remains in this
state until the spontaneous action go* is performed. After that it evolves to process WB which models a
user waiting for a bike. The behaviour of WB is similar to that of WS described above.

Using a custom-built prototype simulator, we are able to simulate this modelled scenario. The output
on one simulation run is presented in Figure[I] In the graph we show the minimum, average and maxi-
mum number of bikes in one zone of the city. We consider a scenario with four zones each containing
four parking stations. The total number of users is 150.

5 Conclusions

We have presented CARMA, a new stochastic process algebra for the representation of systems devel-
oped in the CAS paradigm. The language offers a rich set of communication primitives, and the use of
attributes, captured in a store associated with each component, allows attribute-based communication.
For most CAS systems we anticipate that one of the attributes will be the location of the agent and thus it
is straightforward to capture systems in which, for example, there is a limited scope of communication,
or restriction to only interact with components that are co-located. As demonstrated in the case study
presented in Section 4, attributes can also be used to capture the "state" of a component, such as the
available number of bikes/slots at a bike station.

CARMA reflects the experience that we have gained through earlier languages such as SCEL [§],
its Markovian variants [[14] and PALOMA [9]. Compared with SCEL, the representation of knowledge
here is more abstract, and not designed for detailed reasoning during the evolution of the model. This

30 CARMA: Collective Adaptive Resource-sharing Markovian Agents

reflects the different objectives of the languages. Whilst SCEL is designed to support the programming
of autonomic computing systems, the primary focus of CARMA is quantitative analysis. In stochastic
process algebras such as PEPA, MTIPP and EMPA, data is typically abstracted away, and the influence of
data on behaviour is captured only stochastically. When the data is important to differentiate behaviour
it must be implicitly encoded in the state of components. In the context of CAS we wish to support
attribute-based communication to reflect the flexible and dynamic interactions that occur in such systems.
Thus it is not possible to entirely abstract from data. On the other hand, the level of abstraction means
that choices within the system will be captured stochastically rather than through the rich policies for
reasoning offered by SCEL. We believe that this offers a reasonable compromise between expressiveness
and tractability. Another key feature of CARMA is the inclusion of an explicit environment in which
components interact. In PALOMA there was a rudimentary form of environment, termed the perception
function but this proved cumbersome to use, and it could not itself be influenced by the behaviour of
the components. In CARMA, in contrast, the environment not only modulates the rates and probabilities
related to interactions between components, it can also itself evolve at runtime, due to feedback from the
collective.

The focus of this paper has been the discrete semantics in the structured operational style of FUTS
[7], but in future work we plan to develop differential semantics in the style of [16]]. This latter approach
will be essential in order to support quantitative analysis of CAS systems of realistic scale, but it may
not be possible to encompass the full rich set of language features of CARMA with such efficient analy-
sis. Further work is needed to investigate this issue, and which language features can be supported for
the various forms of quantitative analysis available. Additional work involves the development of an
appropriate high-level language for designers of CAS which will be mapped to the process algebra, and
hence will enable qualitative and quantitive analysis of CAS during system development by enabling a
design workflow and analysis pathway. The intention of this high-level language is not to add to the
expressiveness of CARMA, which we believe to be well-suited to capturing the behaviour of CAS, but
rather to ease the task of modelling for users who are unfamiliar with process algebra and similar formal
notations.

Acknowledgements

This work is partially supported by the EU project QUANTICOL, 600708. This research has also been
partially funded by the German Research Council (DFG) as part of the Cluster of Excellence on Multi-
modal Computing and Interaction at Saarland University.

References

[1] Yehia Abd Alrahman, Rocco De Nicola, Michele Loreti, Francesco Tiezzi & Roberto Vigo (2015): A Calcu-
lus for Attribute-based Communication. In: Proceedings of SAC 2015, doi:10.1145/2695664.2695668. To
appear.

[2] Marco Bernardo & Roberto Gorrieri (1998): A Tutorial on EMPA: A Theory of Concurrent Processes with
Nondeterminism, Priorities, Probabilities and Time. Theoretical Computer Science 202(1-2), pp. 1-54,
doii10.1016/S0304-3975(97)00127-8.

[3] H.C. Bohnenkamp, P.R. D’ Argenio, H. Hermanns & J-P. Katoen (2006): MODEST: A Compositional Mod-
eling Formalism for Hard and Softly Timed Systems. IEEE Trans. Software Eng. 32(10), pp. 812-830,
doi:10.1109/TSE.2006.104.

http://dx.doi.org/10.1145/2695664.2695668
http://dx.doi.org/10.1016/S0304-3975(97)00127-8
http://dx.doi.org/10.1109/TSE.2006.104

L. Bortolussi et al. 31

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

Luca Bortolussi & Alberto Policriti (2010): Hybrid dynamics of stochastic programs. Theor. Comput. Sci.
411(20), pp. 2052-2077, doi:10.1016/j.tcs.2010.02.008.

Federica Ciocchetta & Jane Hillston (2009): Bio-PEPA: A Framework for the Modelling and Analysis of
Biological Systems. Theoretical Computer Science 410(33), pp. 3065-3084, doi:10.1016/j.tcs.2009.02.037.

Paola De Maio (2009): Bike-sharing: Its History, Impacts, Models of Provision, and Future. Journal of
Public Transportation 12(4), pp. 41-56, doi:10.5038/2375-0901.12.4.3,

Rocco De Nicola, Diego Latella, Michele Loreti & Mieke Massink (2013): A uniform definition of stochastic
process calculi. ACM Comput. Surv. 46(1), p. 5, doii10.1145/2522968.2522973.

Rocco De Nicola, Michele Loreti, Rosario Pugliese & Francesco Tiezzi (2014): A Formal Approach to
Autonomic Systems Programming: The SCEL Language. TAAS 9(2), p. 7, doii10.1145/2619998.

Cheng Feng & Jane Hillston (2014): PALOMA: A Process Algebra for Located Markovian Agents. In:
Quantitative Evaluation of Systems - 11th International Conference, QEST 2014, Florence, Italy, September
8-10, 2014. Proceedings, Lecture Notes in Computer Science 8657, Springer, pp. 265-280, doi;10.1007/978-
3-319-10696-0_22.

Daniel T Gillespie (1976): A general method for numerically simulating the stochastic time evolution of
coupled chemical reactions. Journal of Computational Physics 22(4), pp. 403 — 434, doi:10.1016/0021-
9991(76)90041-3|

Holger Hermanns, Ulrich Herzog & Joost-Pieter Katoen (2002): Process algebra for performance evaluation.
Theor. Comput. Sci. 274(1-2), pp. 43-87, doij10.1016/S0304-3975(00)00305-4,

Holger Hermanns & Michael Rettelbach (1994): Syntax, Semantics, Equivalences and Axioms for MTIPP.
In U. Herzog & M. Rettelbach, editors: Proc. of 2nd Process Algebra and Performance Modelling Workshop.

Jane Hillston (1995): A Compositional Approach to Performance Modelling. CUP.

Diego Latella, Michele Loreti, Mieke Massink & Valerio Senni (2014): Stochastically timed predicate-based
communication primitives for autonomic computing. In Nathalie Bertrand & Luca Bortolussi, editors: Pro-
ceedings Twelfth International Workshop on Quantitative Aspects of Programming Languages and Systems,
QAPL 2014, Grenoble, France, 12-13 April 2014., EPTCS 154, pp. 1-16, doi;10.4204/EPTCS.154.1.

Corrado Priami (1995): Stochastic m-calculus. The Computer Journal 38(7), pp. 578-589,
doi:10.1093/comjnl/38.7.578|

Mirco Tribastone, Stephen Gilmore & Jane Hillston (2012): Scalable Differential Analysis of Process Alge-
bra Models. 1IEEE Transactions on Software Engineering 38(1), pp. 205-219, doi310.1109/TSE.2010.82,

Wikipedia (2013): Bicycle sharing system — Wikipedia, The Free Encyclopedia. Available at http:
//en.wikipedia.org/w/index.php?title=Bicycle_sharing_system&oldid=573165089, [Online;
accessed 17-September-2013].

http://dx.doi.org/10.1016/j.tcs.2010.02.008
http://dx.doi.org/10.1016/j.tcs.2009.02.037
http://dx.doi.org/10.5038/2375-0901.12.4.3
http://dx.doi.org/10.1145/2522968.2522973
http://dx.doi.org/10.1145/2619998
http://dx.doi.org/10.1007/978-3-319-10696-0_22
http://dx.doi.org/10.1007/978-3-319-10696-0_22
http://dx.doi.org/10.1016/0021-9991(76)90041-3
http://dx.doi.org/10.1016/0021-9991(76)90041-3
http://dx.doi.org/10.1016/S0304-3975(00)00305-4
http://dx.doi.org/10.4204/EPTCS.154.1
http://dx.doi.org/10.1093/comjnl/38.7.578
http://dx.doi.org/10.1109/TSE.2010.82
http://en.wikipedia.org/w/index.php?title=Bicycle_sharing_system&oldid=573165089
http://en.wikipedia.org/w/index.php?title=Bicycle_sharing_system&oldid=573165089

	1 Introduction
	2 Carma syntax
	3 Carma operational semantics
	3.1 Operational semantics of components
	3.2 Operational semantics of collective
	3.3 Operational semantics of systems

	4 Carma at work
	5 Conclusions

