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Markov population models (MPMs) are a widely used modelfimgnalism in the area of compu-
tational biology and related areas. The semantics of a MPlhimfinite-statecontinuous-time
Markov chain. In this paper, we use the establisbedtinuous stochastic logi€CSL) to express
properties of Markov population models. This allows us tpress important measures of biological
systems, such as probabilistic reachability, survivihitiscillations, switching times between attrac-
tor regions, and various others. Because of the infinite Sagéce, available analysis techniques only
apply to a very restricted subset of CSL properties. We pitesséull algorithm for model checking
CSL for MPMs, and provide experimental evidence showingjdlia method is effective.

1 Introduction

In the context of continuous-time Markov chains (CTMCshparties of interest can be specified using
continuous stochastic logic (CSL) [2, 3]. CSL is a brancHinge temporal logic inspired by CTL[9].

It allows to reason about properties of states (state [gldé&e the number of certain molecules given
in this state, about what may happen in the next state (nesthg), what may happen within a certain
time (bounded until), what may finally happen (unbounded)umtabout the long-run average behavior
of a model (steady state). Because the underlying semanitecarkov population model is given as a
CTMC, we can also use CSL to reason about properties of sudelsjavhen interpreting CSL formulae

on the CTMC semantics.

We consider the complete set of CSL formulae, including teady-state operator and in certain
cases also the unbounded until oper&tor [3]. The resultigig Ican express (nested) probabilistic prop-
erties such a%he long-run probability is at least 0.4 that we reatkstates alongb-states within time
interval [6.5,8.5] with a probability larger thar0.98" via .-0.4(Z-0.98(P % 8583 W)). Using CSL,
we can express many measures important for biological mpuheluding oscillation([4].

Previous works [11, 20, 21] have already considered tecisidor the transient analysis of infinite-
state CTMCs. These techniques are basettuntation This means that only a finite relevant subset
of the states of the infinite CTMC is taken into account. Thieeixto which these models are explored
depends on the rates occurring there, as well as on the timedbof the transient analysis. Using
truncation, techniques for the analysis of finite CTMICs [@dh be used for the analysis of properties of
infinite-state models.
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Table 1: Truth values of ternary logic operations.

In a previous publication [15], we have extended these t®sukch that we were able to do approx-
imate model checking for a subset of CSL. This subset exdltite steady-state operator as well as the
unbounded until operator. We have implemented these tgoégiin the model checkekfkamy [14].

On the other hand, we recently developed means to find sutssstates of Markov population model
CTMCs which contain the relevant steady-state probahifigss([7]. For each of these states, we also
obtain lower and upper bounds of the steady state probabilitese techniques have been implemented
in the tool GEOBOUND[23].

In this paper, we combine EBOUND and INFAMY, such that we can also handle the CSL steady-
state operator. In addition, we introduce advanced trimtaechniques which allow us to explore the
model in a more advanced way, leading to a smaller numbeati#fsbeing necessary to check properties.
By also taking into account not only the time bound of CSL prties, but also the atomic propositions,
we can further restrict the state space to be explored. l@inecases, this also allows us to handle
the unbounded until operator. Using a ternary lo@ic [16, IiYcontrast to previous publications, we
can compute safe lower and upper bounds for probabilitiegurn, we can decide exactly whether a
certain formula holds, does not hold or whether this caneotliécided on the finite truncation of the
current model. Apart from this, we have also made some teahimprovements, applying for instance
to the portability and robustness ofHaMY. We show the applicability of the approach on a number of
biological models.

Organization of the paper We give background on Markov population models, CTMCs and DS
Sectiori 2, and also recall the established CSL model chgetgorithm for finite CTMCs. In Sectidd 3,
we give the main contribution of the paper, CSL model chegkar infinite CTMCs. Sectiohl4 reports
experimental results. Sectibh 5 gives related work and@&g6tconcludes.

2 Preliminaries

2.1 Ternary Logic

We consider a ternary logi¢ [16, 17] with valuBg := {T, L,?}. With the orderingl < ?< T, B3
forms a complete lattice. We interpretas the meet (“and” operator), arfdas the complement (“not”)
operation, with the usual definitions. Other operators lik€or” operator) can be derived. Then,and

1 can be interpreted as values definitely true or false relspégtand ? is interpreted as an unknown
value. We give an overview of the truth values in Tdlle 1. @iersa formula over a number of values
some of which are ?. If the value of this formula is differemnh ?, we know that when inserting or

T instead of some of these values, the result would still beséimee. This way, in some cases we can
obtain a truth value even though we do not known the truthesabf some formula parts.
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2.2 Markov Chains

We define some basics of Markov chains and CSL.ARtdenote a set of atomic propositions. For
a countable se§ a distributionu over Sis a functionu : S— [0,1] with u(S) = 1, and we define

H(A) == Soak(s) for AC S

Definition 1 A labelled continuous-time Markov chain (CTM®)a tuple = (S snit,R,L) where S
is a countable set of statesy;sis an initial state, L: (Sx AP) — Bg is a labelling function, andR :
(Sx S) — R is therate matrix

In the stochastic process which the CTMC represegisis the state we start in. The labelling function
tells us for each stateand atomic propositioa whethera holds ins, does not hold irs, or whether this
is not known or not specified. We say that the rate matmatis-boundedf the supremum supgR(s,S)

is finite, otherwise, it is calledate-unbounded If R(s,s') > 0, we say that there is a transition from
stos. Forse S let posts) := {s' | R(s,s') > 0} denote the set of successor states.oA states is
calledabsorbingif post(s) = 0. A CTMC isfinitely branchingif for each states the set of successors
post(s) is finite. In this paper, we consider rate-unbounded, fipibenching CTMCs which do not
explode [[1] 8]. Roughly speaking, if the CTMC explodes, thwre is a positive, non-zero probability
of infinitely many jumps in finite time. On the contrary, theféhat a CTMC does not explode implies
that in finite time with probability one only a finite numbersiftes can be reached.

Transition probabilities in CTMCs are exponentially distited over time. The probability that an
arbitrary transition is triggered within tintes given by 1— e RS9t whereR(s,A) := T¢caR(S ) for
AC S The probability of taking a particular transition fraso s within timet is Egg (1—e RS,
States is reachable frons if there exists a sequence of staggs .., s, withn>1,5, =5, 5, =5, and
foreachi=1,....n—1itisR(s,s5:1) > 0.

For a set of states, by ¢’ [A] we denote the CTMC in which states Ahave been made absorbing.
For%¢ = (S snit,R,L) andA C Swe have?’[A] := (S snit, R’,L) with R'(s,s) := R(s,s) for s¢ Aand
R'(s,s):=0else, for als,s € S Given a rate matriR, we define the correspondimmgfinitesimal gener-
ator matrixQ such that foss, s'if s# s thenQ(s,s') :=R(s,s) and we leQQ(s,s) := — S gesy4sR(S,9).

Paths and probabilistic measure Let ¢ = (S snit,R,L) be a CTMC. A path is a sequenee =
sitisty. .. satisfyingR(s,s+1) > 0, andt; € R>o. Paths are either infinite or have a last statevith
R(sh,S) = 0. For the patho andi € N, let o[i] = 5 denote thd-th state, and led(o,i) =t; denote
the time spent i. Fort € R, let 0@t denotedli] such thai is the smallest index with < Zij:]_tj.
For %, let Path® denote the set of all paths, aReth’ (s) denote the set of all paths starting framA
probability measur®r? on measurable subsetsRﬂth%(s) is uniquely defined. We omit the superscript
% ifitis clear from context.

2.3 Markov Population Models

In this paper, we will consideMarkov population model@PMs), a sub-class of CTMC, where states
encode the number of individuals of certain population sypgpresented by a vector over the natural
numbers. Transitions between those states are defined langekector that characterizes the successor
state and a rate determined by a propensity function thablsiaed in the predecessor state.

Formally, a MPM withd population types is a CTM@& = (S snit,R,L) with SC N9, The rate
matrix R will be induced bytransition classes
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[s.a] :=L(s,a), [s, @1 A D2 := [s,P1] M [s, P2, [8,~P] := [s, D],
T, Pr{ol[o,@]=T}=pAPrs{o|[o, g]#L}>=p,

[s. Zwp(@)]:=4 L, Prs{ol[o,¢]=T}apAPrs{o|[o, g]#L}vAap,
? else
T, S(P)apA S (P)eap,

[s, S ap(®)]:=1 L, S(P)ApAS(P)r4p,
? else

where

S (D) ::tlm Pr{o | [o@t,®] =T},
S(®) = im Pro{o | [0@,®] £ L},
[o, 2] := (T iff 5(0,0) €1, L elsen[a[l],d],
T, Stel.[o@t, d]=T AVt'<t.[o@t',P1]
[[O',(Dl%l CDQHZ: 1, Vt€|.[[O'@t,q32]]:J_\/E|t/<t.[[0'@t/,q)1ﬂ
? else

T,
€,

Table 2: CSL semantics.

Definition 2 (Transition Class) Atransition classs a tuple(a,v) wherea : NY — R is thepropensity
functionand ve Z9)\ {0} is thechange vector

For the propensity functions, we will restrict to multivate polynomials ifNY. Given a set of transition
classes{s,..., Tm}, we define the entries @& via R(X,X+V) = 3 ; |,y @j(X) for 7; = (aj,v;) and
1< j <m. In order to ensur® is well defined, we demand that for all states S and all transition
classegaj,v;) of our modela;(x) > 0 only holds ifx+v; € S. For the labelling- we demand that each
state is labelled by those boolean expressions over papuladunts and constants that evaluate to true.
We also refer to the populations by their name. For exampleg have a MPM with populationa (Xg)
andB (xp), then statdé3,4) would be labelled by e.gA < cforallc>3,A+B<7 andA? + B2 < 30 to
name just a few.

2.4 CSL Model Checking

We consider the logic CSL[3] interpreted over a ternarydd@b,/17]. Letl = [t,t'] be an interval with
t,t' e RyoU{w} witht' =0 =t=0andt <t'. Letpe [0,1] andx € {<,<,>,>}. The syntax of state
formulae ) and path formulaeq) is:

® = a[-P|OAP| Frgp(9) | Fiap(P),
p = 2'o|o%' o

LetF be the set of all CSL formulae. The truth valiig, : ((SUPath) x F') — B3 of formulae is defined
inductively in Tablé 2. If the model under considerationl&ac from the context, we leave out the index
%. The model¢ satisfies a formula if the initial states,;; does. We specify thanbounded untihs
D1 % , := Dy 7% [0%) &, and theeventually operatoss §'® := true %' ® wheretrue =aV —a. Let

B C Sbe a set of states. For better readability, we use the nante &ietB as an atomic proposition in
formulae to characterize that the system is in a state coadanB.
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Model checking CSL formulae without the operatstsand.# on a finite CTMC over a ternary logic
has already been used before to handle a different abstiaetthnique for CTMCs [16, 17]. Adding
routines to handle?” and.% is straightforward.

3 Model Checking based on Truncations

Now we discuss how to model check CSL formulae on infinite CEMQo this end, our goal is to
operate on a finite truncation instead of the original infit@fTMC. In a nutshell, starting from the initial
state, we explore the states of the infinite model until wamssthat we have explored enough of them to
obtain a useful result in the following steps. Then, we reenaltransitions from the states at the border
and set all of their atomic propositions to ?. In previouskgdd5] we already discussed some variants of
such a model exploration. In Subsectionl 3.1 we give anotier &chnique. It is more efficient than the
previous methods, as it can explore model states in a mayetiariented way. Thus, it needs to explore
less states than the previous methods. Afterwards, westidww to build a finite CTMC truncation for
a nested CSL formula. Finally, in Subsection] 3.3, we exptaw to obtain results for the infinite-state
CTMC only using the finite submodel.

3.1 Truncation-based Reachability Analysis

Given a set of state#y, a CTMC% = (S spit, R, L) and CSL formula of the forn® = 2., (P1 % P,),
we want to compute a finite submodél,, = (# U# ,Ry,Ly ) sufficient to decidab on all states of
#o. We definéfinite truncationsof a CTMC.

Definition 3 Let ¥ = (S snit,R,L) be a CTMC. Let# C S be a finite subset of S, and gt :=
pos(#')\ # . Thefinite truncationof ¢ is the finite CTMC?|,, := (# U# ,Ry,Ly ) Where Ly (s,) =
L(s,-) ifse #,and Ly (s,-) = ?else. The rate matrix is defined By, (s,s) := R(s,s) ifs€ #/, and
Ry (s,-) :=0else.

We build the truncation of the model iteratively, using thghhlevel (transition class) description of
the model. Starting from statés we explore the model until for afle #p the probability to reach states
in # is below an accuracy, which we may choose as a fixed value or due to the probabibitynd p.

Algorithm [1 describes how we can obtain a sufficiently lartpesset?”. Forsc S s € # and
t € RoU{o} we useri,(s,t,5) to denote the probability that at tinec R, the CTMC% is in state
S, under the condition that it was minitially. Fort = o, we let 1T denote the limit fot — oo if this
value exists. Ifs will reach absorbing states with probability one, this ie tase. Further, for a set of
absorbing stateB, we leté,(s,t,B) := S¢cp T (S t,S) denote the probability to readh within time
t € R>oU{}. Given a fixeds andt, we can computet,(s,t,s) for all s’ at once effectively, and given
B andt we can computé (s,t,B) for all sat once effectively [3].

The algorithm is started on a CTM& and a set of state¥), for which we want to decide the
property. We also provide the time bounds well as the accurag; With # we denote a set of states
for which the exploration algorithm may stop immediatekyfarther exploration is not needed to decide
the given property. Fo® above and = [0,a],a € R>oU {e}, we could specify# as the states which
fulfill @, Vv (—®1 A —®P,). For all paths of the model, the truth value is independerthefstates after
such a state.
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Algorithm 1: TRANSIENTTRUNC(%,%,V/A,t,s).
W o=W

W= pos(# )\ W
while Mavey, &7 (St 7\ #) > edo
chooses from argmaxcy, &7 (st, 7 \W)
while &7, (s,t,V/\V/A) >¢edo
chooseA C (%7 \ #') such thatit, 77 (s t,A) > €
W= UA
W= pos(W )\ W
return % U (pos(#/ ) N#)

3.2 Truncation-based Steady-state Analysis

In the following, we will develop a technique to retrieve aiténsubset of state®” C Sthat contains
most of the total steady-state probability mass, J.g., 1(c) > 1— & for a givene < 1. The next step
will be to derive lower and upper bounds on the state-wisadstestate probabilities inside that window
Y/

Geometric Bounds For the presented methodology to be applicable, we havestaateour models to
ergodicMPMs, since for steady-state analysis the equilibriunrithistion has to exist uniquely. Ergod-
icity can be verified by the means of Lyapunov functions ardftiflowing theorem. In the following,
by X(t) we refer to the stochastic process underlying the MPM, anf toythe expectation of a random
variable.

Definition 4 (Lyapunov Function) A Lyapunov functioris a function g N4 — R>o.

A suitable Lyapunov function which also we used for our ekpental results is the squared Euclidean
norm || - ||3 defined byi|x||5 = X§ + X3 + - - - + X3 whered is the number of population types.

Theorem 1 (Tweediel[26]) Assuming that X) isirreducible it is alsoergodicand uniquely determined
by its infinitesimal generator iff there exists a Lyapunawtion g, a finite subse¥” C S, and a constant
A > 0 such that

1. 3E[g"(X(t)) | X(t) =x] < —A for all x e N9\ 7,
2. SE[gF(X(1)) | X(t) =X <wforallx e #,
3. the set{x € N9 | g*(x) < 1} is finite for all | < co,

Therefore, given a MPNF = (S snit, R, L) induced by a set of transition clasdes, . .., Tm}, we can use
Theorent 1 for a semi-decision procedure to check ergodigityhoosing candidates for Lyapunov func-
tions. Our experience has shown that in most cases rathplesiomctions, i.e. multivariate polynomials
of degree two, already suffice for usual models from systaoiedy and queuing theory. Consequently,
we restrict the choice of Lyapunov functions to that class.

We can exploit Theorem 1 also to retrieve the aforementioviadow 7 that encloses most of the
steady-state probability mass. At first, let it d*(x) in statex € N be defined as

d

d*(x) == LE[g" (X)) [ X(t) =X = (Qg")(X).
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Due to the transition class induced structuré&)the drift is given as

Za g (x+Vvj) —g"(x))

and can easily be represented symbolically in a stagince the propensity functions of our models as
well as the Lyapunov function are multivariate polynomias is the drift. The next step is to retrieve
a positive real numbec > maxy« d*(X). In order to find that global maximal drift, common global
optimization techniques like gradient based methods andlaied annealing can not be used, since there
is no guarantee to get the real global maximum. What we pmpuwsead is to solveld*(x)|, = 0 for

spanned by e p to retrleve allK possible candidatesy. In order to solve the equation systems
0d*(x)|p = 0, we suggest the use of the polyhedral homotopy continuatiethod, which is guaranteed
to find all roots. For implementations, we refer[tol[13] an8][Finally, after restricting the candidate set
toM = {my | mc € RY}, we setc = maxney d*(m). Please note, that due to the existence of a maximal
valuec, the chosen Lyapunov function serves as a witness for asip@issuming an irreducible MPM.
By scaling the Lyapunov function béﬁ%/ we retrieve the normalized drift

d
d() = FEBXM) [ X([t) =X
and using conditions 1 and 2 from Theorem 1 we get

409 < o~ Ko (4, ®

wherexy (X) =1 if c¢Z # and 0 else. Multiplying Inequality] 1 withr(x) and summing ovex leads us

to
Cc

) = ;/T( X) < —— iy

Convergence of this sum is guaranteed for (infinite) ergfRiMs as stated in [10]. Consequently, we
can exploit this inequality by directly choosimtfx) = £d*(x), i.e. settingA > 0 such that = ?y' to
getr(#) > 1— ¢ for

W ={xeNl|d(x)>e—1}.

State-wise Bounds Given our state space windo#’, our next goal is to get lowet (k)) and upper
(u(x)) bounds on the steady-state probabilities ins#dgi.e. probability vector$ andu such that (x) <
r(x) < u(x) for all c € 7. For this, we will employ the methodology developed by Coisrand Semal
[5] [6] which we have extended to infinite state MPMslin [7]:

Theorem 2 ([7]) Let Q be the infinitesimal generator of an ergodic CTM@ Xwith countably infinite
state space S and &t C S be a finite subset of the state space. Further, we let théxn@atre the finite
submatrix 0fQ containing exactly the states #". If by U we refer to the uniformized CTMC 6f, i.e.

U=I+a1Cwith a > max—C(i,i),
|

then for all xe # we have
m|n i (x) < < < maxm¥i (x)
2xeW 1(X) J
wherenYi is the steady-state distribution of mattiX which is matrixU made stochastic by increasing
column j.
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As presented in the previous paragraph, we have k S,., m(x) < 1. Consequently, we can use the
geometric bounding technique to obtain the unconditiotakswvise bounds from Theordrh 2, that is to
retrieve for all stateg € #

1(X) = (1—&)min7Y (x) < 71(x) < maxm (x) = u(x).

J J

Geobound All these presented techniques, i.e., the retrieval of ggdmbound via Lyapunov func-
tions and the computation of state-wise steady-state ®ouiadthe methodology of the previous para-
graph have been implemented in a prototypical tool called&ouND [23].

3.3 Truncation-based CSL Model Checking

Given a CTMC®%, we want to check whethe&s” satisfiesd. This is done in two phases. At first, we
construct a finite truncation that is sufficient to check thwrfula. To this end, we employ an algorithm
to determine suitable truncations. The states explore@érikepn the specific CSL formula analyzed.
The computation works by recursive descent into sub-foamulThe most intricate formulae are the
probabilistic operators, for which we use the techniquenf@ectiorf 3.11. After the exploration, we can
compute[sinit, @] on the finite truncation.

Algorithm 2: TRUNCATE(% = (S snit,R,L),®). CSL state space exploration.

function TRUNC(%,# ,®)
switch @ do
caseareturn %
case—W return TRUNC(%, 7 ,W)
cased; A P, return TRUNC(E, # ,®1) UTRUNC(E, # , ;)
caseZ.p(2'W) return TRUNC(C, 7 UW W)
case P (®1 % 1V dy)
#{ = TRANSIENTTRUNC(%, # ,stop(®),t, €)
# = TRANSIENTTRUNC(%, #4,stop®),t' —t,€)
return TRUNC(%, #;,®1) U TRUNC(E, #4, P2)
caseSqp(W) return TRUNC(E,pos(# ')\ # ,¥)

return €| rrunc(#, fsnit @)

Algorithm [2 describes the exploration component. Given 8MCT¢ = (S snit,R,L) be a CTMC
and a state formul®, we call TRUNC(%, {Sinit }, ). Afterwards, we can use the CSL model checking
algorithm for a ternary logic on the model obtained this wa#th stop®) we denote a set of states for
which we can stop the exploration immediately, as exemglifieSectio 3.11. For nested formulae, this
value is computed by a simple precomputation in a recursenear.

We employ ternary CSL model checking on the finite model oleidhi However, we have already
obtained state-wise bounds on the steady-state prolbitieforehand using the approach presented in
Sectior 3.2 and implemented in the took@OUND. Thus, to obtain the lower bound probabilities of
Zap(W), we sum up the lower bound steady-state probabilities eéssac % with [x, W] = T. For
the upper probability bound, we sum upper steady-stateapitities of states with [x, W] # L and add
the probabilitye that limits the steady-state probability outsidé The probabilities computed are the
probabilities for all states, because the model is ergodic.
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Correctness Consider a truncatio’|,, = (# U# ,Ry,Ly ) constructed for the input CTM& and

a state formulab. If we obtain the truth valugs, ®] #? in €y, then this is also the truth value i:
The correctness is independent of the exploration alguaritivhich plays a role for performance and
applicability of the approach. If too many states are exqapwe may run out of memory, whereas if too
few are explored, we are unable to decide the value in thénatighodel. As a result, the correctness of
the algorithm for CSL without steady state follows by givimgimulation relation [17, Definition 3.4.2]
betweerfs’ and¥’|,, and [17, Theorem 4.5.2]. The correctness of the steadg-siaension follows as
we give safe upper and lower bounds in exactly the same wadysaddne in[[17, Theorem 4.5.2].

4 Experimental Results

Using several case studies, we assess the effectivenesstetbnique. For that, we have combined the
tool GEOBOUND [23] to compute bounds on steady-state probabilities forkigha population models
with the infinite-state model checkew#amy [14]. This way, we can effectively handle the combination
of models and properties described in this paper. To showffteéency of the approach, we applied our
tool chain on a number of models from different areas. Theltesvere obtained on an Ubuntu 10.04
machine with an Intel dual-core processor at 2.66 GHz egaippith 3 GB of RAM. The tools used are
availabIE]. Instead of the truth value for the formula under considenat in the result tables we give
intervals of the probability measure of the outer formulaté\that in case of a single (ergodic) strongly
connected component, there is a unique steady state digiriband it suffices to state a single pair of
lower and upper probability bounds for a CSL formula withesigteady state operator since the validity
is the same for each state. We make use of a derived operatooriditional steady-state measures
defined as

T, S(P1|P2)apASy (P1|P2)>p,
[, Sap(Pr | P2)[=1q L, S(P1|P2)pApASy (P1|P2)r4p,

? else
where
S (P1ADy)
S(P1 | ®y) (@)
(OO
(P P2) = %

Protein Synthesis [[12] We analyze the MPM encoding protein synthesis, as depictdalle[3. In
biological cells, each proteirP( x,) is encoded by a gené&( x;). If the gene is activeG = 1), the
corresponding protein will be synthesized with rate- 1.0. Proteins may degenerate with rate- 0.02
and thus disappear after a time. The gene switches froneastate to inactive = 0) with rateu = 5.0
and vice versa with rata = 1.0. Note that in a previous paper, this model has been prebasta
stochastic Petri net (SPN). Often, transition class modets SPN (without zero-arcs) can trivially be
encoded within each other.

We consider the property that on the long run, given thakthee more than 20 proteins, a state with
20 or less proteins is most likely (with a probability of aase 09) reached withirt time units:

Sop(P=09(0PUP < 20) | P> 20).
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j Tj aj(x) vl

1 (C{]_,Vl) )\(l—Xl) EI
2 (a2,V2) UXq —e]
3 (C{3,V3) VX1 e,I
4 (Q4,V4) OXo —€J

Table 3: Transition classes of the protein synthesis model.

Table 4: Protein synthesis results.

time probability bounds|

€ t depth GEOBOUND INFAMY n [S, Ul
10 8 0.1 217 [0.002, 1.0]

101 20 8 0.9 0.1 217 [0.003, 1.0]
60 8 0.1 217 [0.004, 1.0]

10 5 0.3 1531 [0.144,1.0]
103 20 5 3.2 0.4 1531 [0.259, 0.816]
60 5 07| 1531 [0.317,1.0]
10 3 34.3| 46431 [0.451350,
106 7.8 0.454779]
20 3 67.0| 46431 [0.813116,
0.817401]
60 3 257.5| 46431 [0.997642,1.0]

We give results in Tablel4. The shortcut stop of Algorithm Zwat used for the analysis. With
“depth” we specify the number of states of the shortest pati the initial state to any other state of the
truncation. The runtimes of @>BOUND and INFAMY is given in seconds. The rate of decay of proteins
depends on the number of proteins existing. For the statédsedmorder of#’, we have large rates back
to existing states. Because of this, for the given paramméberstate space exploration algorithm does not
need to explore further states, and the total number ofsstadgloredn does not increase with the time
bound. To obtain differem, we would have needed to choose extremely large time bodmdahich
analysis would be on the one hand infeasible and on the o#émelWwould lead to results extremely close
to 1. The lower and upper bounds are further away thamhis results, because we have to divide by
Sy (P) for the lower and by (®;) for the lower bound. In turn, this may lead to a much largeorerr
thane.

Gene Expression[[25] Next, we analyze a network of chemical reactions where a gemanscribed
into mMRNA (M) with rate A = 25.0 and the mRNA is translated into proteiri®) with rate u = 1.0.
Both populations can degrade at rafgs= 2.0 anddp = 1.0, respectively. The corresponding transition
classes are listed in Tallé 5. The property of interest istbady-state probability of leaving a certain
set of state$V enclosing more than 80% of the steady-state probabilitysmasst likely withint time
units, i.e.,

y>p(@>o.9(<>[0’ﬂ _‘W) ‘ W)a

lhttp://al ma. cs. uni - saar | and. de/ ?page_i d=74
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j 7] aj(x) Vi)
1 (ag,v1) A el
2 (a2,V2) Xy e}
3 (as,va) OmX1 _e-{
4 (04,Vs) OpXo —€J

where

with #~0g(W) =T.

Table 5: Transition classes of the gene expression model.

W:=M>5AM<20AP>5AP<20

Table 6: Gene expression results.

e depth time n probability bounds
GEOBOUND INFAMY [S, U]

2 24 5.2 2558 [0.01,0.2]

101 4 24 3.4 6.0 2558 [0.3, 0.6]
8 24 8.5 2558 [0.8,1.0]

2 20 11.9 3663 [0.015, 0.078]

5.10°2 4 20 6.1 15.4 3663 [0.34, 0.46]
8 20 22.1 3663 [0.90, 1.0]

2 15 99.3| 11736 [0.015, 0.029]

1072 4 15 8.5 139.9| 11736 [0.37,0.40]
8 15 219.5| 11736 [0.97,1.0]

The results are stated in Taljle 6. Similar to the proteint®gis case study, we see that there is

no increase in the number of states, because the window Isggelg comprises enough states for the
transient analysis. In Tab[é 7 we consider results for tidémmula 2. o(0%-W). We compare the
methods to explore states for the transient until descnbelis paper (Advanced) with the finite state
projection [21] (FSP) previously used ingAmMY. We see that the time needed is comparable, but the
new algorithm needs to explore less states. This is the esaube with the method introduced here
when building the finite truncation we have more control imiaich direction we explore. In contrast,
the FSP explores the model into all directions at the same, timtil enough precision is reached. When
we use the shortcut stop (Advanced+AP), we will not explaéates further in which-W holds. When
exploring the model, for larger time bounds there is sometpati which there are almost only states of
which all successors have been completely explored aresdtat which—W holds. Thus, the maximal
number of states to be explored is constant with this opétitn, except for very large time bounds.

For the protein synthesis, there is almost no differencdénnumber of states needed by the new
method and FSP. Because it has only one infinite variablee tisgust one direction to be explored.
Thus, the new method performs worse, as it needs more affertdiore into this direction.

Using the shortcut method also allows us to handle the fam#loq(O—W), involving the un-
bounded until operator. Using a precision of §0we needed a total time of 1.5 seconds, reached
974 states and obtained a reachability probability almdst Using a precision of 1%, we needed
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Table 7: Gene expression - comparison of methods.

T FSP Advanced Advanced+AP
time n time n time n
1 0.3 1223 0.5 803 0.3 495
2 0.8 1889 1.1 1257 0.6 838
3 1.2 2209 1.5 1460 0.8 945
4 1.5 2344 1.9 1557 0.9 971
5 1.8 2483 2.1 1610 0.9 974
6 2.1 2483 2.4 1647 1.0 974
7 2.4 2554 2.7 1674 1.1 974
8 2.7 2554 2.9 1690 1.2 974
9 3.0 2626 3.2 1707 1.2 974
10 3.2 2626 3.3 1720 1.3 974

3.7 seconds and explored 1823 states. For the computationboiunded until probabilities, efficient
specialized algorithms were used, which explains that vezleé less time than for some of the time
bounded experiments.

Exclusive Switch [19] The exclusive switch is a gene regulatory network with ormmmtor region
shared by two genes. That promotor region can either be mtb@i= 1,G.P, = 0,G.P, = 0) or bound
by a protein expressed by gene@ £ 0,G.PL =1,G.P, =0) or gene 2G =0,G.P, =0,G.P, = 1).

If the promotor is unbound, both proteins are expressed) wdth ratep = 0.05, otherwise only the
protein that is currently bound to the promotor is produdecte p. Proteins degrade at rade= 0.005.
Binding happens at rate = 0.01 and unbinding at rate = 0.008. The transition class structure is given
in Table[8.

j T a;(x) i)
1 (a,vi) 0PX3 el
2 (C{Q,Vz) PX3 e,I
3 (as,V3) byl —e]
4 (C!4,V4) OXo —E‘;
5 (a5, vs) Axixz | (—er—es+
&)’
6 (06, Ve) AXoxz | (—€x—e3+
es)'
7 (o7,v7) UXa | (—es+e1+
es)'
8 (ag,Vvg) Uxs | (—es+ex+
es)'
9 (ag, Vo) DOXa4 el
10 (0r10,V10) PXs e

Table 8: Transition classes of the exclusive switch.

This system has two attractor regions, i.e., two spatialimaxn the steady-state probability dis-
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tribution over the protein levels, one Bt = 10,P, = 0 and the other one & = 0,P, = 10. We are
interested in the switching time between these two regiéios.this, we estimate the time needed for a
90%-quantile of the steady-state probability mass of orthefwo attractors to reach the other attractor
region. More precisely, let

start = [|(P,P)—(10,0)[[3< 4
end = |[|(P,P)—(0,10)|3 < 4.

Then, the formula to check is
Z=p(P=09(0end) | start).

Note that since the model is symmetric we only have to cheekformula from one attractor to the
other. The corresponding results are depicted in Tdble 9.

Table 9: Exclusive switch results.

time probability bounds
€ t depth GEOBOUND INFAMY n [S, U]
7700 14 47.9 3414 [0.2,0.7]
10-1 7800 14 53 48.0 3414 [0.3,0.9]
7900 14 ' 47.6 3414 [0.5, 1.0]
8000 14 48.1 3414 [0.6, 1.0]
7700 12 128.3 4848 [0.26, 0.49]
5.10-2 7800 12 6.9 129.7 4848 [0.43,0.70]
7900 12 ' 130.5 4848 [0.64, 0.98]
8000 12 131.0 4848 [0.83, 1.0]
7700 8 1881.6| 14806 [0.30, 0.35]
10-2 7800 8 86.2 1904.5| 14806 [0.50, 0.56]
7900 8 ' 1930.1| 14806 [0.75, 0.82]
8000 8 1942.9| 14806 [0.96, 1.0]

From these results we may conclude that in half of the casest, likely the switching time between
the attractor regions is at most 7800 time units, while inahall cases the switching time is most likely
below 8000 time units, assuming the system has stabilizadteady state.

5 Related Work

The techniques of this paper are derived from combinatiérmsioprevious works [14, 15] and|[[7, 23].
This work has been inspired and is related by a number of gthéxs.

Finite state projection (FSP) by Munsky and Khammash [2X]dsely related. The method also
works on building a finite truncation of the original modehélproofs given work for general truncations,
but in their publications they always use an algorithm whégplores the model in a breadth-first way.
They consider time-bounded reachability and no logic likeCAdaptive uniformization for CTMCs
was introduced by van Moorsel and Sandérs [20]. In this ambrainiformization is recalibrated to
perform well when exploring the state space on the fly. Remké {£2] have developed algorithms for
model checking CSL against infinite-state CTMCs of Quahhileath processes (QBDs) and Jackson
queuing networks (JQNs). The systems to which the methogp#icable are less general, but the
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approach is less expensive than our method. To the best afithers knowledge, the method to bound
the steady-state probabilities using Lyapunov functienssed here for the first time for general MPMs.

6 Conclusion

In this paper, we have shown how to model check CSL on Mark@uladion models of infinite size.
Without the steady-state operator, the method is alsoagipé for general CTMC derived from a high-
level specification. We have evaluated our method on modats the biological domain. The method
extends previous related publications by means to checktézaly-state operator and gives guarantees
for the truth value obtained.

As future work we plan to integrate these methods into oubglodistic online model checkersi
CASMC:

http://iscasnt.ios.ac.cn/lscasMJJ
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