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Differential privacy is a modern approach in privacy-preserving data analysis to control the amount
of information that can be inferred about an individual by querying a database. The most common
techniques are based on the introduction of probabilistic noise, often defined as a Laplacian para-
metric on the sensitivity of the query. In order to maximize the utility of the query, it is crucial to
estimate the sensitivity as precisely as possible.
In this paper we consider relational algebra, the classical language for queries in relational databases,
and we propose a method for computing a bound on the sensitivity of queries in an intuitive and
compositional way. We use constraint-based techniques to accumulate the information on the possi-
ble values for attributes provided by the various components of the query, thus making it possible to
compute tight bounds on the sensitivity.

1 Introduction

Differential privacy [6, 7, 8, 9] is a recent approach addressing the privacy of individuals in data analysis
on statistical databases. In general, statistical databases are designed to collect global information in
some domain of interest, while the information about the particular entries is supposed to be kept con-
fidential. Unfortunately, querying a database might leak information about an individual, because the
presence of her record may induce the query to return a different result.
To illustrate the problem, consider for instance a database of people affected by a certain disease, con-
taining data such as age, height, etc. Usually the identity of the people present in the database is supposed
to be secret, but if we are allowed to query the database for the number of records which are contained
in it, and for – say – the average value of the data (height, age, etc.), then one can infer the precise data
of the last person entry in the database, which poses a serious threat to the disclosure of her identity as
well.
To avoid this problem, one of the most commonly used methods consists in introducing some noise on
the answer. In other words, instead of giving the exact answer the curator gives an approximated answer,
chosen randomly according to some probability distribution.
Differential privacy measures the level of privacy provided by such a randomized mechanism by a pa-
rameter ε: a mechanism K is ε-differentially private if for every pair of adjacent databases R and R′ (i.e.
databases which which differ for only one entry), and for every property P , the probabilities that K (R)
and K (R′) satisfy P differ at most by the multiplicative constant eε .
The amount of noise that the mechanism must introduce in order to achieve ε differential privacy depends
on the so-called sensitivity of the query, namely the maximum distance between the answers on two
adjacent databases. For instance, one of the most commonly used mechanisms, the Laplacian, adds noise
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to the correct answer y by reporting an approximated answer z according to the following probability
density function:

Py(z) = ce−
|y−z|
∆ f ε

where ∆ f is the sensitivity of the query f , and c is a normalization factor. Clearly, the higher is the
sensitivity, the greater the noise, in the sense that the above function is more “flat”, i.e. we get a higher
probability of reporting an answer very different from the exact one.
Of course, there is a trade off between the privacy and the utility of a mechanism: the more noise a
mechanism adds, the less precise the reported answer, which usually means that the result of querying
the database becomes less useful – whatever the purpose.
For this reason, it is important to avoid adding excessive noise: one should add only the noise strictly
necessary to achieve the desired level of differential privacy. This means that the sensitivity of the query
should be computed as precisely as possible. At the same time, for the sake of efficiency it is desirable
that the computation of the sensitivity is done statically. Usually this implies that we cannot compute the
precise sensitivity, but only approximate it from above. The goal of this paper is to explore a constraint-
based methodology in order to compute strict upper bounds on the sensitivity.
The language we chose to conduct our analysis is relational algebra [4, 5], a formal and well defined
model for relational databases, that is the basis for the popular Structured Query Language (SQL, [2]).
It consists in a collection of few operators that take relations as input and return relations as output,
manipulating rows or columns and computing aggregation of values.
Sensitivity on aggregations often depends on attribute ranges, and these restrictions can be exploited
to provide better bounds. To this purpose, we extend mechanisms already in place in modern database
systems: In RDBMS (Relational Data Bases Management Systems) implementations, during the creation
of a relation, it is possible to define a set of constraints over the attributes of the relation, to further restrict
the type information. For instance:

Persons{(Name, String)(Age, Integer)} {Age > 0 ∧ Age < 120)}

refines the type integer used to express the age of a person in the database, by establishing that it must
be a positive value smaller than 120.
Constraints in RDBMS can be defined on single attributes (column constraints), or on several attributes
(table constraints), and help define the structure of the relation, for example by stating whether an at-
tribute is a primary key or a reference to an external key. In addition, so called check constraints can be
defined, to verify the insertion of correct values. In the example above, for instance, the constraint would
avoid inserting an age of, say, 200. Check constraints are particularly useful for our purposes because
they restrict the possible values of the attributes, thus allowing a finer analysis of the sensitivity.

Contribution Our contribution is twofold:

1. we propose a method to compute a bound on the sensitivity of a query in relational algebra in a
compositional way, and

2. we propose the use of constraints and constraint solvers to refine the method and obtain strict
bounds on queries which have aggregation functions at the top level.

Plan of the paper Next section recalls some preliminary notions about relational databases and differ-
ential privacy. Section 3 introduces a constraint system and the idea of carrying along the information
provided by the constraints as we analyze the query. Section 4 proposes a generalization of differential
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privacy and sensitivity to generic metric spaces. This generalization will be useful in order to compute
the sensitivity of a query in a compositional way. Sections 6, 7 and 8 analyze the sensitivity and the prop-
agation of constraints for the various operators of relational algebra. Finally Section 9 proposes a method
to compute a sensitivity bound on the global query, and shows its correctness and the improvement pro-
vided by the use of constraints. Section 10 discusses some related work, and Section 11 concludes. Due
to space limitations, in this version we have omitted several proof. The interested reader can find them
in the full online version of the paper [3].

2 Preliminaries

We recall here some basic notions about relational databases and relational algebra, differential privacy,
and sensitivity.

2.1 Relational Databases and Relational Algebra

Relational algebra [4, 5] can be considered as the theoretic foundation of database query languages and
in particular of SQL [2]. It is based on the concept of relation, which is the mathematical essence of
a (relational) database, and of certain operators on relations like union, intersection, projections, filters,
etc.. Here we recall the basic terminology used for relational databases, while the operators will be
illustrated in detail in the technical body of the paper.
A relation (or database) based on a certain schema is a collection of tuples (or records) of values. The
schema defines the types (domain) and the names (attributes) of these values.

Definition 1 (Relation Schema). A relation schema r(a1 : D1,a2 : D2, . . . ,an : Dn) is composed of the
relation name r and a set of attributes a1,a2, . . . ,an associated with the domains D1,D2, . . . ,Dn, respec-
tively. We use the notation dom(ai) to refer to Di.

Definition 2 (Relation). A relation R on a relation schema r(a1 : D1,a2 : D2, . . . ,an : Dn) is a subset of
the Cartesian product D1×D2× . . .×Dn.

A relation is thus composed by a set of n-tuples, where each n-tuple τ has the form (d1,d2, . . . ,dn) with
di ∈Di. Note that τ can also be seen as a partial function from attributes to atomic values, i.e. τ(ai) = di.
Given a schema, we will denote the universe of possible tuples by T , and the set of all possible relations
by R = 2T .
Relational algebra is a language that operates from relations to relations. Differentially private queries,
however, can only return a value, and for this reason they must end with an aggregation (operator γ).
Nevertheless it is possible to show that the full power of relational algebra aggregation can be retrieved.

2.2 Differential Privacy

Differential privacy is a property meant to guarantee that the participation in a database does not con-
stitute a threat for the privacy of an individual. More precisely, the idea is that a (randomized) query
satisfies differential privacy if two relations that differ only for the addition of one record are almost
indistinguishable with respect to the results of the query.
Two relations R,R′ ∈ R that differ only for the addition of one record are called adjacent, denoted by
R∼ R′. Formally, R∼ R′ iff R\R′ = {τ} or viceversa R′ \R = {τ}, where τ is a tuple.



C. Palamidessi & M. Stronati 95

Definition 3 (Differential privacy [6]). A randomized function K : R → Z satisfies ε-differential pri-
vacy if for all pairs R,R′ ∈ R , with R∼ R′, and all Y ⊆ Z, we have that:

Pr[K (R) ∈ Y ]≤ Pr[K (R′) ∈ Y ] · eε

where Pr[E] represents the probability of the event E.

Differentially private mechanisms are usually obtained by adding some random noise to the result of
the query. The best results are obtained by calibrating the noise distribution according to the so-called
sensitivity of the query. When the answers to the query are real numbers (R), its sensitivity is defined as
follows. (We represent a query as a function from databases to the domain of answers.)

Definition 4 (Sensitivity [6]). Given a query Q : R → R, the sensitivity of Q, denoted by ∆Q, is defined
as:

∆Q = sup
R∼R′
|Q(R)−Q(R′) |.

The above definition can be extended to queries with answers on generic domains, provided that they are
equipped with a notion of distance.

3 Databases with constraints

As explained in the introduction, one of the contributions of our paper is to provide strict bounds on the
sensitivity of queries by using constraints. For an introduction to the notions of constraint, constraint
solver, and constraint system we refer to [1].
In this section we define the constraint system that we will use, and we extend the notion of database
schema so to accommodate the additional information provided by the constrains during the analysis of
a query.

Definition 5 (Constraint system). Our constraint system is defined as follows:

• Terms are constructed from:
– variables, ranging over the attribute names of the schemas,
– constants, ranging over the domains of the schemas,
– applications of n-ary functions (e.g. +,×) to n terms.

• Atoms are applications of n-ary predicates to n terms. Possible predicates are ≥,≤,=,∈.
• Constraints are constructed from:

– atoms, and
– applications of logical operators (¬,∧,∨,≡) to constraints.

We denote the composition of constraint by ⊗. The solutions of a set of constraints C is the set of tuples
that satisfy C, denoted Sol(C). The relations that can be build from sol(C) are denoted by R (C) =
P (sol(C)). The solutions with respect to an attribute a is denoted sol(C,a). Namely, sol(C,a) is the
projection on a of sol(C). When the domain is equipped with an ordering relation, we also use inf (C,a)
and sup(C,a) to denote the infimum and the supremum values, respectively, of sol(C,a). Typically the
solutions and the inf and sup values can be computed automatically using constraint solvers. Finally we
define the diameter of a constraint C as the maximum distance between the solutions of C.

Definition 6 (Diameter). The diameter of a constraint C, denoted diam(C), is the graph diameter of the
adjacency graph (R (C),∼) of all possible relations composed by tuples that satisfy C.
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We now extend the classical definition of schema to contain also the set of constraints.

Definition 7 (Constrained schema). A constrained schema r(A,C) is composed of the relation name r,
a set of attributes A, and a set of constraints C. A relation on a constrained schema is a subset of sol(C).
We will use schema(R) to represent the constrained relation schema of a relation R.

The above definition extends the notion of relation schema (Definition 1): In fact here each ai can be
seen as associated with sol(C,ai). Definition 1 can then be retrieved by imposing as only constraints
those of the form ai ∈ Di.

Example 1. Consider the constrained schema Items(A,C), where A = {Item,Price,Cost}, and C =
{(Cost ≤ Price ≤ 1000,0 < Cost ≤ 1000)}. The following R is a possible relation over this schema.
R:

Items {Item, Price, Cost}
{(Cost ≤ Price ≤ 1000, 0<Cost≤1000)}

Items(A,C)

Item Price Cost

Oil 100 10

Salt 50 11

R

4 Differential privacy on arbitrary metrics

The classic notions of differential privacy and sensitivity are meant for queries defined on R , the set of all
relations on a given schema. The adjacency relation induces a graph structure (where the arcs correspond
to the adjacency relation), and a metric structure (where the distance is defined as the distance on the
graph).
In order to compute the sensitivity bounds in a compositional way, we need to cope with different struc-
tures at the intermediate steps, and with different notions of distance. Consequently, we need to extend
the notions of differential privacy and sensitivity to general metric domains.
We start by defining the notions of distance that we will need.

Definition 8 (Hamming distance dH). The distance between two relations R,R′ ∈ R is the Hamming
distance dH(R,R′) = |R 	 R′|, the cardinality of the symmetric difference between R and R′. The sym-
metric difference is defined as R 	 R′ = (R\R′)∪ (R′ \R).

Note that dH coincides with the graph-theoretic distance on the graph induced by the adjacency relation
∼, and that dH(R,R′) = 1⇔ R∼ R′. We now extend the Hamming distance to tuples of relations, to deal
with n-ary operators.

Definition 9 (Distance dnH). The distance dnH between two tuples of n relations (R1, . . . ,Rn),
(R′1, . . . ,R

′
n) ∈ R n is defined as: dnH((R1, . . . ,Rn),(R′1, . . . ,R

′
n)) = max(dH(R1,R′1), . . . ,dH(Rn,R′n))

Note that dnH coincides with the Hamming distance for n = 1. We chose this maximum metric instead of
other distances because it allows us to compute the sensitivity compositionally, while this is not the case
for other notions of distance. We can show counterexamples, for instance, for both the Euclidian and the
Manhattan distances.

Definition 10 (Distance dE). The distance between two real numbers x,x′ ∈ R is the usual euclidean
distance dE(x,x′) = |x− x′|.

In summary, we have two metric spaces over which the relational algebra operators work, namely
(R n,dnH), and (R,dE).
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Example 2. Consider a relation R and two tuples τ,π such that τ 6∈ R and π ∈ R. We define its neighbors
R+ and R±, obtained by adding one record, and by changing one record, respectively:

R+ = R∪{τ} R± = R∪{τ}\{π}

Their distance from R is : dH(R,R+) = |R 	 R+| = 1, and dH(R,R±) = |R 	 R±| = 2. Note also that
R∼ R+.

Notation 1. In the following, we will use the notation R+ to denote R∪{τ} for a generic tuple τ , with
the assumption (unless otherwise specified) that τ 6∈ R.

We now adapt the definition of differential privacy to arbitrary metric spaces (X ,d) (where X is the
support set and d the distance function).

Definition 11 (Differential privacy extended). A randomized mechanism K : X → Z on a generic met-
ric space (X ,d) provides ε-differential privacy if for any x,x′ ∈ X, and any set of possible outputs Y ⊆ Z,

Pr[K (x) ∈ Y ] ≤ Pr[K (x′) ∈ Y ] · eε·d(x,x′)

It can easily be shown that Definitions 11 and 3 are equivalent if d = dH .
We now define the sensitivity of a function on a generic metric space.

Definition 12 (Sensitivity extended). Let (X ,dX) and (Y,dY ) be metric spaces. The sensitivity ∆ f of a
function f : (X ,dX)→ (Y,dY ) is defined as

∆ f = sup
x,x′∈X
x 6=x′

dY ( f (x), f (x′))
dX(x,x′)

Again, we can show that Definitions 12 and 4 are equivalent if dX = dnH (proof in full version [3]).
This more general definition makes clear that the sensitivity of a function is a measure of how much it
increases distances from its inputs to its outputs.
As a refinement of the definition of sensitivity, we may notice that this attribute does not depend on the
function alone, but also on the domain, where the choice of x,x′ ranges to compute the supremum. In our
framework this is particularly useful because we have a very precise description of the restrictions on the
domain of an operator, thanks to its input constrained schema (Def 7).

Definition 13 (Sensitivity constrained). Given a function f : (X ,dX)→ (Y,dY ), and a set of constraints
C on X, the sensitivity of f with respect to C is defined as

∆ f (C) = sup
x,x′∈sol(C)

x 6=x′

dY ( f (x), f (x′))
dX(x,x′)

The introduction of constraints, in addition to an improved precision, allows us to define conveniently
function composition. It should be noted that when combining two functions f ◦g, where g : (Y,dY )→
(Z,dZ), the domain of g actually depends on the restrictions introduced by f and we can take this into
account maximizing over y,y′ ∈ sol(C⊗C f ), that is the domain obtained combining the initial constraint
C and the constraint introduced by f .
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5 Operators

We now proceed to compute a bound on the sensitivity of each relational algebra operator through a static
analysis that depends only on the relation schema the operator is applied to, and not on its particular
instances.
From a static point of view each operator will be considered as a transformation from schema to schema
(instead of a transformation from relations to relations): they may add or remove attributes, and modify
constraints.
The following analysis is split in operators op : (R n,dnH)→ (R ,dH), with n equals 1 or 2, and aggrega-
tion γ f : (R ,dH)→ (R,dE). In the sensitivity analysis of the formers, given they work only on Hamming
metrics, we are only interested in their effect on the number of rows. In our particular case, these re-
lational algebra operators treats all rows equally, without considering their content. This simplification
grants us the following property:

Proposition 1. If op : (R ,dH)→ (R ,dH) and C is an arbitrary set of constraints

∆op(C) = sup
R,R′∈R (C)

R 6=R′

dH(op(R),op(R′))
dH(R,R′)

= min
(
∆op( /0),diam(C⊗Cop)

)

(The proposition holds analogously for the binary case). This property, that does not hold for general
functions, allows us in the case of relational algebra to decouple the computation of sensitivity from the
constraint system, and solve them separately. ∆op( /0) (from now on just ∆op) can be seen as the sensitivity
intrinsic to each operator, the maximum value of sensitivity the operator can cause, when the constraints
are loose enough 1 to be omitted. While diam(C⊗Cop), the diameter of the co-domain of the operator,
limits the maximum distance the operator can produce, that is the numerator in the distances ratio.

6 Row operators

In this section we consider a first group of operators of type (R n,dnH)→ (R ,dH) with n = 1,2, which
are characterized by the fact that they can only add or remove tuples, not modify their attributes. Indeed
the header of the resulting relation maintains the same set of attributes and only the relative constraints
may be modified.

6.1 Union ∪

The union of two relation is the set theoretic union of two set of tuples with the same attributes. The
example below illustrates this operation:

Name Age Height
John 30 180
Tim 10 100

⋃ Name Age Height
Alice 45 160
Tim 10 100

=

Name Age Height
John 30 180
Tim 10 100
Alice 45 160

The union of two relations may reduce their distance, leave it unchanged or in the worst case it could
double it, so the sensitivity of union is 2.

Proposition 2. The union has sensitivity 2: ∆∪ = 2.

1for all possible domains the sensitivity can’t be greater.
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Proof. If d2H((R1,R2),(R3,R4)) = 1 then we have two cases

a) R3 = R+
1 ,R4 = R2 or R3 = R1,R4 = R+

2 . For the symmetry of distance only one case needs to be
considered:

|(R1∪R2) 	 (R+
1 ∪R2)|=

{
0 τ ∈ R2
1 o.w.

The only difference is the tuple τ . If τ ∈ R2 then τ would be in both results, leading to identical
relations, thus reducing the distance to zero. If τ 6∈ R2 then τ will again be the only difference
between the results, thus resulting into distance 1.

b) R3 = R+
1 ,R4 = R+

2

|(R1∪R2) 	 (R+
1 ∪R+

2 )|=


0 τ1 ∈ R2∧ τ2 ∈ R1
1 τ1 ∈ R2∨ τ2 ∈ R1
2 τ1 /∈ R2∧ τ2 /∈ R1

In this case we have two records differing, τ1 and τ2, and in the worst case they may remain different in
the results, giving a final sensitivity of 2 for the operator.

Definition 14 (Constraints for union). Let schema(R1) = (A,C1) and schema(R2) = (A,C2). Then
schema(R1∪R2) = (A,C1∨C2).

6.2 Intersection ∩

The intersection of two relation is the set theoretic intersection of two set of tuples with the same at-
tributes.
As for the union, the intersection applied to arguments at distance 1 may result in a distance 0, 1 or 2.

Proposition 3. The intersection has sensitivity 2: ∆∩ = 2.

Proof. Similar to the case of Proposition 2.

Definition 15 (Constraints for intersection). Let schema(R1) = (A,C1) and schema(R2) = (A,C2).
Then schema(R1∩R2) = (a,C1∧C2).

6.3 Difference \

The difference of two relation is the set theoretic difference of two set of tuples with the same attributes.
As in the case of the union, the difference applied to arguments at distance 1 may result in a distance 0,
1 or 2.

Proposition 4. The set difference has sensitivity 2: ∆\ = 2.

Proof. Similar to the case of Proposition 2.

Definition 16 (Constraints for set difference). Let schema(R1) = (A,C1) and schema(R2) = (A,C2).
Then schema(R1 \R2) = (A,C1∧ (¬C2)).
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6.4 Restriction σ

The restriction operator σϕ(R) removes all rows not satisfying the condition ϕ (typically constructed
using the predicates =, 6=,<,> and the logical connectives ∨,∧,¬), over a subset of R attributes.
As an example, consider the following SQL program that removes all people whose age is smaller than 20
or whose height is greater than 180. The table illustrates an example of application of the corresponding
restriction σAge≥20∧Height<180.

SELECT *

FROM R

WHERE Age>=20 AND Height<=180

σAge≥20∧Height<180


Name Age Height
John 30 180
Tim 10 100
Alice 45 160
Natalie 20 175

 =
Name Age Height
Alice 45 160
Natalie 20 175

The restriction can be expressed in terms of set difference: σϕ(R) = R \ {τ | ¬ϕ(τ)}. However the
sensitivity is different because the operator is unary, the second argument is fixed by the condition ϕ

Proposition 5. The restriction has sensitivity 2: ∆σϕ
= 1.

Definition 17 (Constraints for restriction). Let schema(R) = (A,C) and A′ ⊆ A. Then define
schema(σϕ(A′)(R)) = (A,C∧ϕ(A′)).

7 Attribute operators

The following set of operators, unlike those analyzed so far, can affect the number of tuples of a relation,
as well as its attributes.

7.1 Projection π

The projection operator πa1,...,an(R) eliminates the columns of R with attributes other than a1, . . . ,an, and
then deletes possible duplicates, thus reducing distances or leaving them unchanged. It is the opposite of
the restricted Cartesian product ×1 which will be presented later.
The following example illustrates the use of the projection. Here, the attribute to preserve are Name and
Age.

SELECT Name,Age

FROM R

πName,Age


Name Age Car
John 30 Ford
John 30 Renault
Alice 45 Fiat

 =
Name Age
John 30
Alice 45

Proposition 6. The projection has sensitivity 1: ∆π = 1.

Proof. |πa1,...,an(R) 	 πa1,...,an(R
+)|=

{
0 ∃ρ ∈ R. ∀i ∈ {1, . . . ,n} ρ(ai) = τ(ai)
1 o.w.

Definition 18 (Constraints for projection). Let schema(R) = (A,C) and A′ ⊆ A. Then
schema(πA′(R)) = (A′,C).
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7.2 Cartesian product

The Cartesian product of two relation is the set theoretic Cartesian product of two set of tuples with
different attributes, with the exception that in relations the order of attributes does not count, thus making
the operation commutative. The following example illustrate this operation.

Name Age Height
John 30 180
Alice 45 160

×
Car Owner
Fiat Alice
Ford Alice

=

Name Age Height Car Owner
John 30 180 Fiat Alice
John 30 180 Ford Alice
Alice 45 160 Fiat Alice
Alice 45 160 Ford Alice

This operator may seem odd in the context of a query language, but it is in fact the base of the join, the
operator to merge the information of two relations.

R ./
R.ai=T.ai

T = σR.ai=T.ai(R×T )

We analyze now the sensitivity of the Cartesian product.

One record ×1 We first consider a restricted version ×1, where on one side we have a single tuple.

Proposition 7. The operator ×1 has sensitivity 1: ∆×1 = 1.

N records × We consider now the full Cartesian product operator. It is immediate to see that a dif-
ference of a single row can be expanded to an arbitrary number of records, thus causing and unbounded
sensitivity.

Proposition 8. The (unrestricted) Cartesian product has unbounded sensitivity.

We now define how constraints propagate through Cartesian product:

Definition 19 (Constraints for product). Let schema(R1) = (A1,C1) and schema(R2) = (A2,C2). Then
schema(R1×R2) = (A1∪A2,C1∧C2).

7.3 Restricted ×

The effect of Cartesian product is to expand each record with a block of records, a behavior clearly against
our objective of distance-preserving computations. However we propose some restricted versions of the
operator in order to maintain its functionality to a certain extent:

• ×n: product with blocks of a fixed n size, to obtain n sensitivity. In this case n representative
elements can be chosen from the relation, the definition of policies to pick these elements is left to
future developments.

• ×γ : a new single record is built as an aggregation of the relation, through the operator /0γ f (pre-
sented later), thus falling in the case of ×1 sensitivity.

• a mix the two approaches could be considered, building n aggregations, possibly using the operator
{ai}γ f (presented later).

In both approaches the rest of the query can help to select the right records from the block, for example
an external restriction could be anticipated.
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8 Aggregation γ

The classical relational algebra operator for aggregation {a1,...,am} γ { f1,..., fk}(R) performs the following
steps:

• it partitions R, so that each group has all the tuples with the same values for each ai,
• it computes all fi for each group,
• it returns a single tuple for each group, with the values of ai and of fi.

The most common function founds on RDBMS are count,max,min,avg,sum and we will restrict our
analysis to these ones. The following example illustrates how we can use an aggregation operator to
know, for each type of Car, how many people own it and what is their average height.

SELECT Car, Count(*), Avg(Height)

FROM R

GROUPBY Car

{Car}γ{Count,Avg(Height)}


Name Age Height Car
Alice 45 160 Ford
John 30 180 Fiat
Frank 45 165 Renault
Natalie 20 170 Ford

=

Car Count Avg(Height)
Ford 2 165
Fiat 1 180
Renault 1 165

In the domain of differential privacy special care must be taken when dealing with this operator as it is
in fact the point of the query in which our analysis of sensitivity ends and the noise must be added to the
result of the function application.
A differentially private query should return a single value, in our case in R, and the only queries that
statically guarantee this property are those ending with the operator /0γ f : (R ,dH)→ (R,dE) (from here
on abbreviated γ f ), that apply only one function f to the whole relation without grouping. For this reason
we will ignore grouping for now, and focus on queries of the form /0γ f (Q) where Q is a sub-query without
aggregations. It is however possible to recover the original AγF behavior and use it in sub-queries.

8.1 Functions

In this section we analyze the sensitivity of the common mathematical functions count,sum, max,min

and avg. The application of functions coincide with the change of domain, in fact they take as input a
relation in (R ,dH) and return a single number in (R,dE), (not to be confused with a relation with a single
tuple, which also contains a single value).
Extending standard results [6], we can prove that, when f = count,sum,max,min,avg then ∆ f (C) can
be computed as follows:

Proposition 9.

∆count(C) = 1

∆sumai
(C) = max{|sup(C,ai)|, | inf(C,ai)|}

∆maxai
(C) = |sup(C,ai)− inf(C,ai)|

∆minai
(C) = |sup(C,ai)− inf(C,ai)|

∆avgai
(C) =

|sup(C,ai)− inf(C,ai)|
2

8.2 Exploiting the constraint system

The sensitivity of aggregation functions, as shown above, depends on the range of the values of an
attribute, so clearly it is important to compute the range as accurately as possible.
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The usual approach is to consider the bounds given by the domain of each attribute. In terms of constraint
system, this corresponds to consider the solutions of the constraint CI = a1 ∈D1∧a2 ∈D2∧ . . .∧an ∈Dn.
I.e. the standard approach computes the sensitivity of aggregation functions for an attribute a on the basis
of sup(CI,a) and inf(CI,a).
In our proposal we also use CI: for us it is the initial constraint, at the beginning of the analysis of the
query. The difference is that our approach updates this constraints with information provided by the
various components of the query, and then exploits this information to compute more accurate ranges for
each attribute. The following example illustrates the idea.

Example 3. Assume that schema(R)= ({Weight,Height},CI), and that the domain for Weight is [0,150]
and for Height is [0,200]. The following query asks the average weight of all the individuals whose
weight is below the height minus 100.

γavg(Weight)(σWeight≤Height−100(R))

Below we show the initial constraint CI and the constraints CQ computed by taking into account the
condition of σ . Compare the sensitivity computed using CI with the one computed using CQ: They differ
because in CQ the max value of Weight is 100, while in CI is 150.

CI = {W ∈ [0,150] ∧ H ∈ [0,200]} ∆(CI ,γavg(W )) =
|max(CI ,W )−min(CI ,W )|

2 = 75

CQ = {W ∈ [0,150] ∧ H ∈ [0,200] ∧ W ≤ H−100} ∆(CQ,γavg(W )) =
|max(CQ,W )−min(CQ,W )|

2 = 50

Hence exploiting the constraints generated by the query can lead to a significant reduction of the sensi-
tivity.

8.3 Constraints generated by the functions

We now define how to add new constraints for the newly created attributes computed by the functions.

Definition 20 (Constraints for functions). Let schema(R) = (A,C), A′ ⊆ A and
F = { f1(a1), . . . , fn(an)}, where a1, . . . ,an ∈ A. Then schema(A′ γ F(R)) = (A′ ∪{a f1 . . .a fn}, C∧ c f1 ∧
. . .∧ c fn), where:

c fi =

{
min(C,ai)≤ a fi ≤ sup(C,ai) if fi = max/min/avg

0≤ a fi if fi = sum/count

9 Global sensitivity

We have concluded the analysis for all operators of relational algebra, and we now define the sensitivity
of the whole query in a compositional way.
For the computation of the sensitivity, we need to take into account the constraint generated by it. We
start by showing how to compute this constraint, in the obvious (compositional) way. Remember that we
have already defined the constraints generated by each relational algebra operator in Sections 6, 7 and 8.

Definition 21 (Constraint generated by an intermediate query). The global constraint generated by
an intermediate query Q on relations with relational schema r(a1 : D1,a2,D2, . . . ,an : Dn) is defined
statically as:

CQ = schema(Q(R))

where R is any relation such that schema(R) = ({a1,a2, . . . ,an},CI), with CI = a1 ∈D1∧a2 ∈D2∧ . . .∧
an ∈ Dn.
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We assume, the top-level operator in a query is an aggregation γ f , followed by a query composed freely
using the other operators. We now show how to compute the sensitivity of the latter. Since it is a recursive
definition, for the sake of elegance we will assume an identity query Id.

Definition 22 (Intermediate query sensitivity). Assume op : (R n,dnH) → (R ,dH) and Cop the con-
straint obtained after the application of op:

S(Id) = min(1,diam(CId)) base case
S(op◦Q) = min

(
∆op ·S(Q),diam(Cop◦Q)

)
if n = 1

S(op◦ (Q1,Q2)) = min
(
∆op ·max(S(Q1),S(Q2)),diam(Cop◦(Q1,Q2))

)
if n = 2

where op can be any of ∪,∩,\,σ ,π,×,×1 and the (classic) AγF .

We are now ready to define the global sensitivity of the query:

Definition 23 (global sensitivity). The global sensitivity GS of a query γ f (Q) is defined as:

GS(γ f (Q)) =

 ∆ f (CQ) ·S(Q) if f = count,sum,avg

∆ f (CQ) if f = max,min

The following theorem, (proof in full version [3]), expresses the soundness and the strictness of the
bound computed with our method.

Theorem 1 (Soundness and strictness). The sensitivity bound computed by GS(·) is sound and strict.
Namely:

GS(γ f (Q)) = ∆γ f (Q)

10 Related Work

The field of privacy in statistical databases has often been characterized by ad-hoc solutions or algorithms
to solve specific cases [7]. In recent years however there have been several efforts to develop a general
framework to define differentially private mechanisms. In the work [12] the authors have proposed
a functional query language equipped with a type system that guarantees differential privacy. Their
approach is very elegant, and based on deep logical principles. However, it may be a bit far from the
practices of the database community, addressing which is the aim of our paper.
The work that is closest to ours, is the PINQ framework [11], where McSherry extends the LINQ lan-
guage, with differential privacy functionalities developed by himself, Dwork and others in [10].
Despite this existing implementation we felt the need for a more universal language to explore our ideas,
and the mathematically-based framework of relational algebra seemed a natural choice. Furthermore the
use of a constraint system to increase the precision of the sensitivity bound was, to out knowledge, never
explored before.

11 Conclusions and future work

We showed how a classical language like relational algebra can be a suitable framework for differential
privacy and how technology already in place, like check constraints, can be exploited to improve the
precision of our sensitivity bounds.
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Our analysis showed how the most common operation on databases, the join ./, poses great privacy prob-
lems and in future we hope to develop solutions to this issue, possibly along the lines already presented
in Section 7.3.
In this paper we have considered only the sensitivity, that is the effect on distances of operators, while
another interesting aspect would be to compute the effect on the ε exponent as explored in [11], and
possibly propose convenient strategies to query as much as possible over disjoint data sets.
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