
M. Massink and G. Norman (Eds.): 9th Workshop on
Quantitative Aspects of Programming Languages (QAPL 2011)
EPTCS 57, 2011, pp. 89–103, doi:10.4204/EPTCS.57.7

Improvements for Free

Daniel Seidel∗ Janis Voigtländer
Rheinische Friedrich-Wilhelms-Universität Bonn, Institut für Informatik

Römerstraße 164, 53117 Bonn, Germany
{ds,jv}@informatik.uni-bonn.de

“Theorems for Free!” (Wadler 1989) is a slogan for a technique that allows to derive statements about
functions just from their types. So far, the statements considered have always had a purely extensional
flavor: statements relating the value semantics of program expressions, but not statements relating
their runtime (or other) cost. Here we study an extension of the technique that allows precisely
statements of the latter flavor, by deriving quantitative theorems for free. After developing the theory,
we walk through a number of example derivations. Probably none of the statements derived in those
simple examples will be particularly surprising to most readers, but what is maybe surprising, and at
the very least novel, is that there is a general technique for obtaining such results on a quantitative
level in a principled way. Moreover, there is good potential to bring that technique to bear on more
complex examples as well. We turn our attention to short-cut fusion (Gill et al. 1993) in particular.

1 Introduction

Based on the concept of relational parametricity (Reynolds 1983), Wadler (1989) established so-called
“free theorems”, a method for obtaining proofs of program properties from parametrically polymorphic
types in purely functional languages. For example, it can thus be shown that every function f :: [α]→ [α],
with α a type variable, satisfies

f (mapList g xs) = mapList g (f xs) (1)

for every choice of g :: τ1→ τ2 and xs :: [τ1], with τ1 and τ2 concrete types, where:

mapList :: (α → β)→ [α]→ [β]
mapList g [] = []
mapList g (x : xs) = (g x) : (mapList g xs)

Statements of that flavor have been used for program transformation (Gill et al. 1993; Svenningsson 2002;
Voigtländer 2009a), but also for other interesting results (Voigtländer 2008; Bernardy et al. 2010a).

So far, free theorems have been considered a qualitative tool only. That is, statements like (1)
have been established as extensional equivalences or semantic approximations in a definedness order,
and in fact a lot of research has gone into what definedness and/or strictness conditions are needed
on the involved functions in various language settings and into extending the approach to richer type
systems (Launchbury and Paterson 1996; Johann and Voigtländer 2004; Stenger and Voigtländer 2009;
Voigtländer 2009b; Christiansen et al. 2010; Bernardy et al. 2010b). It is natural, though, to ask about
the quantitative content of free theorems in terms of program efficiency. In a statement like (1), what
is the relative performance of the left- and right-hand sides? If we can answer such questions formally,

∗This author was supported by the DFG under grant VO 1512/1-1.

http://dx.doi.org/10.4204/EPTCS.57.7

90 Improvements for Free

this will clearly be of particular interest for the mentioned program transformation applications, where
statements about efficiency have so far only been made informally or empirically.

In this paper, we lay the ground for formal such investigations. The challenge, of course, as for
standard free theorems, is to work independently of concrete function definitions, just as (1) depends on
only the type of f . To this end, we revise the theory of relational parametricity, essentially marrying it
with the classical idea of externalizing the intensional property “computation time” by making it part
of the observable program output, and thus accessible to semantic analysis (Wadler 1988; Bjerner and
Holmström 1989; Rosendahl 1989; Sands 1995). Our vision is to eventually integrate our results into a
tool like http://www-ps.iai.uni-bonn.de/cgi-bin/free-theorems-webui.cgi to enable au-
tomatic generation of quantitative free theorems for realistic languages.

To start simple, let us consider some examples. We begin with f :: α → Nat. The standard free
theorem derived from that type is that for every g :: τ1→ τ2 and x :: τ1,

f (g x) = f x (2)

In fact, absent nontermination, it is even possible to conclude that f is a constant function, i.e., for some
n :: Nat, f is semantically equivalent to (λx→ n). If we take program runtime into account, then there
is another degree of freedom, in addition to picking the natural number n. Namely, two functions of type
α → Nat can then differ in how long they take before providing their output, because clearly a function
that no matter what the input is immediately returns 42 is to be considered different from one that does
the same after 7½ million years. Even so, since the same f occurs on the left- and right-hand sides of (2),
we can intuitively argue that the right-hand side will never be less efficient than the left-hand side (while
it may be more efficient in that it avoids an application of g). On the extensional semantics level, such
invariance, namely that different f may use different n in (λx→ n), but the different instantiations of a
single polymorphic f at the types τ2 and τ1 on the left- and right-hand sides of (2) may not, is exactly
what relational parametricity provides. Our task is to formally transfer this argument to the mentioned
second degree of freedom, concerning program runtime.

As soon as we do consider runtime, we also have to talk about evaluation order. For the example (2),
we can make more precise statements if we know whether function application is call-by-value or call-
by-name/need. In the former, strict case, the right-hand side of (2) is actually more efficient than the
left-hand side, because the very real cost of applying g is saved. In nonstrict languages, in contrast,
the left- and right-hand sides of (2) are to be considered equally efficient since from the type of f we
claimed that the function never looks at its argument (extensionally f = (λx→ n) for some arbitrary but
fixed n), so the potentially costly inner application (g x) on the left-hand side is never actually evaluated.
Such issues, and the required reasoning, become more interesting as the types considered get more
complicated. For example, for the type f :: α → α → α and the associated free theorem

f (g x) (g y) = g (f x y) (3)

the situation is the same as for (2), i.e., the right-hand side is more efficient in a call-by-value language,
while no difference is observable with call-by-name/need. But for the type f :: α → (α,α) and free
theorem

f (g x) = mapPair (g,g) (f x) (4)

where
mapPair :: (α → γ,β → δ)→ (α,β)→ (γ,δ)
mapPair (f1, f2) (x1,x2) = (f1 x1, f2 x2)

http://www-ps.iai.uni-bonn.de/cgi-bin/free-theorems-webui.cgi

D. Seidel & J. Voigtländer 91

the situation is rather different: under call-by-value and call-by-need the left-hand side is more efficient,
while under call-by-name the left-hand side is for sure not less efficient than the right-hand side, but
whether it is actually more efficient depends on what runtime cost we associate with mapPair.1 In
summary, the relationships between the runtimes of the various left- and right-hand sides claimed above
are as follows:

f :: α → Nat f :: α → α → α f :: α → (α,α)

f (g x) = f x f (g x) (g y) = g (f x y) f (g x) = mapPair (g,g) (f x)
call-by-value lhs > rhs lhs > rhs lhs < rhs
call-by-name lhs = rhs lhs = rhs lhs ≤ rhs
call-by-need lhs = rhs lhs = rhs lhs < rhs

In this paper we concentrate on call-by-value. From the above, one could jump to the conclusion that
then the answer to the question which of the two sides of a free theorem is more efficient depends only on
the numbers of syntactic occurrences of g. However, this simplistic view breaks down if one considers
types that allow more diverse behavior, like f :: α → α → (α,α) or indeed example (1). Also, even for
the cases considered above, one should not be deceived by the apparent obviousness of the analysis. For
example, that any function f :: α → α → α is, by its type alone, not only forced to extensionally be one
of the two possible (curried) projections (a fact that can be proved using standard free theorems), but
also prevented from causing different costs in different concrete invocations is a nontrivial property that
requires proof. To emphasize this point, consider a function f :: Nat→Nat→Nat. Even if we knew that
extensionally this function is equivalent to either (λx y→ x) or (λx y→ y), or even if we knew to which
of the two, there would be absolutely no way to conclude which if any of f (g x) (g y) and g (f x y) is
more efficient for general g :: Nat→Nat and x,y :: Nat.2 It is only the polymorphism in f :: α→ α→ α

that allows such analysis, and what we seek here is the appropriate formal theory as opposed to just the
suggestive examples given above.

While the above table may suggest that we are going to prove only comparative statements, actually
we will be able to make more precise quantitative statements about the relative costs of left- and right-
hand sides of free theorems. For example, for f :: α → α → α , in the call-by-value setting, we will not
only deduce that the left-hand side f (g x) (g y) takes more time than the right-hand side g (f x y), but
will also obtain that the cost difference is exactly either the cost of applying g on x (without the cost of
evaluating x itself) or the cost of applying g on y (without the cost of evaluating y itself).

2 A polymorphically typed lambda-calculus

For formal investigation, we use a relatively small toy language that nevertheless captures essential as-
pects relevant for our intended analysis. The syntax and typing rules are given in Figures 1 and 2,
respectively. There, α ranges over type variables, x,y over term variables, and n over the naturals. The
language is explicitly typed, the notation for type annotations is “::”, while “:” is the cons operator for
lists. The operators lfold (corresponding to Haskell’s foldr) and ifold are used to express structural recur-
sion on lists and naturals, respectively. (General, potentially nonterminating, recursion is not included

1In principle, one could replace mapPair (g,g) (f x) by let (y1,y2) = f x in (g y1,g y2) and consider let-binding to be
cost-neutral, in which case f (g x) and the given replacement would be equally efficient under call-by-name. For call-by-value
and call-by-need such replacement has no real impact, since for them a whole application of g is saved on the left in any case.

2For example, f could be a function that first counts down its first argument to zero, before finally returning its second
argument. Then, by choosing g and x appropriately, one could make either of f (g x) (g y) and g (f x y) arbitrarily more costly
while not affecting the other one at all.

92 Improvements for Free

τ ::= α | Nat | (τ,τ) | [τ] | τ → τ

t ::= x | n | case t of {0→ t ;x→ t} | t + t | []τ | t : t | case t of {[]→ t ;x : x→ t} |
(t, t) | case t of {(x,x)→ t} | λx :: τ.t | t t | lfold(t, t, t) | ifold(t, t, t)

Figure 1: Syntax of the calculus

Γ,x :: τ ` x :: τ Γ ` n :: Nat Γ ` []τ :: [τ]

Γ ` t1 :: Nat Γ ` t2 :: Nat
Γ ` (t1 + t2) :: Nat

Γ ` t :: Nat Γ ` t1 :: τ Γ,x :: Nat ` t2 :: τ

Γ ` (case t of {0→ t1 ;x→ t2}) :: τ

Γ ` t1 :: τ Γ ` t2 :: [τ]
Γ ` (t1 : t2) :: [τ]

Γ ` t :: [τ1] Γ ` t1 :: τ Γ,x :: τ1,y :: [τ1] ` t2 :: τ

Γ ` (case t of {[]→ t1 ;x : y→ t2}) :: τ

Γ ` t1 :: τ1 Γ ` t2 :: τ2

Γ ` (t1, t2) :: (τ1,τ2)

Γ ` t :: (τ1,τ2) Γ,x :: τ1,y :: τ2 ` t1 :: τ

Γ ` (case t of {(x,y)→ t1}) :: τ

Γ,x :: τ1 ` t :: τ2

Γ ` (λx :: τ1.t) :: τ1→ τ2

Γ ` t1 :: τ1→ τ2 Γ ` t2 :: τ1

Γ ` (t1 t2) :: τ2

Γ ` t1 :: τ1→ τ2→ τ2 Γ ` t2 :: τ2 Γ ` t3 :: [τ1]

Γ ` lfold(t1, t2, t3) :: τ2

Γ ` t1 :: τ → τ Γ ` t2 :: τ Γ ` t3 :: Nat
Γ ` ifold(t1, t2, t3) :: τ

Figure 2: Typing rules

for simplicity.) For example, the function mapList from the introduction is defined in our calculus as
follows:

mapList = λg :: (α → β).λys :: [α].lfold(λx :: α.λxs :: [β].(g x) : xs, []β ,ys)

and satisfies α,β ` mapList :: (α → β)→ [α]→ [β].
Semantically, types are interpreted as sets in an absolutely standard way, see Figure 3 (where θ is

a mapping from type variables to sets). There is also a standard denotational term semantics, shown in
Figure 4, which satisfies: if Γ ` t :: τ , then JtKσ ∈ JτKθ for every σ with σ(x) ∈ Jτ ′Kθ for every x :: τ ′

in Γ.
The key to relational parametricity, and thus to free theorems, is to provide a suitable interpretation

of types as relations. The standard such type-indexed family of relations for our setting so far, defined
by induction on the structure of types, and called a “logical relation”, is given in Figure 5 (where ρ is
a mapping from type variables to binary relations between sets). Note that we use juxtaposition (f x),
instead of f(x), as notation for applying mathematical functions (mirroring the syntactic application on
term level). Also, we use the following definitions:

lift[](R) = {([x1, . . . ,xn], [y1, . . . ,yn]) | n ∈ N∧∀i ∈ {1, . . . ,n}. (xi,yi) ∈ R}
lift(,)(R1,R2) = {((x1,x2),(y1,y2)) | (x1,y1) ∈ R1∧ (x2,y2) ∈ R2}

D. Seidel & J. Voigtländer 93

JαKθ = θ(α) (an arbitrary set, fixed in θ)
JNatKθ = N (the naturals)
J[τ]Kθ = {[x1, . . . ,xn] | n ∈ N∧∀i ∈ {1, . . . ,n}. xi ∈ JτKθ} (the free monoid over a set)

J(τ1,τ2)Kθ = Jτ1Kθ × Jτ2Kθ (the Cartesian product of sets)
Jτ1→ τ2Kθ = Jτ2Kθ

Jτ1Kθ (the mathematical function space between sets)

Figure 3: Standard type semantics

JxKσ = σ(x)

JnKσ = n

Jcase t of {0→ t1 ;x→ t2}Kσ =

{
Jt1Kσ if JtKσ = 0
Jt2Kσ [x 7→n] if JtKσ = n, n > 0

Jt1 + t2Kσ = Jt1Kσ + Jt2Kσ

J[]τKσ = []

Jt1 : t2Kσ = [Jt1Kσ ,v1, . . . ,vn] with Jt2Kσ = [v1, . . . ,vn]

Jcase t of {[]→ t1 ;x : y→ t2}Kσ =

{
Jt1Kσ if JtKσ = []

Jt2Kσ [x 7→v1,y 7→[v2,...,vn]] if JtKσ = [v1, . . . ,vn], n > 0

J(t1, t2)Kσ = (Jt1Kσ ,Jt2Kσ)

Jcase t of {(x,y)→ t1}Kσ = Jt1Kσ [x 7→v1,y7→v2] with JtKσ = (v1,v2)

Jλx :: τ.tKσ = λv.JtKσ [x 7→v]

Jt1 t2Kσ = Jt1Kσ Jt2Kσ

Jlfold(t1, t2, t3)Kσ = Jt1Kσ v1 (Jt1Kσ v2 . . .(Jt1Kσ vn Jt2Kσ) . . .) with Jt3Kσ = [v1, . . . ,vn]

Jifold(t1, t2, t3)Kσ = Jt1Kσ (Jt1Kσ . . .(Jt1Kσ︸ ︷︷ ︸
Jt3Kσ times

Jt2Kσ) . . .)

Figure 4: Standard term semantics

∆α,ρ = ρ(α)

∆Nat,ρ = idN

∆[τ],ρ = lift[](∆τ,ρ)

∆(τ1,τ2),ρ = lift(,)(∆τ1,ρ ,∆τ2,ρ)

∆τ1→τ2,ρ = {(f,g) | ∀(x,y) ∈ ∆τ1,ρ . (f x,g y) ∈ ∆τ2,ρ}

Figure 5: Standard logical relation

94 Improvements for Free

To derive free theorems, all one needs is the following theorem (Reynolds 1983; Wadler 1989). In it,
Rel denotes the collection of all binary relations between sets. (Later, we also use Rel(S1,S2) to denote
more specifically the collection of all binary relations between sets S1 and S2.)

Theorem 1 (standard parametricity theorem). If Γ ` t :: τ , then for every ρ , σ1, σ2 such that

• for every α in Γ, ρ(α) ∈ Rel, and

• for every x :: τ ′ in Γ, (σ1(x),σ2(x)) ∈ ∆τ ′,ρ ,

we have (JtKσ1 ,JtKσ2) ∈ ∆τ,ρ .

Our aim now is to provide an analogous theorem for a setting in which computation costs are taken
into account. For doing so, we clearly first need to develop the underlying semantic notions (and then a
suitable new logical relation).

3 Adding costs to the semantics

As already mentioned in the introduction, we want to study the call-by-value case here. That is, we
consider the presented lambda-calculus as a small core language of a kind of strict Haskell or pure ML.

In order to reflect computation costs in the semantics, we first revise the set interpretation of types. In
addition to a value, every semantic object now has to carry an integer representing some abstract notion of
costs incurred while computing that value. Such integers (actually naturals would suffice for the moment,
but the added generality of negative numbers comes in handy later on) need to be added only at top-level
positions of compound values, thanks to our restriction to strict evaluation. For example, the costs of
individual list elements are not relevant ultimately, only the cost of a whole list, because anyway there is
no means to evaluate only a part of it (as there would be in a nonstrict language). The only place where
“embedded” costs are relevant is in (the result positions of) function spaces, because there it is really
important to capture which actual function arguments lead to which specific costs in the output. Formally,
we define a variant of the mapping from Figure 3 in Figure 6, where C (S) = {(x,c) | x ∈ S∧ c ∈ Z}.
That new mapping, J·K′, does not itself capture top-level costs. But ultimately, instead of the earlier
JtKσ ∈ JτKθ we will have that a term t of type τ is mapped, by a new term semantics, to an element of the
C (·)-lifting of JτK′

θ
.

Our new term semantics (changed from Figure 4) follows the same spirit as the instrumented seman-
tics of Rosendahl (1989). Essentially, the cost integers are carried around and just suitably propagated,
except where we decide that a certain semantic operation should be counted as contributing a cost of its
own. Here we assign a cost only to the invocation of functions, so we add a cost of 1 in the interpretation
of lambda-abstractions.3 The formal definition is given in Figure 7. The helper function B defined in the
figure adds, in cBx, the cost c to the cost component of semantic object x. The other helper functions
are cost-propagating versions of data constructors and function application. Syntactically, B and :¢ are
right-associative, ¢ is left-associative, and B has higher precedence than the other semantic operations.
Now we have that if Γ ` t :: τ then JtK¢

σ ∈ C (JτK′
θ
) for every θ mapping the type variables in Γ to sets

and σ with σ(x) ∈ Jτ ′K′
θ

for every x :: τ ′ in Γ.

Example 1. Let length = λxs :: [α].lfold(λx :: α.λy :: Nat.1+ y,0,xs). We calculate the semantics of
length[Nat/α] (1 : 2 : []Nat), where [Nat/α] denotes syntactic substitution of Nat for all occurrences of

3Other possible places to put extra costs would have been the data constructors and case-expressions. Actually, we have
found that our general results, in particular Theorem 2, are unaffected by such changes.

D. Seidel & J. Voigtländer 95

JαK′θ = θ(α)

JNatK′θ = N
J[τ]K′θ = {[x1, . . . ,xn] | n ∈ N∧∀i ∈ {1, . . . ,n}. xi ∈ JτK′θ}

J(τ1,τ2)K′θ = Jτ1K′θ × Jτ2K′θ

Jτ1→ τ2K′θ = C (Jτ2K′θ)
Jτ1K′θ

Figure 6: Type semantics with embedded costs

JxK¢
σ = (σ(x),0)

JnK¢
σ = (n,0)

Jcase t of {0→ t1 ;x→ t2}K¢
σ =

{
cBJt1K¢

σ if JtK¢
σ = (0,c)

cBJt2K¢
σ [x 7→n] if JtK¢

σ = (n,c), n > 0

Jt1 + t2K¢
σ = (n1 +n2,c1 + c2) with Jt1K¢

σ = (n1,c1), Jt2K¢
σ = (n2,c2)

J[]τK¢
σ = ([],0)

Jt1 : t2K¢
σ = Jt1K¢

σ :¢ Jt2K¢
σ

Jcase t of {[]→ t1 ;x : y→ t2}K¢
σ =

{
cBJt1K¢

σ if JtK¢
σ = ([],c)

cBJt2K¢
σ [x 7→v1,y 7→[v2,...,vn]]

if JtK¢
σ = ([v1, . . . ,vn],c), n > 0

J(t1, t2)K¢
σ = (Jt1K¢

σ ,Jt2K
¢
σ)

¢

Jcase t of {(x,y)→ t1}K¢
σ = cBJt1K¢

σ [x 7→v1,y 7→v2]
with JtK¢

σ = ((v1,v2),c)

Jλx :: τ.tK¢
σ = (λv.1BJtK¢

σ [x 7→v],0)

Jt1 t2K¢
σ = Jt1K¢

σ ¢ Jt2K¢
σ

Jlfold(t1, t2, t3)K¢
σ = (c1 + c3)B((g v1) ¢ ((g v2) ¢ . . .((g vn) ¢ Jt2K¢

σ) . . .))

with Jt1K¢
σ = (g,c1), Jt3K¢

σ = ([v1, . . . ,vn],c3)

Jifold(t1, t2, t3)K¢
σ = (c1 + c3)B((g,0) ¢ ((g,0) ¢ . . .((g,0) ¢︸ ︷︷ ︸

n times

Jt2K¢
σ) . . .))

with Jt1K¢
σ = (g,c1), Jt3K¢

σ = (n,c3)

where
cB(v,c′) = (v,c+ c′)

x :¢ xs = ([v,v1, . . . ,vn],c+ c′) with x = (v,c), xs = ([v1, . . . ,vn],c′)

(x1,x2)
¢ = ((v1,v2),c+ c′) with x1 = (v1,c), x2 = (v2,c′)

f ¢ x = (c+ c′)B(g v) with f = (g,c), x = (v,c′)

Figure 7: Term semantics with costs

96 Improvements for Free

∆
′
α,ρ = ρ(α)

∆
′
Nat,ρ = idN

∆
′
[τ],ρ = lift[](∆

′
τ,ρ)

∆
′
(τ1,τ2),ρ

= lift(,)(∆
′
τ1,ρ ,∆

′
τ2,ρ)

∆
′
τ1→τ2,ρ = {(f,g) | ∀(x,y) ∈ ∆

′
τ1,ρ . (f x,g y) ∈ C (∆′τ2,ρ)}

Figure 8: Logical relation with embedded costs

α , as follows:

J(λxs :: [Nat].lfold(λx :: Nat.λy :: Nat.1+ y,0,xs)) (1 : 2 : []Nat)K¢
/0

= (λv.1BJlfold(λx :: Nat.λy :: Nat.1+ y,0,xs)K¢
[xs7→v],0) ¢ ([1,2],0)

= 1BJlfold(λx :: Nat.λy :: Nat.1+ y,0,xs)K¢
[xs7→[1,2]]

= 1B(((λx.(λy.(1+y,1),1)) 1) ¢ (((λx.(λy.(1+y,1),1)) 2) ¢ (0,0)))
= 1B((λy.(1+y,1),1) ¢ 1B(1+0,1))
= 1B(1+1+1)B((λy.(1+y,1)) (1+0))
= (2,5)

Exactly the five required beta-reductions (once for λxs :: [Nat] and twice each for λx :: Nat.λy :: Nat)
have been counted.

Note that due to the way we handle polymorphism, a JtK¢
σ can be element of C (JτK′

θ1
) and C (JτK′

θ2
)

for completely different θ1 and θ2. For example, J(λx :: α.x)K¢
/0 is (g,0) where g maps v ∈ S to (v,1) ∈

C (S), for every set S. (We denote by /0 an empty mapping.)

Lemma 1. Let Γ ` t :: τ , where Γ contains no term variables. For every type variable α , type τ ′ not
containing type variables, and θ mapping the type variables in Γ \ {α} to sets, we have Jt[τ ′/α]K¢

/0 ∈
C (Jτ[τ ′/α]K′

θ
). Moreover, Jτ[τ ′/α]K′

θ
= JτK′

θ [α 7→Jτ ′K′/0]
, and while JtK¢

/0 is an element of C (JτK′
θ [α 7→S]) for

arbitrary S, for the specific case S = Jτ ′K′/0 we have JtK¢
/0 = Jt[τ ′/α]K¢

/0.

We also note some simple properties of the semantic operations; these properties will henceforth be
used freely without explicit mention:

• cBc′Bx = (c+ c′)Bx

• cB(x :¢ xs) = cBx :¢ xs = x :¢ cBxs

• cB(x1,x2)
¢ = (cBx1,x2)

¢ = (x1,cBx2)
¢

• cB(f ¢ x) = cB f ¢ x = f ¢ cBx

4 New relational interpretations of types

Now we also need a new interpretation of types as relations, i.e., a new logical relation. We get directions
by comparing the set interpretations from Figures 3 and 6. There, a difference only appears for the
output side of function arrows, namely the codomain is lifted to a costful setting. We try the same on
the relational level and thus transform the logical relation from Figure 5 into the one given in Figure 8,
where C (R) = {((x,c),(y,c)) | (x,y) ∈ R∧ c ∈ Z}.

D. Seidel & J. Voigtländer 97

∆
¢
α,ρ = C (ρ(α))

∆
¢
Nat,ρ = idC (N)

∆
¢
[τ],ρ = lift¢

[](∆
¢
τ,ρ)

∆
¢
(τ1,τ2),ρ

= lift¢
(,)(∆

¢
τ1,ρ ,∆

¢
τ2,ρ)

∆
¢
τ1→τ2,ρ = {(f,g) | cost(f) = cost(g)∧∀(x,y) ∈ ∆

¢
τ1,ρ . (f ¢ x,g ¢ y) ∈ ∆

¢
τ2,ρ}

where

lift¢
[](R

¢) = {([x1, . . . ,xn]
¢, [y1, . . . ,yn]

¢) | n ∈ N∧∀i ∈ {1, . . . ,n}. (xi,yi) ∈ R¢}
lift¢

(,)(R
¢
1,R

¢
2) = {((x1,x2)

¢,(y1,y2)
¢) | (x1,y1) ∈ R¢

1∧ (x2,y2) ∈ R¢
2}

and [x1, . . . ,xn]
¢ abbreviates x1 :¢ . . . :¢ xn :¢ ([],0).

Figure 9: Fully cost-lifted logical relation

Note that ρ in Figure 8 still maps to “normal” binary relations between sets, rather than to C (·)-lifted
ones. In turn, the J·K¢-semantics of terms will be related by the C (·)-lifting of ∆′. Indeed, a proof very
similar to that of Theorem 1, by induction on typing derivations, establishes the following theorem. (The
proof is sketched in Appendix A.)
Theorem 2. If Γ ` t :: τ , then for every ρ , σ1, σ2 such that

• for every α in Γ, ρ(α) ∈ Rel, and

• for every x :: τ ′ in Γ, (σ1(x),σ2(x)) ∈ ∆′
τ ′,ρ ,

we have (JtK¢
σ1 ,JtK

¢
σ2) ∈ C (∆′τ,ρ).

One of the key cases in the proof, for function application, uses that (f,g) ∈ C (∆′τ1→τ2,ρ) implies
∀(x,y)∈C (∆′τ1,ρ). (f ¢ x,g ¢ y)∈C (∆′τ2,ρ). Note the subtle differences here to the definition of ∆′τ1→τ2,ρ

in Figure 8, namely the C (·)-lifting on both ∆′τ1→τ2,ρ and ∆′τ1,ρ , and hence the use of (f ¢ x,g ¢ y) instead
of (f x,g y). Working fully on the C (·)-lifted level is also preferable in later derivations of free theorems
(based on the logical relation), so it seems a good idea to provide an alternative definition of relational
interpretations of types that does not mix unlifted (like ∆′τ1,ρ) and lifted (like C (∆′τ2,ρ)) uses. However,
we have to be careful, because the “implies” in the first sentence of the current paragraph is really just
that: an implication, not an equivalence. In order to give a direct inductive definition for C (∆′·,·), we
need exact characterizations. For the case of function types, the following lemma is easily obtained from
the definitions, where, in general, cost((v,c)) = c.
Lemma 2. (f,g) ∈ C (∆′τ1→τ2,ρ)⇔ cost(f) = cost(g)∧∀(x,y) ∈ C (∆′τ1,ρ). (f ¢ x,g ¢ y) ∈ C (∆′τ2,ρ)

Using similar characterizations for the other cases, we arrive at the new logical relation given in
Figure 9, which is connected to the one from Figure 8 by the following (inductively proved) lemma.
Lemma 3. For every τ and ρ , C (∆′τ,ρ) = ∆

¢
τ,ρ .

Together with Theorem 2, we immediately get:
Corollary 1. If Γ ` t :: τ , then for every ρ , σ1, σ2 such that

• for every α in Γ, ρ(α) ∈ Rel, and

• for every x :: τ ′ in Γ, ((σ1(x),0),(σ2(x),0)) ∈ ∆
¢
τ ′,ρ ,

we have (JtK¢
σ1 ,JtK

¢
σ2) ∈ ∆

¢
τ,ρ .

98 Improvements for Free

5 Deriving free theorems

Now we can go for applications of Corollary 1 to specific polymorphic types, in order to derive cost-
aware statements about terms of those types. First, we need some auxiliary notions. In addition to
cost((v,c)) = c we define val((v,c)) = v, and for every f ∈ C (C (S2)

S1) and x ∈ C (S1), for some sets
S1 and S2, appCost(f,x) = cost(f ¢ x)− cost(x). Also, a standard way of deriving free theorems is to
specialize relations (those mapped to by ρ) to the graphs of functions. In our setting, we have to be
careful to get the “C (·)-lifting level” right. Moreover, since in our derivations of free theorems we will
need to have access to information about the costs associated to specific function arguments and results,
it is helpful to make specialized relations as tightly specified as possible. Hence, instead of the full
function graphs commonly used, we will go for finite parts thereof. So given sets S1 and S2, a C (·)-lifted
function g ∈ C (C (S2)

S1), and C (·)-lifted values x1, . . . ,xn ∈ C (S1), with n ∈ N, we define:

Rg
x1,...,xn

= {(val(x1),val(g ¢ x1)), . . . ,(val(xn),val(g ¢ xn))} ∈ Rel(S1,S2)

The crucial property, directly derived from definitions, (and a simple corollary of it) we are going to
exploit about Rg

x1,...,xn can be given as follows (under the given conditions on S1, S2, g, and x1, . . . ,xn):

Proposition 1. Let x ∈ C (S1) and y ∈ C (S2). Then (x,y) ∈ C (Rg
x1,...,xn) if and only if there exist i ∈

{1, . . . ,n} and c ∈ Z such that x = cBappCost(g,xi)Bxi and y = cB(g ¢ xi).

Corollary 2. Let x ∈ C (S1) and y ∈ C (S2). If (x,y) ∈ C (Rg
x1,...,xn), then there exists i ∈ {1, . . . ,n} such

that g ¢ x = appCost(g,xi)By.

Let us now derive a first concrete free (improvement) theorem, for one of the types from Section 1.

Example 2. Let some term f be given with α ` f :: α → α → α . By Corollary 1 we have:

∀R ∈ Rel. (J f K¢
/0,J f K¢

/0) ∈ ∆
¢
α→α→α,[α 7→R]

By the definition of the logical relation in Figure 9 this implies:

∀R ∈ Rel,(x,y),(x′,y′) ∈ C (R). (J f K¢
/0 ¢ x ¢ x′,J f K¢

/0 ¢ y ¢ y′) ∈ C (R)

Specialization of R gives:

∀S1,S2 sets,g ∈ C (C (S2)
S1),x1,x2 ∈ C (S1).

∀(x,y),(x′,y′) ∈ C (Rg
x1,x2). (J f K¢

/0 ¢ x ¢ x′,J f K¢
/0 ¢ y ¢ y′) ∈ C (Rg

x1,x2)

From this follows, by Proposition 1:

∀S1,S2 sets,g ∈ C (C (S2)
S1),x1,x2 ∈ C (S1).

(J f K¢
/0 ¢ (appCost(g,x1)Bx1) ¢ (appCost(g,x2)Bx2),J f K¢

/0 ¢ (g ¢ x1) ¢ (g ¢ x2)) ∈ C (Rg
x1,x2)

which in turn implies, by Corollary 2:

∀S1,S2 sets,g ∈ C (C (S2)
S1),x1,x2 ∈ C (S1). ∃i ∈ {1,2}.

g ¢ (J f K¢
/0 ¢ (appCost(g,x1)Bx1) ¢ (appCost(g,x2)Bx2))

= appCost(g,xi)B(J f K¢
/0 ¢ (g ¢ x1) ¢ (g ¢ x2))

which simplifies to:

∀S1,S2 sets,g ∈ C (C (S2)
S1),x1,x2 ∈ C (S1). ∃c ∈ {appCost(g,x1),appCost(g,x2)}.

cB(g ¢ (J f K¢
/0 ¢ x1 ¢ x2)) = J f K¢

/0 ¢ (g ¢ x1) ¢ (g ¢ x2)

D. Seidel & J. Voigtländer 99

By using the definitions from Figures 6 and 7, and Lemma 1, we can conclude that:

∀τ1,τ2 types,g :: τ1→ τ2, t1 :: τ1, t2 :: τ1. ∃c ∈ {appCost(JgK¢
/0,Jt1K

¢
/0),appCost(JgK¢

/0,Jt2K
¢
/0)}.

cBJg (f [τ1/α] t1 t2)K¢
/0 = J f [τ2/α] (g t1) (g t2)K¢

/0

This certainly means that the right-hand side of (3) in the introduction is more efficient than its left-hand
side. Indeed, after defining “vv v′” as “∃c≥ 0. cBv= v′” (or, equivalently, “val(v)= val(v′)∧cost(v)≤
cost(v′)”), we can conclude from the above that:

∀τ1,τ2 types,g :: τ1→ τ2, t1 :: τ1, t2 :: τ1. Jg (f [τ1/α] t1 t2)K¢
/0 v J f [τ2/α] (g t1) (g t2)K¢

/0

In the interest of readability, we will sometimes blur the distinction between syntax and semantics a bit,
and additionally keep type substitution (for instantiating polymorphic functions) silent, so that the above
conclusion would be written as simply

g (f t1 t2)v f (g t1) (g t2) (5)

To emphasize again that we crucially exploit polymorphism, recall from the introduction that a
corresponding statement does not hold for f :: Nat→ Nat→ Nat. Even if J f K /0 = Jλx :: Nat.λy ::
Nat.yK /0 in the cost-free semantics, there can be g :: Nat→ Nat and t1, t2 :: Nat such that, of course,
val(Jg (f t1 t2)K¢

/0) = val(J f (g t1) (g t2)K¢
/0) is true, but (5) is false.

Let us now move on to other examples, like (4) in the introduction. First, we define mapPair =
JmapPairK¢

/0 for some reasonable rendering of the mapPair-function in our calculus. Then, we can
give analogues of Proposition 1 and Corollary 2 for pair-lifting, given sets S1, S2, S3, and S4, C (·)-
lifted functions g ∈ C (C (S2)

S1) and h ∈ C (C (S4)
S3), and C (·)-lifted values x1, . . . ,xn ∈ C (S1) and

y1, . . . ,ym ∈ C (S3), with n,m ∈ N.
Proposition 2. Let p ∈ C (S1× S3) and q ∈ C (S2× S4). Then (p,q) ∈ lift¢

(,)(C (Rg
x1,...,xn),C (Rh

y1,...,ym
))

if and only if there exist i ∈ {1, . . . ,n}, j ∈ {1, . . .m}, and c ∈ Z such that p = cBappCost(mapPair ¢
(g,h)¢,(xi,yj)

¢)B(xi,yj)
¢ and q = cB(mapPair ¢ (g,h)¢ ¢ (xi,yj)

¢).
Corollary 3. Let p ∈ C (S1× S3) and q ∈ C (S2× S4). If (p,q) ∈ lift¢

(,)(C (Rg
x1,...,xn),C (Rh

y1,...,ym
)), then

there exist i ∈ {1, . . . ,n} and j ∈ {1, . . . ,m} such that mapPair ¢ (g,h)¢ ¢ p = appCost(mapPair ¢
(g,h)¢,(xi,yj)

¢)Bq.
Now we can deal with example types involving pairs.

Example 3. Let some term f be given with α ` f :: α → (α,α). By Corollary 1 we have:

∀R ∈ Rel. (J f K¢
/0,J f K¢

/0) ∈ ∆
¢
α→(α,α),[α 7→R]

By the definition of the logical relation and specialization of R, this gives:

∀S1,S2 sets,g ∈ C (C (S2)
S1),x1 ∈ C (S1).

∀(x,y) ∈ C (Rg
x1). (J f K¢

/0 ¢ x,J f K¢
/0 ¢ y) ∈ lift¢

(,)(C (Rg
x1),C (Rg

x1))

From this follows, by Proposition 1 and Corollary 3:

∀S1,S2 sets,g ∈ C (C (S2)
S1),x1 ∈ C (S1).

mapPair ¢ (g,g)¢ ¢ (J f K¢
/0 ¢ (appCost(g,x1)Bx1))

= appCost(mapPair ¢ (g,g)¢,(x1,x1)
¢)B(J f K¢

/0 ¢ (g ¢ x1))

which due to the certainly nonnegative difference appCost(mapPair ¢ (g,g)¢,(x1,x1)
¢)−appCost(g,x1)

simplifies to:
∀τ1,τ2 types,g :: τ1→ τ2, t :: τ1. f (g t)v mapPair (g,g) (f t)

100 Improvements for Free

Example 4. Let some term f be given with α ` f :: (α,α)→ α . Using Corollary 1, the definition of the
logical relation, and Proposition 2 and Corollary 2 for Rg

x1,x2 , we get:

∀S1,S2 sets,g ∈ C (C (S2)
S1),x1,x2 ∈ C (S1). ∃c ∈ {appCost(g,x1),appCost(g,x2)}.

g ¢ (J f K¢
/0 ¢ appCost(mapPair ¢ (g,g)¢,(x1,x2)

¢)B(x1,x2)
¢)

= cB(J f K¢
/0 ¢ (mapPair ¢ (g,g)¢ ¢ (x1,x2)

¢))

and thus:
∀τ1,τ2 types,g :: τ1→ τ2, t :: (τ1,τ1). g (f t)v f (mapPair (g,g) t)

In order to also be able to deal with example types involving lists, we define mapList = JmapListK¢
/0

for mapList as given in Section 2. Then, we give analogues of Propositions 1/2 and Corollaries 2/3, given
sets S1 and S2, a C (·)-lifted function g ∈ C (C (S2)

S1), and C (·)-lifted values x1, . . . ,xn ∈ C (S1), with
n ∈ N.

Proposition 3. We have (xs,ys)∈ lift¢
[](C (Rg

x1,...,xn)) if and only if there exist m∈N, i1, . . . , im ∈{1, . . . ,n},
and c∈Z such that xs= cBappCost(mapList ¢ g, [xi1 , . . . ,xim]

¢)B[xi1 , . . . ,xim]
¢ and ys= cB(mapList ¢

g ¢ [xi1 , . . . ,xim]
¢).

Corollary 4. If (xs,ys) ∈ lift¢
[](C (Rg

x1,...,xn)), then there exist m ∈ N and i1, . . . , im ∈ {1, . . . ,n} such that
mapList ¢ g ¢ xs = appCost(mapList ¢ g, [xi1 , . . . ,xim]

¢)Bys and val([xi1 , . . . ,xim]
¢) = val(xs).

Note that the final conclusion in the corollary, val([xi1 , . . . ,xim]
¢) = val(xs), keeps a bit more infor-

mation than we have cared to keep in Corollaries 2 and 3. The reason is that this information will be
useful in Example 6 below.

Example 5. Let some term f be given with α ` f :: [α]→ Nat. Using Corollary 1, the definition of the
logical relation, and Proposition 3 for Rg

x1,...,xn , we get:

∀S1,S2 sets,g ∈ C (C (S2)
S1),n ∈ N,x1, . . . ,xn ∈ C (S1).

J f K¢
/0 ¢ appCost(mapList ¢ g, [x1, . . . ,xn]

¢)B[x1, . . . ,xn]
¢ = J f K¢

/0 ¢ (mapList ¢ g ¢ [x1, . . . ,xn]
¢)

and thus:
∀τ1,τ2 types,g :: τ1→ τ2, t :: [τ1]. f t v f (mapList g t)

Example 6. Let some term f be given with α ` f :: [α]→ [α]. Using Corollary 1, the definition of the
logical relation, and Proposition 3 and Corollary 4 for Rg

x1,...,xn , plus simplification, we get:

∀S1,S2 sets,g ∈ C (C (S2)
S1),n ∈ N,x1, . . . ,xn ∈ C (S1). ∃m ∈ N, i1, . . . , im ∈ {1, . . . ,n}.

appCost(mapList ¢ g, [x1, . . . ,xn]
¢)B(mapList ¢ g ¢ (J f K¢

/0 ¢ [x1, . . . ,xn]
¢))

= appCost(mapList ¢ g, [xi1 , . . . ,xim]
¢)B(J f K¢

/0 ¢ (mapList ¢ g ¢ [x1, . . . ,xn]
¢))

∧val([xi1 , . . . ,xim]
¢) = val(J f K¢

/0 ¢ [x1, . . . ,xn]
¢)

In order to continue now and derive a statement about the relative efficiencies of mapList g (f t) and
f (mapList g t), for types τ1,τ2, function g :: τ1 → τ2, and list t :: [τ1], we would need further infor-
mation about appCost(mapList ¢ g, [x1, . . . ,xn]

¢) and appCost(mapList ¢ g, [xi1 , . . . ,xim]
¢). This cannot

be provided generally, but a number of useful observations is possible. For example, we know that the
elements xi1 , . . . ,xim form a subset of {x1, . . . ,xn}, and hence that evaluation of mapList g (f t) does
not incur g-costs on elements other than those already encountered during evaluation of f (mapList g t),
though of course a different selection and multiplicities are possible. Moreover, if we assume that g
(actually, g) is equally costly on every element of t (on every xi), or indeed on every term of type τ1 (on

D. Seidel & J. Voigtländer 101

every element of C (S1)), then we can reduce the question about the relative efficiency of mapList g (f t)
and f (mapList g t) to one about the relative length of t and f t, to which an answer might be known
statically by some separate analysis. Also, note that with some extra effort it would even have been
possible to explicitly get our hands at the existentially quantified m and i1, . . . , im, namely to establish
that [i1, . . . , im] = val(J f K¢

/0 ¢ ([1, . . . ,n],0)).

Let us also briefly comment on applying our machinery to an automatic program transformation that
is used in a production compiler (Gill et al. 1993, though in a call-by-need setting, the mainstream Glas-
gow Haskell Compiler). The cost-insensitive content of the underlying “short-cut fusion” rule, typically
proved via a standard free theorem, can be expressed in our setting as follows, for every choice of types
τ and τ ′, polymorphic function g :: (τ → α → α)→ α → α , and k :: τ → τ ′→ τ ′ and z :: τ ′:

val(Jlfold(k,z,g[[τ]/α] (λx :: τ.λxs :: [τ].x : xs) []τ)K¢
/0) = val(Jg[τ ′/α] k zK¢

/0)

The desirable statement, and certainly the intuitive assumption by which application of short-cut fusion
in a compiler is usually justified, would be:

Jlfold(k,z,g[[τ]/α] (λx :: τ.λxs :: [τ].x : xs) []τ)K¢
/0 w Jg[τ ′/α] k zK¢

/0 (6)

We could even hope to quantify the c≥ 0 such that Jlfold(k,z, . . .)K¢
/0 = cBJg[τ ′/α] k zK¢

/0 holds, possibly
expressing c in terms of the length of the intermediate list val(Jg[[τ]/α] (λx :: τ.λxs :: [τ].x : xs) []τK¢

/0).
But, maybe surprisingly, (6) does not actually hold in general. The reason is that g may “use” its argu-
ments for other things than for creating its output. For example, with τ = Nat, g could be the function
λk :: Nat→ α → α.λ z :: α.(λx :: α.z) (k 5 z). Then:

1. On the one hand, lfold(k,z, . . .) incurs no costs at all from applying a concrete k :: Nat→ τ ′→ τ ′

to any values, because g[[Nat]/α] is only applied to (λx :: Nat.λxs :: [Nat].x : xs) and []Nat during
its evaluation, leading to the empty list as intermediate result which is then processed by the lfold.

2. On the other hand, g[τ ′/α] k z does incur costs for evaluating the application k 5 z, even though
the resulting value is eventually discarded in (λx :: α.z) (k 5 z). Moreover, since we are free to
choose k (and z) however we want, we are certainly free to make that application k 5 z arbitrarily
more costly than the corresponding application (λx :: Nat.λxs :: [Nat].x : xs) 5 []Nat contributing
to the cost of 1. above.

Hence, the right-hand side of (6) can be made arbitrarily more costly than its left-hand side. (The same
behavior can be provoked in Haskell using the seq-primitive.) It is possible to constrain g in such a
way that (6) actually holds, and indeed all “reasonable” functions to be used in short-cut fusion can be
expected to satisfy the condition thus imposed on g, but spelling out the details is left for future work.

6 Conclusion

We have developed a notion of relational parametricity that incorporates information about call-by-value
evaluation costs, and thus allows to derive quantitative statements about runtime from function types.
The mechanics of deriving statements that way are a bit more involved than in the purely extensional
setting, but we are optimistic that automation like for http://www-ps.iai.uni-bonn.de/cgi-bin/
free-theorems-webui.cgi (Böhme 2007) is possible here as well.

As already mentioned, the exact way in which we assign costs to different program constructs does
not appear to impact the overall approach much. Hence, we could also work with more detailed and

http://www-ps.iai.uni-bonn.de/cgi-bin/free-theorems-webui.cgi
http://www-ps.iai.uni-bonn.de/cgi-bin/free-theorems-webui.cgi

102 Improvements for Free

realistic measures, as for example in the work of Liu and Gómez (2001). Of course, we are also interested
in moving from a call-by-value setting to a call-by-name/need one, and in extending the results for our
calculus to a calculus with general recursion.

7 References

J.-P. Bernardy, P. Jansson, and K. Claessen. Testing polymorphic properties. In European Sympo-
sium on Programming, Proceedings, volume 6012 of LNCS, pages 125–144. Springer, 2010a. doi:
10.1007/978-3-642-11957-6 8.

J.-P. Bernardy, P. Jansson, and R. Paterson. Parametricity and dependent types. In Interna-
tional Conference on Functional Programming, Proceedings, pages 345–356. ACM, 2010b. doi:
10.1145/1932681.1863592.

B. Bjerner and S. Holmström. A compositional approach to time analysis of first order lazy functional
programs. In Functional Programming Languages and Computer Architecture, Proceedings, pages
157–165. ACM, 1989. doi: 10.1145/99370.99382.

S. Böhme. Free theorems for sublanguages of Haskell. Master’s thesis, Technische Universität Dresden,
2007.

J. Christiansen, D. Seidel, and J. Voigtländer. Free theorems for functional logic programs. In Pro-
gramming Languages meets Program Verification, Proceedings, pages 39–48. ACM, 2010. doi:
10.1145/1707790.1707797.

A. Gill, J. Launchbury, and S.L. Peyton Jones. A short cut to deforestation. In Functional Pro-
gramming Languages and Computer Architecture, Proceedings, pages 223–232. ACM, 1993. doi:
10.1145/165180.165214.

P. Johann and J. Voigtländer. Free theorems in the presence of seq. In Principles of Programming
Languages, Proceedings, pages 99–110. ACM, 2004. doi: 10.1145/982962.964010.

J. Launchbury and R. Paterson. Parametricity and unboxing with unpointed types. In European Sym-
posium on Programming, Proceedings, volume 1058 of LNCS, pages 204–218. Springer, 1996. doi:
10.1007/3-540-61055-3 38.

Y.A. Liu and G. Gómez. Automatic accurate cost-bound analysis for high-level languages. IEEE Trans-
actions on Computers, 50(12):1295–1309, 2001. doi: 10.1109/TC.2001.970569.

J.C. Reynolds. Types, abstraction and parametric polymorphism. In Information Processing, Proceed-
ings, pages 513–523. Elsevier, 1983.

M. Rosendahl. Automatic complexity analysis. In Functional Programming Languages and Computer
Architecture, Proceedings, pages 144–156. ACM, 1989. doi: 10.1145/99370.99381.

D. Sands. A naı̈ve time analysis and its theory of cost equivalence. Journal of Logic and Computation,
5(4):495–541, 1995. doi: 10.1093/logcom/5.4.495.

F. Stenger and J. Voigtländer. Parametricity for Haskell with imprecise error semantics. In Typed Lambda
Calculi and Applications, Proceedings, volume 5608 of LNCS, pages 294–308. Springer, 2009. doi:
10.1007/978-3-642-02273-9 22.

J. Svenningsson. Shortcut fusion for accumulating parameters & zip-like functions. In Interna-
tional Conference on Functional Programming, Proceedings, pages 124–132. ACM, 2002. doi:
10.1145/583852.581491.

http://dx.doi.org/10.1007/978-3-642-11957-6_8
http://dx.doi.org/10.1145/1932681.1863592
http://dx.doi.org/10.1145/99370.99382
http://dx.doi.org/10.1145/1707790.1707797
http://dx.doi.org/10.1145/165180.165214
http://dx.doi.org/10.1145/982962.964010
http://dx.doi.org/10.1007/3-540-61055-3_38
http://dx.doi.org/10.1109/TC.2001.970569
http://dx.doi.org/10.1145/99370.99381
http://dx.doi.org/10.1093/logcom/5.4.495
http://dx.doi.org/10.1007/978-3-642-02273-9_22
http://dx.doi.org/10.1145/583852.581491

D. Seidel & J. Voigtländer 103

J. Voigtländer. Much ado about two: A pearl on parallel prefix computation. In Principles of Program-
ming Languages, Proceedings, pages 29–35. ACM, 2008. doi: 10.1145/1328897.1328445.

J. Voigtländer. Bidirectionalization for free! In Principles of Programming Languages, Proceedings,
pages 165–176. ACM, 2009a. doi: 10.1145/1594834.1480904.

J. Voigtländer. Free theorems involving type constructor classes. In International Conference on Func-
tional Programming, Proceedings, pages 173–184. ACM, 2009b. doi: 10.1145/1631687.1596577.

P. Wadler. Strictness analysis aids time analysis. In Principles of Programming Languages, Proceedings,
pages 119–132. ACM, 1988. doi: 10.1145/73560.73571.

P. Wadler. Theorems for free! In Functional Programming Languages and Computer Architecture,
Proceedings, pages 347–359. ACM, 1989. doi: 10.1145/99370.99404.

A Proof Sketch of Theorem 2

The proof is by induction over the typing derivation, i.e., we have to consider the derivation rules in
Figure 2. In the proof we use the same names for the environments as in Theorem 2 (i.e., ρ , σ1, σ2) and
assume the conditions on them that are given in Theorem 2 are satisfied. We show just three cases.

In the case
Γ,x :: τ ` x :: τ

the second condition in Theorem 2 ensures that (σ1(x),σ2(x))∈∆′τ,ρ and hence it holds that (JxK¢
σ1 ,JxK¢

σ2)
= ((σ1(x),0),(σ2(x),0)) is in C (∆′τ,ρ).

In the case
Γ,x :: τ1 ` t :: τ2

Γ ` (λx :: τ1.t) :: τ1→ τ2

we have

(Jλx :: τ1.tK¢
σ1
,Jλx :: τ1.tK¢

σ2
) ∈ C (∆′τ1→τ2,ρ)

⇔((λv.1BJtK¢
σ1[x 7→v],0),(λv′.1BJtK¢

σ2[x 7→v′],0)) ∈ C (∆′τ1→τ2,ρ)

⇔(λv.1BJtK¢
σ1[x 7→v],λv.1BJtK¢

σ2[x 7→v]) ∈ ∆
′
τ1→τ2,ρ

⇔∀(v,v′) ∈ ∆
′
τ1,ρ . (1BJtK¢

σ1[x 7→v],1BJtK¢
σ2[x 7→v′]) ∈ C (∆′τ2,ρ)

⇔∀(v,v′) ∈ ∆
′
τ1,ρ . (JtK

¢
σ1[x 7→v],JtK

¢
σ2[x 7→v′]) ∈ C (∆′τ2,ρ)

where the last line is the induction hypothesis.
In the case

Γ ` t1 :: τ1→ τ2 Γ ` t2 :: τ1

Γ ` (t1 t2) :: τ2

we reason as follows:

(Jt1 t2K¢
σ1
,Jt1 t2K¢

σ2
) ∈ C (∆′τ2,ρ)

⇔(Jt1K¢
σ1

¢ Jt2K¢
σ1
,Jt1K¢

σ2
¢ Jt2K¢

σ2
) ∈ C (∆′τ2,ρ)

⇐∀(x,y) ∈ C (∆′τ1,ρ). (Jt1K
¢
σ1

¢ x,Jt1K¢
σ2

¢ y) ∈ C (∆′τ2,ρ)

⇐(Jt1K¢
σ1
,Jt1K¢

σ2
) ∈ C (∆′τ1→τ2,ρ)

The last line is the first induction hypothesis, the last implication is by Lemma 2, and the second last
implication by the second induction hypothesis.

http://dx.doi.org/10.1145/1328897.1328445
http://dx.doi.org/10.1145/1594834.1480904
http://dx.doi.org/10.1145/1631687.1596577
http://dx.doi.org/10.1145/73560.73571
http://dx.doi.org/10.1145/99370.99404

	1 Introduction
	2 A polymorphically typed lambda-calculus
	3 Adding costs to the semantics
	4 New relational interpretations of types
	5 Deriving free theorems
	6 Conclusion
	7 References
	A Proof Sketch of Theorem ??

