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PAWS is a tool to analyse the behaviour of weighted automata and conditional transition systems. At
its core PAWS is based on a generic implementation of algorithms for checking language equivalence
in weighted automata and bisimulation in conditional transition systems. This architecture allows
for the use of arbitrary user-defined semirings. New semirings can be generated during run-time
and the user can rely on numerous automatisation techniques to create new semiring structures for
PAWS’ algorithms. Basic semirings such as distributive complete lattices and fields of fractions can be
defined by specifying few parameters, more exotic semirings can be generated from other semirings
or defined from scratch using a built-in semiring generator. In the most general case, users can define
new semirings by programming (in C#) the base operations of the semiring and a procedure to solve
linear equations and use their newly generated semiring in the analysis tools that PAWS offers.

1 Introduction

In recent times, modelling techniques have shifted from a purely acceptance-based reasoning to one that
takes various notions of weight and quantities into consideration. The theory of weighted automata gives
rise to a flexible framework, where acceptance behaviour can be quantified in numerous ways. Probabilities
are commonly used to express the likelihood of making a given transition, whereas the tropical semiring
is often used to denote the cost of making a transition. Due to the great variety of semirings the theory of
weighted automata can be applied to a multitude of different fields of interest, such as natural language
processing, biology or performance modelling (see e.g. [13]). Typical questions regarding weighted
automata concern their language (or traces), for instance language equivalence. Due to the generality of
the notion of weighted automata, they are a versatile means for modelling purposes, though decidability
results are not as strong as for non-deterministic automata. In particular, it is well-known that language
equivalence is an undecidable problem for weighted automata over the tropical semiring [18]. This,
however, is not a damning result for language equivalence, since it is also well-known that language
equivalence is decidable for many other semirings such as the two-valued Boolean algebra (for which
weighted automata are just nondeterministic finite automata) or fields (where decision procedures run in
polynomial time [15, 7]). PAWS1 is a tool that offers algorithms to decide language equivalence and the
threshold or universality problem for weighted automata.

Based on our previous work in [17] and [5], the tool PAWS implements two different approaches
to language equivalence checks for weighted automata. One approach employs a backwards search
assuming at first that all states are language equivalent and exploring words from the end to the beginning
to determine non-equivalent pairs of states, similar to partition refinement. Different from usual partition
refinement algorithms, this algorithm does not necessarily terminate at the moment when the partitions
cannot be further refined in one step, because refinements can happen at a later point of time. The
termination condition has to be chosen differently here, and as expected, the algorithm does not necessarily
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terminate for all semirings (see the undecidability result by Krob [18]). However, for many semirings
it does and in either case it is always a suitable semi-decision procedure for the absence of language
equivalence. This approach is closely related to the line of work started by Schützenberger, [22] and later
generalised in [3], using the notion of conjugacy.

Additionally, PAWS offers a second approach to decide language equivalence [5], which stands in the
tradition of Bonchi’s and Pous’ seminal work on equivalence checks for NFAs using up-to techniques
[6]. Here, a language equivalence relation on vectors is built, starting from the initial pair of vectors
suspected to be language equivalent. As the algorithm progresses, it builds a relation on vectors similar to
a bisimulation relation and stops at the moment when a suitable relation proving language equivalence is
found, or a witness to the contrary appears. The algorithm works up-to congruence and therefore prunes
the relation on-the-fly, dropping redundant vector pairs. The flexibility of this optimised variant of the
algorithm is reduced when compared to the partition refinement algorithm, but it can still be used for a
variety of user-generated semirings, such as rings and l-monoids, and can lead to an exponential speed up
in some cases. Based on a similar approach, PAWS also offers a decision procedure for the universality
problem for weighted automata over the tropical semiring of the natural numbers, which is potentially
exponentially faster than a naive approach due to Kupferman et al. [2]. The universality problem checks
whether from a given initial vector, all words have a weight smaller than or equal to a given threshold.

Finally, PAWS also considers conditional transition systems, which, rather than adding weights to
transitions, extend traditional transition systems by means of conditions, or product versions to enable
flexible modelling of software product lines, while taking possible upgrades between different products of
a software product line into account [9]. For these kinds of systems, bisimulation rather than language
equivalence is considered, because the user experience for different products is in the focus. The
bisimulation check can be performed on any finite distributive lattice defined via its set of join irreducible
elements. Alternatively, a BDD-based implementation of (certain) lattices is offered and allows for a
significantly faster bisimulation check as presented in [4]. Again, the bisimulation check is parametrised
over the lattice used and can accept any lattice, either defined directly via its irreducible elements, or using
the BDD-based approach, as input.

A key feature of PAWS is its extensibility. The algorithms are parametrised over the semiring and it is
therefore possible to use the algorithms PAWS offers, not only for the semirings that come pre-implemented,
but also for newly generated semirings. For that purpose, PAWS offers ways of adding new semirings and
executing algorithms for these semirings. All algorithms are implemented generically and can be used
for various semirings or l-monoids, provided all necessary operations such as addition, multiplication,
and solving linear equations are specified. Therefore, PAWS is equipped with a semiring generator that
allows to generate new semirings that are not pre-implemented and to define weighted automata or
conditional transition systems over these. Specifically, we have built several layers of automatisation,
so that whenever one, e.g., defines a complete distributive lattice, it suffices to give a partial order, from
which the lattice of downward-closed sets is generated [12] and all operations are provided automatically.
Building semirings from other semirings using crossproducts is almost completely automatised and
modulo rings are automatised using Hensel liftings [11] for solving linear equation systems. In addition,
it is possible to add arbitrary semirings by providing code for the operations mentioned before.

2 Preliminaries: System Types and Decision Problems

Here we give a short overview over the systems that PAWS can analyse, i.e. weighted automata and
conditional transition systems. For that purpose we require the notions of semirings and distributive
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lattices.

• A semiring is a tuple S= (S,+, ·,0,1) where (S,+,0) is a commutative monoid, (S, ·,1) is a monoid,
0 annihilates · (i.e., 0 · s1 = 0 = s1 ·0) and · distributes over + (i.e., (s1 + s2) · s3 = s1 · s3 + s2 · s3
and s3 · (s1 + s2) = s3 · s1 + s3 · s2, for all s1,s2,s3 ∈ S).

• A complete distributive lattice is a partially ordered set (L,v) where for all subsets L′ ⊆ L of L
the infimum

d
L′ and the supremum

⊔
L′ w.r.t. the order v exists and infimum distributes over

finite suprema: (`1t `2)u `3 = (`1u `3)t (`2u `3) for all `1, `2, `3 ∈ L. Together with >=
⊔

L and
⊥=

d
L, a complete distributive lattice forms a semiring L= (L,t,u,⊥,>).

• An l-monoid is a lattice (L,t,u,⊥,>) together with a monoid (L, ·,1) such that · distributes over
t. If ⊥ annihilates ·, i.e. ⊥· `=⊥ for all ` ∈ L, then the l-monoid can be regarded as a semiring
(L,t, ·,⊥,1).

2.1 Weighted Automata

A weighted automaton (WA) can be understood as a non-deterministic automaton that additionally carries
weights from a given semiring S on each transition, as well as a termination weight for each state. Since
the automata will be represented as matrices with semiring entries in PAWS, we will use a matrix notation
throughout the paper. For us, a matrix is a mapping of the form α : X×Y → S, where X , Y are index sets
indicating rows respectively columns. The set X is typically the set of states and in many cases we will
simply choose X = {1, . . . ,n}.

Definition 1 Let A be a finite set of alphabet symbols and X be a set of states. Then a weighted automaton
is an X× (A×X +{•})-matrix α with entries from a semiring S. We write x

a,s−→ x′ if α(x,(a,x′)) = s.

For a weighted automaton α , α(x,•) denotes the final weight of state x ∈ X and α(x,(a,y)) denotes
the weight of the a-transition from x to y.

Rather than accepting or rejecting a word w, a state x in a weighted automaton associates it with a
value from S. This value can be obtained as follows: Take the sum of the weight of all w-labelled paths
p starting in x. The weight of a path p is the product of all transition weights along p, including the
termination weight. Consider for instance the following simple weighted automaton over the field R:

A

B C

a,2 a,3

1

b,2

2

b,2

1

The weight of the word ab in state A can be computed as follows: there are two paths to consider,
(A,a,B,b,B) and (A,a,C,b,C). The first path has the weight 2 · 2 · 2 = 8 and the second path has the
weight 3 ·2 ·1 = 6, so overall, the weight of the word ab in A is 8+6 = 14.

Formally, the language of a weighted automaton can be defined as follows:

Definition 2 (Language of a Weighted Automaton [13]) Let α : X× (A×X +{•})→ S be a weighted
automaton. The language Lα : A∗→ (X → S) of α is recursively defined as
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• Lα(ε)(x) = α(x,•) where ε is the empty word

• Lα(aw)(x) = ∑x′∈X α(x,(a,x′)) ·Lα(w)(x′) for a ∈ A, w ∈ A∗

We will call Lα(w)(x) the weight that state x assigns to the word w. Two states x,y ∈ X are language
equivalent if Lα(w)(x) = Lα(w)(y) for all w ∈ A∗.

For weighted automata, PAWS offers two algorithms to decide which pairs of states are language
equivalent, i.e. assign the same weight to all words. In general, this problem is undecidable, but for many
specific semirings (e.g. the reals) it is decidable.

The more generally applicable algorithm, called Language Equ.(Complete) in the tool, can be applied
to any semiring and yields, if it terminates, a complete characterisation of language equivalence in the
automaton. This algorithm is a generalised partition refinement algorithm, based on the final chain
construction in coalgebra [16]. The idea is to enumerate the weights that each state assigns to all words,
starting from the empty word ε . Whenever a word is found whose corresponding weight vector is a linear
combination of previously explored words, the vector can be dropped and no words extending this word
need to be explored. As soon as all branches terminate, the algorithm terminates. Then, the language
equivalent states are exactly those which assign the same weight to all words that were explored. It is
worth noting that, in contrast to traditional partition refinement algorithms, this algorithm may require
additional steps after the final partition of the state set is already established. This is to be expected though,
because of the undecidability of language equivalence in general.

For complete and completely distributive lattices, and more generally, completely distributive l-
monoids, an optimisation up to congruence is available (Language Equ.(Up-To) ). This algorithm checks
whether two initial vectors are language equivalent by building a language equivalence relation on the fly
on vectors over the semiring and pruning the relation by congruence closure, i.e. pairs of vectors that are
already in the congruence closure of previously found pairs of vectors, are discarded [5]. When compared
to Language Equ.(Complete), additional optimisation occurs in the form of pruning additionally vector
pairs that are redundant because of symmetry or transitivity. Moreover, the algorithm may perform much
better than Language Equ.(Complete) because only one pair of vectors is being compared, instead of all
pairs of states, so in particular, a counterexample to language equivalence may be quickly identified.

One semiring, where language equivalence is undecidable is the tropical semiring over the natural
numbers (N0∪{∞},min,+,∞,0), as shown by Krob [18]. However, the universality problem is decidable
in this case. The universality problem asks, for any given threshold T ∈ N0, whether the weight of all
words from a given initial vector is bounded by T .

Note that all algorithms for these problems require a method for solving linear equations over the
semiring.

2.2 Conditional Transition Systems

PAWS also analyses a second type of systems: conditional transition systems (CTS) [4, 1]. These systems
are related to featured transition systems [8, 9] which can be used for modelling software product lines.
Different products are modelled by a single transition system where transitions are annotated with the
products for which they are enabled. In addition CTS also have the possibility to upgrade the product,
thus enabling new transitions, during runtime, i.e., they are adaptive.

More concretely, CTS are defined over a finite partial order of conditions. Each transition is assigned
to a downwards-closed set of conditions under which the transition may be taken. Before execution,
one condition is fixed and all transitions that carry the respective condition remain active and all other
transitions remain inactive. Afterwards, the CTS evolves just like a traditional labelled transition system.
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At any point though, a change of conditions can occur by going down in the order. If the condition is
changed, so do the active transitions and additional transitions may become available. Note that due to the
requirement that all transitions carry a downwards-closed set of conditions, only additional transitions can
appear, no transition can be deactivated by performing a change in conditions. Conditions can intuitively
be considered as different versions of a program, where a smaller condition signifies an improved product
to which a user may upgrade at any point. Using this interpretation, CTS can be used to model and analyse
such classes of systems in particular for their behaviour when upgrades occur.

Also note the strong relation of partial orders to complete distributive lattices via the Birkhoff duality
[12]: Every finite partial order gives rise to a lattice by considering all downwards-closed sets of elements
ordered by inclusion. And vice versa, every finite distributive lattice can be represented in this way. We
will use this duality to obtain compact representations of CTS.

Definition 3 Let (Φ,≤) be a finite partially ordered set. We call the elements of Φ conditions.
A conditional transition system (CTS) is a triple (X ,A, f ) consisting of a set of states X, a finite set A

called the label alphabet and a function f : X×A→ (Φ→P(X)) mapping every ordered pair in X×A
to a monotone function of type (Φ,≤)→ (P(X),⊇).

As usual, we write x
a,ϕ−−→ y whenever y ∈ f (x,a)(ϕ).

As indicated above, there is a dual representation, where a CTS (X ,A, f ) is represented as a matrix
β : X× (A×X)→O(Φ), where O(Φ) is the set of all downward-closed subsets of Φ (wrt. ≤). We define
β (x,(a,y)) = {ϕ ∈Φ | y ∈ f (x,a)(ϕ), which is – due to monotonicity – always a downward-closed set.
Furthermore O(Φ) is a lattice, ordered by inclusion, with operations union and intersection, hence a
semiring. However, here we are interested in bisimilarity rather than language equivalence. Furthermore
the lattice elements will play the role of guards rather than weights.

Now consider the following CTS defined over the set of conditions {ϕ,ϕ ′}, where ϕ ′ ≤ ϕ .

A

B C

a,{ϕ ′} a,{ϕ,ϕ ′}

b,{ϕ,ϕ ′} b,{ϕ ′}

Assume that we are starting in state A under the initial condition ϕ . Then only the transitions from B
to B and from A to C are available. If we choose to make a step from A to C via the a-labelled edge, we
cannot do any further steps, unless we first perform an upgrade to ϕ ′, which allows us to use the b-loop in
state C. Alternatively, starting in A, we could also perform an upgrade right away and gain the option to
take an a transition to B instead of transitioning to C.

For CTS we are interested in conditional bisimulation. Two states are conditionally bisimilar, if there
exists a conditional bisimulation relating the states. A conditional bisimulation is a family of traditional
bisimulations Rϕ , one for each condition ϕ , on the respective underlying transition systems. For two
conditions ϕ ′ ≤ ϕ it must hold that Rϕ ′ ⊇ Rϕ , which intuitively means that if two states are bisimilar
under ϕ , they must also be bisimilar under every smaller condition ϕ ′. Furthermore, the standard transfer
property for bisimulations must be satisfied.

In [4] we have shown how to model a small adaptive routing protocol as CTS.
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Bisimulation for CTS is computed with a modified partition refinement algorithm akin to the partition
refinement algorithm to compute bisimilarity for labelled transition systems. This algorithm uses the
duality between finite partially ordered sets and finite distributive lattices to compute and propagate in
parallel the partition refinement for all conditions at once. The BDD based-implementation uses the
same basic algorithm, but represents lattice elements via BDDs, which can often lead to a very compact
representation, which in turn makes the algorithm viable for significantly larger sets of conditions.

Summarizing, the problems PAWS solves and the corresponding algorithms and semirings are displayed
in the following table:

Problem Algorithm Semiring Model
Language equivalence (all pairs) Language Equ.(Complete) any semiring WA

Language equivalence (initial vectors) Language Equ.(Up-To) l-monoids, lattices WA
Universality Problem Universality tropical Semiring WA

Conditional bisimilarity CTS Bisimilarity finite lattice CTS

3 Design and Usage

In this section, we give an overview of some design decisions and the usage of the tool. First, we
explain the basic structure and then discuss some of the problems and math-related features of the tool.
Furthermore we explain how to work with PAWS.

3.1 Design

PAWS is a Windows tool offering a complete graphical interface, developed in Microsoft’s Visual Studio
using C#. The program is divided into two autonomous components:

Both components are designed according to the MVC (Model View Controller) pattern. In the
sequel, we will discern these two program parts, as their interaction is rather limited, allowing them to be
considered as separate concerns.

3.1.1 The Semiring Generator

The development of the semiring generator started in a master’s thesis [20]. It supports five different
generation processes, which, for clarity, are equipped with five separate input forms. The semiring
generator supports three fully automated cases:
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• Direct products

• Fields of fractions

• Field extensions for Q

Furthermore, there are two options to generate code based on user implementations:

• l-monoids

• Arbitrary semirings

Note that generation of finite lattices and modulo rings is less involved and is done directly within the
analysis component.

For the generation of source code we use CodeDOM of the .NET Framework, which enables code
generation based on object graphs. The five processes are implemented via one superclass and three
derived classes. The superclass contains all methods for creating if-statements, for-loops or useful
combinations of these, based on predefined patterns. Except for the direct product generator, every class
uses the constructor generating methods of the superclass. Most of the differences between the classes
are reflected in the methods for generating the binary operators. Concerning methods for solving linear
equations we are offering two templates: a straightforward implementation of the Gaussian algorithm and
one method for l-monoids, based on the residuum operator [10].

With code generation, one always has to face the question of how to give the program, specifically
the analysis component of PAWS, access to the newly generated classes. We decided to use the Mi-
crosoft.Build.Execution namespace for updating the analysis tool. This decision avoids creating multiple
DLL files, which would be the case with a pure reflection-based solution to the problem. However,
reflection is used to solve another difficulty. Due to the combination of different semirings or data types
as elements of a new semiring, a dynamic approach is required to enable the automated generation of
constructors with a string parameter, specifying the semiring value.

PAWS also manages the names of the semiring classes in individual text files. First, this prevents a
user from overwriting an already fixed class name. Another advantage is that by using System.Activator,
an instance can be created dynamically during runtime without knowing the class name at the level of
program design. Hence, both components use consistent config files, which is ensured by updating the
corresponding config file if one of the program parts creates or deletes a semiring. But when deleting a
semiring that has already been used to create and store an automaton or transition system, conflicts may
occur with the serialised objects and thus with the user’s storage files. Therefore, deletion of semirings
must be dealt with separately. A semiring can only be deleted or modified if it has not been used in the
previous session within an automaton.

3.1.2 The Analysis Tool

As already mentioned, for both program parts MVC is used to implement the user interface. The main
focus of PAWS is to give the user the tools to define an automaton in order to be able to subsequently
analyse it with the supported algorithms. In order to implement this as dynamically as possible, we have
opted for a generic implementation. Therefore, the class Matrix〈T 〉 (where T is the generic type of the
semiring), which implements automata in a matrix representation, is the core of the tool’s architecture.

The main argument for the generic approach is that the algorithms for the analysis of an automaton
are based on the basic operators of a semiring. A further method is needed to solve systems of linear
equations, which is also defined for each semiring within PAWS. It is therefore recommended to use a



82 Paws: Program for the Analysis of Weighted Systems

generic class that includes all the methods of analysis, which in turn dynamically call the corresponding
operators or methods of the currently used semiring. This dynamic approach is thus combined with
reflection.

Consequently, the management of automata created by the user requires a generic implementation
as well. The model for the matrices is therefore also generic and thus it makes sense to manage several
semiring models by the controller.

Because of the generic approach, automatically checking the correctness of the user input proves
to be problematic when the user has generated his or her own semiring and has implemented a string
constructor to read semiring elements from input strings without input verification. In this case PAWS can
not check whether the input is well-formed, this has to be taken care of in the user-implemented method.
Such semirings can not be further used to generate other semirings.

A further design decision is that one can create finite semirings directly within the analysis component
of PAWS. The reason why we chose to not move this option to the generator is that for finite lattices and
modulo rings over the integers no new classes have to be generated nor is there any need for new source
code at all. In this case, it is sufficient to configure template classes for the corresponding semirings via
static variables that contain the required information about the semiring. The operators are designed to
behave according to the configuration of the class. In such cases, the analysis program must also access
the configuration files in order to make the extensions known to the semiring generator.

As an additional feature, we have also integrated GraphViz2 into the tool, as it allows visualization of
weighted automata, if desired by the user.

3.2 Usage

We will discuss the usage of the tool separately for the two individual components of PAWS, hence this
section contains subsections giving details about the following two components.

• The semiring generator to build and provide the required semirings over which automata can be
defined. This generator is used to generate semirings that cannot be obtained in a fully automated
way and supports some form of automatic generation.

• The analysis tool that allows the user to choose a previously generated semiring, one of the semirings
that come built-in with PAWS or to build a lattice or modulo ring, and then to define automata in a
matrix representation over the chosen semiring. Matrices are then interpreted as weighted automata
(WA) or conditional transition systems (CTS) and can be used to compute language equivalence

2www.graphviz.org
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for weighted automata with two different approaches, decide the threshold problem for weighted
automata over the tropical semiring of natural numbers or to compute the greatest bisimilarity of a
CTS.

3.2.1 The Semiring Generator

The semiring generator is used to generate the semirings under consideration. In order for a semiring to
be usable within the context of PAWS, the structure needs to define the following components:

• A universe which contains all elements of the semiring. All predefined datatypes from C#, as well
as combinations of them can serve as universes.

• An addition operator + of the semiring.

• A multiplication operator · of the semiring.

• One() and Zero() methods, which return the units of addition and multiplication.

• A method for solving linear equations over the semiring.

While the first four components are necessary to define a semiring in a mathematical context either
way, the procedure to solve linear equations is an additional requirement – one that PAWS aims at reducing
as much as possible – but in order to provide the greatest amount of flexibility possible, the tool offers the
option to define a procedure to solve linear equations from scratch.

3.2.2 The Analysis Tool

The analysis component is designed to offer generic algorithms applicable to numerous predefined or
user-defined semirings. Some of the algorithms can however only be used with specific (types of)
semirings. The most general algorithm is the language equivalence check, for which all semirings are
eligible. Conditional transition systems are only defined over lattices, therefore, the bisimulation check
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is limited to lattice structures. However, the user still has the choice between two different ways of
dealing with lattices: representing elements of the lattice as downwards-closed sets of irreducibles via
the Birkhoff duality [12], applicable to all finite distributive lattices, or representing them using binary
decision diagrams (BDDs). The BDD variant is more restrictive and mainly designed for the application
to CTS. Here, the irreducibles are required to be full conjunctions of features from a base set of features,
ordered by the presence of distinct upgrade features. Lastly, the threshold check can only be performed
over a single semiring, the tropical semiring over natural numbers.

The general workflow of the analysis tool is as follows:

. Choose a semiring

. Generate a matrix over this semiring, representing a weighted automaton or a conditional transition
system
Alternatively: Choose the matrix from a list of matrices that have been generated previously

. Start the algorithm and provide – if necessary – additional input

Additional input comes in two forms: initial vectors and the threshold to be checked against in case of
the threshold algorithm. Depending on the semiring of choice, questions regarding language equivalence
might not be decidable, leading to non-termination of the corresponding procedure in PAWS. In order
to deal with this problem and to allow abortion of an overlong computation, the actual computation is
delegated to a separate thread that can at any time be aborted. In that case all intermediate results are
discarded.

Note that only the two language equivalence-based algorithms can run into non-termination issues.
For the CTS bisimulation check, as well as the threshold problem on the tropical semiring of natural
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numbers, termination is always guaranteed. However, the runtime of CTS bisimulation check can be
doubly exponential in the number of features under consideration – because the lattice is the set of
all possible configurations, which in turn are all possible conjunctions over the features. Using the
BDD-based implementation of lattices – which is particularly suited to the needs of CTS modelling –
this explosion is mitigated in many cases, but it can not be ruled out completely. On the other hand, the
BDD-based modelling only allows for special lattices to be modelled, i.e. those that arise as the lattices
constructed from a set of features and upgrade features, whereas the variant called FiniteLattice allows for
arbitrary (finite, distributive) lattices to be represented. In this case, lattices are represented via the partial
order of irreducible elements, using Birkhoff’s representation theorem [12].

4 GUI Overview of PAWS

In this section, we give a short overview of the GUI. First, we will present the semiring generator and
how to start a semiring generation process. We then illustrate the various possibilities to use the analysis
component of PAWS in a short overview.

4.1 The Semiring Generator

First, the user hast to choose one of the offered generation templates, for example the direct product input
mask (Figure 1 and 2). Then, in Figure 3 the console informs the user that the generated source code
is compilable. In case the user specifies some code on his or her own, the console will display suitable
compilation error messages.

Figure 1: Lower ellipse: Choose an input mask.
Top ellipse: Specify the name of the new semiring
class.

Figure 2: Specify a direct product, add semirings
as member fields to the class.

4.2 The Analysis Tool

In this section the use of the PAWS analysis component is presented in a brief overview. The illustrations
serve to explain our intuition behind the design and the use of PAWS.

In Figures 4 and 5 the first steps for creating a weighted automaton are illustrated. After generating a
matrix, the user can choose one of the available algorithms and wait until the result of the computation is
displayed inside the text area (Figure 6).
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Figure 3: Pressing the circled button will generate the code visible in the right-hand text-box. The console
at the bottom informs the user, whether the source code was compiled and successfully added to the
analysis component of PAWS.

Figure 4: Top ellipse: First determine the name
of the automaton. Bottom ellipse: Type in the
number of states.

Figure 5: Choose the semiring.

With the PAWS analysis component, besides automata, also finite semirings can be generated and
stored for further semiring generation as well as for the analysis.

4.3 Evaluation

Here we describe several case studies and list runtime results. Before we discuss the results, let us first
consider the theoretical complexity results, listed in Table 1, where we consider various semirings (in the
left column) and various problems (in the top row).

The main focus of PAWS is on weighted automata and language equivalence, hence we will conduct
our experiments for this problem. For extensive experiments concerning the universality problem see [5].
Experiments on conditional transition systems were conducted in [4].

We will consider the decidable cases, namely the reals, as well as another (finite) ring, and a distributive
lattice. More concretely, we will evaluate the algorithm Language Equ.(Complete) on three different
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Figure 6: After starting one of the supported algorithms for a transition system, the analysis result will be
displayed in the bottom text area.

equivalence inclusion threshold

real P undecidable undecidable
numbers [23] [21]

tropical undecidable undecidable PSPACE-cmpl.
semiring [18] [2]

distr. PSPACE-cmpl. PSPACE-cmpl. PSPACE-cmpl.
lattices [19]

Table 1: Overview of the corresponding complexity classes for considered weighted automata problems.

semirings: the reals (R,+, ·,0,1), the finite ring (Z100,+100, ·100,0,1) (where addition and multiplication
is modulo 100), and LatticeZ, the lattice (Z,min,max,∞,−∞) restricted to the interval [−1000,1000].
Note that Language Equ.(Complete) determines for all pairs of states whether they are equivalent.

PAWS was executed on an Intel Core 2 Quad CPU Q9550 at 2.83 GHz with 4 GB RAM, running
Windows 10. Our test cases were constructed as follows: we considered different numbers of states (|X |)
and also varied the probability of the existence of a transition between a pair of states (pTr). Usually we
set pTr = 0.5, but we will also compare to other values. Weights are set randomly and the default alphabet
size was 2.

For each semiring and each chosen combination of parameters we randomly generated 1000 weighted
automata and observed the runtime behaviour. We considered various percentiles, for instance the 50%
and 90% percentiles: the 50% percentile is the median and the 90% percentile means that 90% of the
runs were faster and 10% slower than the time given in the respective field. Analogously for the other
percentiles.

As expected, the runtimes are heavily dependent on the semiring. This is due to two reasons: first,
the algorithms Language Equ.(Complete) internally uses procedures for solving linear equations and the
complexity of those procedures, which depend on the semiring, plays a major role in the runtime. Second,
as explained in Section 2, the algorithm lists words of increasing length and associates them with weight
vectors. A vector need not be considered if it is a linear combination of existing vectors. Hence, if the
corresponding semimodule has few generators – as it is for instance the case for a vector space of limited
dimension over a field – the search space can be cut off quickly.
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We first consider the two rings: the reals and Z100 (see Table 2). For the reals, the Gaussian algorithm
has a polynomial runtime O(|X |3) in the number of states. Due to the fact that the search can be cut
off after at most |X | vectors, there are only minor variations in the runtime over the various percentiles.
Furthermore the alphabet size and the probability pTr have little impact on the runtime. Instead the times
are mainly dependent on the number of states.

(|X |, pTr) Semiring 50% 90% 95%
(10,0.5) R 28 29 30

Z100 42 73 2307
(15,0.5) R 98 100 101

Z100 252 263 267
(20,0.5) R 359 361 362

Z100 518 523 528
(25,0.5) R 712 717 719

Z100 1034 1058 1081
(30,0.5) R 1327 1333 1336

Z100 1983 3509 3548
(35,0.5) R 3648 3660 3664

Z100 5242 5290 5304
(40,0.5) R 5183 5197 5202

Z100 7654 7924 7960
(45,0.5) R 7400 7419 7425

Z100 11492 11538 11551
(50,0.5) R 10471 10509 10720

Z100 15673 15720 15738

Table 2: Runtime results in milliseconds on randomly generated automata over two different semirings

There are different effects for the ring Z100, which also uses the Gauss method, but the runtime is
particularly influenced by the subsequent application of the Hensel lifting, which depends on the one hand
on the prime factor decomposition q = ∏

k
i=0 pei

i , where k is the number of prime factors (here: q = 100),
and second on the number of zero lines that occur in computation of the row echelon form. It is not
previously known which combination of the free variables leads to a solution [11, 20]. The cases in which
all those possibilities have to be enumerated are very rare, however, these cases do occur and they may
cause a timeout after 5 hours. In order to see this effect, consider the 99.9% percentiles in Table 3. An
additional, very interesting, observation, which we have made while testing the implementation, is that
the worst case is less frequent in practice with an increasing number of states (see Table 3). A possible
explanation for this could be the decreasing probability for the occurrence of zero lines with an increase
in the number of states.

The algorithm is much less efficient in the case of the lattice of integers LatticeZ (see Table 4),
although the procedure for solving a single solving equation system, based on the residuum operation
[10], has linear runtime. However, this does not help, since we can not guarantee to find a small set of
generators in the semimodule and hence there is no limit on the number of vectors which are enumerated.
Already for |X | = 15 states it is infeasible to obtain results. The situation becomes worse when the
alphabet size increases, since the number of vectors will also grow. This is different for the case of the
reals and Z100, since there the number of states limits the number of columns.

Note, that while the performance of algorithm Language Equ.(Complete) is bad in the case of
LatticeZ, the on-the-fly up-to technique Language Equ.(Up-To) performs much better. At first sight, such
a comparison seems unfair, since Language Equ.(Up-To) tests language equivalence only for a single
pair of states, whereas the other method considers all pairs of states at once. However, the advantage is
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(|X |, pTr) Semiring 50% 85% 90% 95% 99% 99.9%
(10,0.5) Z100 42 68 73 2307 7041 time-out
(15,0.5) Z100 252 258 263 267 897 1787758
(20,0.5) Z100 518 521 523 528 532 time-out
(25,0.5) Z100 1034 1044 1058 1081 1821 time-out
(30,0.5) Z100 1983 3493 3509 3548 3745 3881
(35,0.5) Z100 5242 5283 5290 5304 5422 5501

Table 3: Runtimes in milliseconds of Language Equ.(Complete) on randomly generated automata over
Z100 .

(|X |, pTr) Semiring 50% 85% 90% 95% 99%
(5,0.5) LatticeZ 41 242 347 758 3186

(10,0.5) LatticeZ 18808 287920 564525 1975251 16321319

Table 4: Runtimes in milliseconds of Language Equ.(Complete) on randomly generated automata over
LatticeZ.

significant enough that the up-to technique can be expected to be more performant even when it is applied
to all pairs of states, one after the other. In fact, in the case of randomly generated automata with ten states,
there are 90 pairs of states to consider and the running time we have recorded for Language Equ.(Up-To)
is lower than 38 milliseconds in 99% of all cases. Thus, even if we take the value of the 99% percentile
for all pairs of states, we end up with 90 ·38 milliseconds, which is significantly lower than the median
runtime for Language Equ.(Complete).

For randomly generated automata, it is rare to find two language-equivalent states, in fact, only
very few steps are typically required to find a word that separates randomly generated automata. While
Language Equ.(Up-To) may stop its computation after finding a single word separating the initial pair of
states, it is not sufficient for termination of Language Equ.(Complete) to find witnesses of absence of
language equivalence. The intermediate results of Language Equ.(Complete) also need to span the same
semimodule for termination of the algorithm, which may take numerous extra steps after all non-equivalent
states have been separated.

5 Conclusion, Future Work and Related Work

We have seen that PAWS is a flexible tool to analyse the behaviour of weighted automata and conditional
transition systems. The generic approach allows for adding new semirings with a varying degree of
support by the tool itself.

Concerning related approaches, we are not aware of analysis tools for language equivalence and the
threshold problem for weighted automata.

For the problem of generating semirings dynamically, there exists previous work for solving fixpoint
equations over semirings by Esparza, Luttenberger and Schlund [14]. They introduce FPSOLVE, a
C++ template based tool for solving fixpoint equations over semirings. That is, the tool has a different
application scenario than ours. However, the tools share similarities since in FPSOLVE the user also has
the possibility to generate new semirings. For this, only the addition, multiplication and Kleene star must
be implemented. However, a string constructor must also be specified without automatic support and the
main method must be adjusted with the corresponding command-line. PAWS is designed to enable the
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generation of new semirings for solving linear equations using a graphical user interface and does not
change already existing code, which is not part of a semiring class.

In contrast to this, work has already been done on an analysis tool for featured transition systems –
which are basically CTS without a notion of upgrades – to analyse software product lines wrt. simulation.
In their work [9], Cordy et al. have implemented their model using BDDs as well, yielding a similar speed
up as our own approach. The significant differences here lie in the notion of behaviour, since Cordy et
al. have focused on simulation relations, whereas we are concerned with bisimulations. Furthermore we
capture a notion of upgrade and thus support partial orders of products instead of just abritrary sets of
products.

We intend to develop PAWS further in several ways. We are looking for new classes of semirings
where solutions of linear equations can be effectively computed, in order to equip those semirings with an
improved support from PAWS. Furthermore, we are interested in analysing more extensive case studies,
where we will use PAWS to conduct all required analyses.
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