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Nowadays, more and more increasingly hard computations are performed in challenging fields like
weather forecasting, oil and gas exploration, and cryptanalysis. Many of such computations can
be implemented using a computer cluster with a large number of servers. Incoming computation
requests are then, via a so-called load balancing policy, distributed over the servers to ensure optimal
performance. Additionally, being able to switch-off some servers during low period of workload,
gives potential to reduced energy consumption. Therefore, load balancing forms, albeit indirectly,
a trade-off between performance and energy consumption. In this paper, we introduce a syntax
for load-balancing policies to dynamically select a server for each request based on relevant criteria,
including the number of jobs queued in servers, power states of servers, and transition delays between
power states of servers. To evaluate many policies, we implement two load balancers in: (i) iDSL, a
language and tool-chain for evaluating service-oriented systems, and (ii) a simulation framework in
AnyLogic. Both implementations are successfully validated by comparison of the results.

1 Introduction

In 2006, Al Gore created a global awareness and willingness to reduce greenhouse gasses by releasing
his film “An inconvenient truth” [18]. Roughly one third of these green house gasses are caused due
to the generation of electricity1. Additionally, approximately 1.1%-1.5% of the worldwide electricity
was consumed by data centres in 2010 [15]. In 2012, Neelie Kroes [16], former vice-president of the
European Commission responsible for the digital agenda, states that ICT consumes 8% to 10% of all
European electricity, which is approximately the total power consumption of whole of the Netherlands.
All of the above has led to a stronger focus on green ICT solutions in which saving electricity has
becoming increasingly important.

A major energy consumer in ICT are server farms. These server farms consist of many servers that
take care of some load. A server environment is set up in a data centre, which provides the infrastructure
that enables servers to function. These data centres often consist of many more components that consume
energy. Because the energy consumption of these components positively correlates with power consumed
by the servers, even small improvements made at server level have a strengthened effect (the so-called
“cascade-effect” [10]).
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under the responsibility of the Embedded Systems Innovation group of TNO, with Philips Medical Systems B.V. as the carrying
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One of the ways to reduce energy consumption is achieved with the aid of power management fea-
tures. Power management allows to switch between power states of servers to reduce power consump-
tion, while trying to keep the performance intact (e.g., bringing to sleep underutilised servers). There are
two key elements that construct a power management policy, namely: (i) strategies and (ii) load balanc-
ing. First, power management strategies describe when servers should switch between the power states.
Second, the load should be balanced among the servers such that optimal performance is obtained.

This paper proposes a powerful, yet concise, policy language, which covers, among others, strategies
that observe the size of the queue to decide to which server jobs are assigned. Furthermore, servers
are put to sleep when idling with a simple time-out mechanism, which should be easy to implement in
actual servers as literature suggests [4]. The method proposed in this paper allows us to explore a large
set of designs by adjusting only three parameters: (i) queue size threshold, (ii) idle time-out, and (iii)
non-determinism resolution. In the end, this leads to interesting power-performance trade-offs, i.e., we
explore the possibility to exchange reduction of power consumption at the cost of performance.

The policies are implemented as extensions to iDSL and AnyLogic so that policies can be automat-
ically evaluated. This provides insights in the effectiveness of the policies with respect to performance
and energy consumption. Also, both implementations are validated by comparison of the results.
In this paper, we answer the following main research question:

How to obtain high-performance, energy-efficient load balancing policies?

The combined answers to the following research questions answer this main research question.

K 1 What constitutes a formal model of a load balancer?

K 1a How to model the performance and energy of a load balancer?

K 1b How to model a load balancer policy?

K 2 How to automatically compare the performance and energy of many designs?

K 2a How to evaluate many designs to find good policies regarding performance and energy con-
sumption?

K 2b How to validate the evaluated results of the performance and energy?

This paper is further organised as follows. Section 2 provides the system description of a load bal-
ancer. Section 3 formalises a load balancer (question K 1), including an energy and performance model
(question K 1a), as well as a load balancer policy model (question K 1b). Section 4 then provides
two implementations of a load balancer, using iDSL and Anylogic respectively, which are both used to
evaluate many different designs (question K 2a). The results of these evaluations are then compared in
Section 5 to assess their validity (question K 2b). Finally, Section 6 concludes the paper.

2 System description of load balancers

In this section, a system description of load balancers is provided. Section 2.1 introduces the stakeholders
and their priorities. Section 2.2 presents a data centre performance cluster, which is then simplified by
introducing a scope and assumptions. Section 2.3 provides properties that constitute an effective policy.
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2.1 Stakeholders and their concerns

In general, load balancing distributes workload among various computing resources, e.g., computers,
network links or processing units. Especially server clusters designed for computing have dedicated
equipment for balancing load among its servers. This equipment is then often allocated in a data centre,
which is a facility used to house computer systems and associated components.

From the perspective of the data centre infrastructure suppliers we distinguish two major qualities:
(i) customer demands and (ii) supplier demands. According to [2], the system architecture in data centres
is mostly driven by five customer demands: availability, scalability, flexibility, security and performance.
Insight into these demands is essential for the quality of the data centre. Infrastructure suppliers, however,
focus mainly on energy consumption, IT equipment value and staff required. The total energy consumed
in a data centre depends on the energy consumed by its switching gear, batteries, power distribution,
servers, chillers, coolers, network equipment and monitoring and control devices.

In computing, performance is the most essential demand for customers and energy consumption of
these often very expensive server clusters is really high. So especially in the case of computing, a smart
load balancer in combination with power management features offer great opportunities to reduce energy
consumption, while performance is kept intact.

2.2 Data centre performance cluster

The work in this paper is inspired by the so-called Peregrine cluster at the Center for Information Tech-
nology 2 (CIT) in Groningen, the Netherlands, as follows. Assume the CIT decides to actively use power
management features for their Peregrine cluster 3 in combination with load balancing. This cluster has a
total of 4368 cores with three types of nodes, namely: (i) 162 standard nodes with 2 × 24 Intel Xeon 2.5
GHz cores; (ii) 6 standard nodes equipped with accelerator cards; and (iii) 7 fast nodes with 4 × 48 Intel
Xeon 2.6 GHz cores. Each standard node consumes approximately 40 W for only the CPU cores4.

The system of this case study is too complex and knowledge is missing to make a valid statement
about performance and energy characteristics. For these reasons, we model the system using the follow-
ing assumptions. (A 1 - A 10):

A 1 Incoming requests arrive according to a Poisson process with a negative exponential distribution
with rate 1 request per second.

A 2 The system consist of four similar resources (or server nodes).

A 3 A load balancing policy specifies how incoming requests are distributed over these four servers.

A 4 Servers have four power states each; they are either switched on (“stateOn”), asleep (“stateSleep”),
moving from “stateOn” to “stateSleep” (“stateSuspend”), or moving from “stateSleep” to “sta-
teOn” (“stateWake”).

A 5 A server can only process tasks in state “stateOn”.

A 6 Servers spend exactly 10 seconds in transition states “stateSuspend” and “stateWakeup” each,
when changing states.

A 7 Servers each consume 200 Watt in states “stateOn”, “stateSuspend” and “stateWakeup”, and 14
Watt in state “stateSleep”, based on empirical studies [3, 12]

2Center for Information Technology, http://www.rug.nl/society-business/centre-for-information-technology/
3Peregrine HPC cluster, https://redmine.hpc.rug.nl/redmine/projects/peregrine
4Intel Ark, http://ark.intel.com/
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A 8 Servers have infinite queues that adhere to a non-preemptive FIFO scheduling policy.

A 9 Servers process incoming requests deterministically with rate 1 request per second.

A 10 Evaluating a load balancing policy takes no time.

2.3 Effectiveness of a load balancing policy

The effectiveness of a load balancing policy can be seen as a trade-off between performance properties
and power properties.

2.3.1 Performance

A policy distributes incoming service requests over a number of servers. The way of distributing strongly
affects multiple performance metrics, e.g., the queue sizes and utilization of a specific resource are
generally high when the load balancer distributes many requests to the same server. In turn, this increases
the latencies for requests that are processed by this server. In this paper, only the (average) latency is
considered, because it is an interesting and easy to understand metric for the customer.

2.3.2 Energy consumption

The way a policy distributes incoming service requests indirectly affects energy consumption, viz., when
a policy does not distribute requests to any server for a specified amount of time, the server will go to
sleep and use only a fraction of energy. In this paper, we consider the average amount of energy per
second (in Watt) the four servers uses together.

3 A performance and energy model for load balancers

In the previous section we described load balancers. Here we provide a model to evaluate the perfor-
mance and energy consumption of load balancing policies. Section 3.1 defines performance and energy
consumption by considering incoming requests, power states and transitions, and latencies of requests.
Section 3.2 specifies load balancer policies using a grammar and semantics, some typical examples,
mechanisms to resolve non-determinism, and the design space.

3.1 Specifying the performance and energy consumption of a load balancer

We define the performance and energy consumption of load balancers in three steps. Section 3.1.1
considers incoming requests and their distribution over resources. Section 3.1.2 shows how power states
and transitions depend on incoming requests. Section 3.1.3 specifies latencies of requests.

3.1.1 Incoming requests and their distribution over the resources

Requests arrive with a negative exponentially distributed interarrival time, with rate 1 at the load balancer.
Let I(t) indicate that a request arrived at time t. Requests have a unique arrival time. Then I : 2R is a
infinite set with the arrival times of all incoming requests. For illustration, the following I has been
generated using a random number generator:

I = {0.87, 0.91, 1.46, 2.03, 3.54, 4.68, 5.42, 5.52, 5.66, 7.26, 9.61, 10.34, 10.93, 11.65, · · ·}. (1)
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Figure 1: Power states of resources and their transitions

The incoming requests are inspected by the load balancer, which distributes the requests over selected
servers for processing, based on a policy. Let P(t) : R+→{S1,S2,S3,S4} be a load balancer policy that
distributes the request that arrived at time t to either server S1, S2, S3 or S4. Let Sm = {t ∈ I|P(t) = Sm}
be the incoming requests of server m. Hence, {S1,S2,S3,S4} is a partition of I, For illustration, assume
policy P distributes the above incoming requests I over the four servers, as follows.

S1 = {0.91, 3.54, 5.42, 10.34, · · ·}, S2 = {9.61, 13.04, 13.52, · · ·},
S3 = {2.03, 4.68, 5.66, 7.26, · · ·}, S4 = {0.87, 1.46, 5.52, 12.01, · · ·}.

(2)

3.1.2 Power state transitions and energy consumption

Servers are in exactly one power state at a time, viz., on, suspend (sd), sleep (sl), or wakeup (wu):

Pon
x (t)⊕Psd

x (t)⊕Pwu
x (t)⊕Psl

x (t), (3)

where Ps
x (t) indicates that resource x is in state s at time t.

The current power state of a server is implicitly determined by the amount of incoming requests it re-
ceives and how quickly it processes them. E.g., when a server receives less incoming requests, it is more
likely to go to sleep to save energy.

Next, we present the specification of a load balancer with respect to power state behaviour in equa-
tions (4-8). Figure 1 visualizes the four power states as well as the roles the equations play with them,
i.e., equation (4-6) are concerned with power three states, and equations (7) and (8) with one power state.

When a server finishes processing its last request and when no new requests arrive in the next TO
seconds, the server stays on for TO seconds (4a), suspends for the next 10 seconds, (4b), and ends in
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sleep mode (4c), as follows.

(QSx(t) = 1 ∧ QSx(t + ε) = 0 ∧ Sx∩ [t : t +TO] = /0)→
(t ′ ∈ [t : t +TO]→ Pon

x (t ′)︸ ︷︷ ︸
4b

∧ t ′ ∈ [t +TO : t +10+TO]→ Psd
x (t ′)︸ ︷︷ ︸

4b

), ∧ Psl
x (10+TO+ ε)︸ ︷︷ ︸

4c

), (4)

where TO is the time of inactivity needed before a server goes to sleep, QSn(t) is the queue size plus the
request receiving service (either 0 or 1) of server n at time t, and Px(t) the power state (either on, sleep,
suspend, wakeup) of server x at time t.

When a server is in sleep mode (5a) and a request arrives, it wakes up for 10 seconds (5b) and then turns
on (5c), as follows.

(QSx(t) = 0 ∧ QSx(t + ε) = 1 ∧ Psl
x (t))→

(t ′ ∈ [t : t +10]Pwu
x (t ′)︸ ︷︷ ︸

5b

∧ t ′ ∈ [t +10 : t +10+TO]→ Pon
x (t ′)︸ ︷︷ ︸

5c

). (5)

When a server is suspending (6a) and a request arrives, it will finish suspending and then directly wake
up again (6b), as follows.

(Pon
x (t) ∧ Psd

x (t + ε) ∧ ∃t ′∈[t:t+10]QSx(t ′))→
(t ′ ∈ [t : t +10]→ Psd

x (t ′)︸ ︷︷ ︸
6a

∧ t ′ ∈ [t +10 : t +20]→ Pwu
x (t ′)︸ ︷︷ ︸

6b

) (6)

When a server is in sleep mode (7), it remains there as long as no new requests arrive, as follows.

Psl
x (t) ∧ QSx(t + t ′) = 0→ Psl

x (t + t ′) (7)

When a server is turned on (8), it remains turned on when incoming requests arrive frequently:

Pon
x (t) ∧ QSx(t + t ′)> 0 ∧ t ′ < TO→ Pon

x (t + t ′), (8)

where TO is the time of inactivity needed before a server goes to sleep. TO is design dependent.

3.1.3 Effectiveness of a load balancer

Section 2.3 addressed performance and energy consumption as the properties to evaluate a load balancer
on. The following two equations define, respectively, the performance and energy consumption formally.
Performance is defined as the average latency (AL) of all requests conceivable, as follows.

AL = lim
n→∞

1
n

n

∑
i=1

Li, (9)

where Li is the latency of the ith request.
Average power consumed (AP) to keep all four servers running is defined, as follows.

AP = lim
t→∞

4

∑
m=1

1
t

∫ t

0

200 · (Pion
m (s)+Piwu

m (s)+Pisd
m (s))+14 ·Pisl

m(s)
4

ds, (10)

where Pixm(t) = 1 when Px
m(t), and Pixm(t) = 0, otherwise.
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P = ID | numServers | queueSize | state | power | time | math
state = stateOn | stateSleep | stateSuspend | stateWakeup
power = powerOn | powerSleep | powerSuspend | powerWakeup
time = timeWakeup | timeSuspend | timeOutTime
math = P ∗P |P +P |P−P |P/P |P mod P | INT | random | dspace(ST RING)

Table 1: The grammar of load balancer policy expression P

3.2 A policy specification for load balancers

A load balancer policy prescribes how a load balancer behaves with respect to distributing incoming
requests to servers. Section 3.2.1 defines a policy using a mechanism that orders the servers; Section 3.2.2
presents some example policies. Finally, Section 3.2.3 provides ways to resolve non-determinism when
a policy is ambiguous.

3.2.1 A load balancer policy grammar

Each time an incoming requests arrives, a load balancer has to select one of the servers to delegate this
request to. We use the following algorithm to make this decision:

• Relevant system state variables are retrieved, e.g., the queue sizes of the servers.

• The preference of each server is determined via an arithmetic expression that includes system state
variables.

• The incoming request is delegated to the most desirable server, viz., the server with the highest
outcome for the arithmetic expression.

Table 1 shows the grammar of a policy expression P . Policy expressions can be something from the
categories state, power, time or math, as follows.

• State provides indicator functions to check whether a server is in one of the four states, or not, e.g.,
when a server is in the on state, stateOn yields 1 and the others 0.

• Power is used to retrieve the power consumptions of each individual state (see assumption A 7).

• Time includes timeWakeup and timeSuspend, the time it takes for the server to go back and forth
between states on and sleep, as well as timeOutTime, the time of inactivity the server undergoes
before going to sleep (see assumption A 6).

• Math provides five recursive functions that combine policies via arithmetic operations to create
arbitrarily complex polices. Furthermore, a constant integer number, a random number r ∈ [0 : 1],
and a design dependent number could be used.

Furthermore, policy expressions can be an ID, a unique number for each server, numServers, the total
number of servers, and queueSize, the number of requests in the queue of each server.
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#1 #2 #3 #4 #5 #6 #7
0 0 0 0 0 -1 -1 -1
1 0 0 -1 -1 -1 -2 -2
2 0 0 0 -1 -1 -1 -2
3 0 -1 -1 -1 -1 -1 -1

lbselect 3 1 2 0 1 2 3
(a) performance-optimizing policy P0

#1 #2 #3 #4 #5 #6 #7 #8
0 -5 -5 -5 -5 -5 -5 -5 -5
1 -5 -1 -2 -3 -4 -5 -5 -5
2 -5 -5 -5 -5 -5 -5 -1 -2
3 -5 -5 -5 -5 -5 -5 -5 -5

lbselect 1 1 1 1 1 2 2 2
(b) reasonably energy-efficient policy P5

Table 2: Example evaluations of policies P0 and P5, respectively

3.2.2 Example policies for load balancers

Let Pq be a generic policy, where q≥ 0 is a variable, to illustrate the functioning of policies in practice:

Pq =−queueSize−q · (1− stateOn), (11)

where q is the server queue size at which an additional server is switched on; q is design dependent.
Then, policy P0 assigns incoming requests to the server that currently has the shortest queue size:

P0 =−queueSize (12)

Table 2a shows an example evaluation of P0, where lbselect is the choice of the load balancer for
a certain server, #n incoming request n, and the numbers in the table the policy evaluations of servers
1-4 for incoming request #n. For the sake of simplicity, we assume that no incoming request finished
processing (yet). For request #1-#4, the load balancer arbitrary selects servers, because multiple servers
have the highest value for the policy evaluation. In step #5-#8 this pattern repeats. Hence, requests are
equally distributed over the servers.

Below, P5 is also policy that primarily assigns new incoming requests to the server with the shortest
queue size. However, P5 also considers the power state of the servers to save energy. Concretely, it will
only switch on a new server if all currently switched-on servers have a queue size of at least 5. Note that
this policy might perform less well than P0, however, at the benefit of reduced energy consumption.

P5 = queueSize−5 · (1− stateOn) (13)

Table 2b show an example evaluation of P5. When request #1 arrives, the policy evaluation of all
servers yields -5 because no servers are turned on. When the load balancer arbitrarily delegates this
request to server 1, server 1 switches on and its policy evaluates to -1. Consequently, the load balancer
selects server 1 for request #2-5. Then request #6-10 are delegated to server 2 for similar reasons. Note
that after 10 incoming requests only two servers have received requests, which is a good property when
energy consumption is of concern.

3.2.3 Resolving non-determinism

In this section, we provide a solution that prevents an arbitrary selection of a server by the load balancer
when multiple servers have the highest value for their policy expression.
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#1 #2 #3 #4
0: random 0.61 0.78 0.05 0.68
1: random 0.46 0.09 0.22 0.79
2: random 0.70 0.12 0.93 0.15
3: random 0.76 0.39 0.51 0.66
lbselect 3 0 2 2

(a) random policy P ′ = random

#1 #2 #3 #4
0:ID/numservers 0 0 0 0
1:ID/numservers 0.25 0.25 0.25 0.25
2:ID/numservers 0.5 0.5 0.5 0.5
3:ID/numservers 0.75 0.75 0.75 0.75
lbselect 3 3 3 3

(b) policy fixed order P ′′ = ID
numServers

Table 3: Example evaluations of non-determinism resolution mechanisms to two policies

Table 2b shows an example evaluation for P5. For each incoming request #1-#8, the load balancer
selects the server with the highest evaluated value, e.g., for request #2 server 1 gets selected because
its policy expression evaluates to -1, which is higher than the -5 of the other three servers. However,
there are cases in which the expression of multiple servers has the highest evaluation, e.g., for request #1
all servers evaluate to 1, which makes selecting server 1 an arbitrary decision. In these cases, the load
balancer performs a so-called non-deterministic decision.

Non-determinism can be resolved by adding fractions f ∈ [0 : 1) to policy outcomes, as follows. Let
P be a policy that only returns whole numbers N , then policies

P ′
q = Pq + random P ′′

q = Pq +
ID

numServers
(14)

yield unique real numbers R for each server, eliminating non-determinism. The policy outcomes are
only unique, if we assume that randomly drawn numbers are unique and if each server has a unique ID.

We illustrate how these two resolution mechanisms work by providing two example evaluations for
them, respectively. For the sake of simplicity, we use policies P ′.= random and P ′′ = ID

numServers .
Table 3a shows how P ′ functions. For each incoming request, four random numbers are drawn and

the load balancer delegates the request to the server with the highest value, e.g., request #1 is delegated
to server 3 because max(0.61,0.46,0.70,0.76) = 0.76.

Table 3b shows how P ′′ functions. For each incoming request, the policy evaluates to a unique
number per server, which is divided by 4, the number of servers, to return number in range [0,1). The
load balancer delegates all requests to server 3 that has the highest ID, namely 3.

3.2.4 Design space

We define a design space to compare many policies. Each design then represents a load balancer with a
different policy. The design space is defined as the Cartesian product over the following three dimensions
and their ranges.

• q ∈ {1,2,3,5,7,10,15,20,30,40,50,75,100} (cf. equation 11).

• timeout time: TO ∈ {1,2,3,4,5,7.5,10,15,30} (cf. equation 8).

• non-determinism resolution: nd ∈ {random, f ixed order} (cf. equation 14).

E.g., design d = (5,10,random) is a design in which: (i) a new server is turned on when the queue sizes
of all currently running servers is greater than 5, (ii) servers shut down after 10 seconds of inactivity, and
(iii) non-determinism is resolved via a random selection.
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Figure 2: Conceptual model of a service system. Measures of interest are obtained using scenarios.

4 Two implementations

In this section we implement the performance and energy model in two different ways to enable the
automatic evaluation of many load balancing policies and validate the results. Section 4.1 provides an
iDSL implementation, whereas Section 4.2 provides an AnyLogic implementation.

4.1 iDSL implementation

iDSL [5–8] is a formal language and solution chain to evaluate the performance of service-oriented
systems. iDSL has been developed made using Eclipse for DSLs5 and is, therefore, an Eclipse plug-
in with an extensive IDE. iDSL supports both simulation and model checking, via a transformation
to Modest [13], as means to evaluate large numbers of complex designs. Finally, iDSL presents its
predictions intuitively via visualizations and understandable (aggregated) metrics.

We extend iDSL to support load balancers, as follows. In Section 4.1.1, we provide an overview of
the iDSL language. In Section 4.1.2, we extend the iDSL language with a load balancer construct and
define its semantics via a transformation to Modest. In Section 4.1.3, we define an iDSL instance with a
load balancer.

4.1.1 The iDSL language

We describes the conceptual model that forms the basis of iDSL (as depicted in Figure 2).

5http://www.eclipse.org/downloads/packages/eclipse-java-and-dsl-tools/junosr1-rc2
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A service system, as depicted in the upper right block, provides services to service consumers in its
environment, exterior to the service system. A consumer can send a request for a specific service at a
given time, after which the system responds after some delay.

A service is implemented using a process, resources and a mapping. process decomposes high-level
service requests into atomic tasks, each assigned to resources through the mapping (from which we
abstracted in the figure). Hence, the mapping forms the connection between a process and the resources
it uses. Resources are capable of performing one atomic task at a time, in a certain amount of time.
When multiple services are invoked, their resource needs may overlap, causing concurrency and making
performance analysis more challenging.

A scenario consist of a number of invoked service requests over time to observe the performance
behaviour of the service system in specific circumstances. We assume service requests to be functionally
independent of each other. That is, service requests do not affect each other’s functional outcomes, but
may affect each other’s performance implicitly.

A study evaluates a selection of systematically chosen scenarios to derive the system’s underlying
characteristics. Finally, measures of interest define what performance metrics are of interest, given a
system in a given scenario. Measures can either be external to the system, e.g., throughput, latency and
jitter, or internal, e.g., queue sizes and utilization.

4.1.2 Extending iDSL to support load balancers

We extend iDSL to support load balancers. A language construct named lbalt is generated first (see
Figure 4, Section Process). lbalt contains a policy (as defined in Section 3.2.1), a configuration with
power consumptions per state and transition times (of Section 3.1.2), and multiple processes that are
mapped to resources to distribute incoming request to. Also, iDSL has been extended to support energy-
efficient resources with four power states.

Under the hood, the load balancer and energy-efficient resources are transformed to multiple Modest
[13] processes, as follows. Figure 3 shows initial process main that initializes a load balancer process,
a generator for incoming requests, and four energy-efficient resources, in parallel. To load balancer
becomes active when an incoming request enter the system, viz., the load balancer evaluates the policy
for each resource and adds the incoming request to the buffer of the preferred resource. At the same time,
resources wait for a request to arrive in the buffer, which they then process. Alternatively, the resource
times out: it goes to suspend mode (in process resource off ) first, then to sleep mode, and finally waits
for a request to arrive in its buffer. When this happens, it turns on again (by calling process resource).
Note that the power consumption has been modelled using a reward named power.

4.1.3 IDSL instance of the load balancer and experiments

Figure 4 shows a full iDSL instance of a load balancer with four servers. The iDSL consists of the fol-
lowing six sections. Section Process defines a load balancer (as explained in Section 4.1.2) that consists
of a policy (based on equation (11), a configuration (based on assumptions A 6 and A 7), and four pro-
cesses. In Section Resource the four servers are defined. Section System then maps the four processes
to the four servers, respectively, via a FIFO scheduling policy. In Section Scenario the exponential rate
of the incoming requests is set to 1. Section Measure indicates that simulation runs of 1500 incoming
requests each are used. Finally, Section Study defines the design space, the ternary Cartesian product of
dimensions q, to, and nondet res. Note that the variables are used in the the policy and configuration of
the load balancer via the dspace construct, which means these vary per design.
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main

par{
loadbalancer_process()
generator()
resource()

}

resource_off

power=200 // suspend
delay(10)
power=14 // sleep
When (buffer.count>0)
power=200
delay(10) // wake up
resource()

loadbalancer_process

Incoming_request?
alt{

:: when (p1 >= min(p2,p3,p4)
resource(1).buffer.add

:: when (p2 >= min(p2,p3,p4)
resource(2).buffer.add
…

}
load_balancer_process()

resource

power=200 // on
clock c=0
alt{

:: when (c>timeOutTime)
resource_off()

:: when (buffer.count>0)
{buffer.retrieve
delay(10)
resource()}

}

4x

start

Modest

Figure 3: The Modest processes for the load balancer

Figure 4: A full iDSL instance for a load balancer with four servers
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4.2 AnyLogic implementation

In [21], a simulation framework proposed that allows for the analysis of power and performance trade-
offs for data centres that save energy via power management. A combination of high-level models is
formed to estimate data centre power consumption and performance. These high-level cooperating sim-
ulation models are concerned with (i) IT equipment, (ii) the cascade effect, (iii) the system workload,
and (iv) power management. The framework is developed in the AnyLogic [1] multimethod simulation
software, which allows the use of a combination of discrete-event and agent-based models. The frame-
work offers an intuitive dashboard to actively control and obtain insight during each simulation run, as
illustrated in Figure 5. Besides insight into transient behaviour, as can be seen in this figure for the (a)
power-state utilisation, (b) response times and (c) power consumption, also averages are computed and
depicted in tables to give an indication of the steady-state behaviour.

In Section 4.2.1, the configuration of the data centre in the simulation framework is elaborated. An
extension for policies of load balancing and power management for this framework is introduced in
Section 4.2.2.

4.2.1 Configuring the simulation framework

The framework is configured according to the system description (of Section 2). The basic load balancer
and its environment are implemented with one agent for the load balancer and one agent for each server.
The load balancer distributes the workload by injecting jobs to the servers. These jobs are injected in
simple queues inside the server agents.

Figure 5: The AnyLogic dashboard
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Table 4 shows all the parameters used. Jobs arrive in the load balancer according to a Poisson process
with rate (λ job/s). The service rate (µ job/s) of each server is deterministic, i.e., the server finishes jobs
in a fixed amount of time. The model is extended to support four power states, cf. (3). The awareness
of power states in the models allows to compute power consumption (P) by rewarding each power state
with a power consumption. Note that processing is the only power state in which jobs are served.

Ppc 200 W Pas 14 W
Psl 200 W Psl 200 W

(a) power management parameters

λ exp(1.0) µ det(1.0)
αsl det(10.0) αwk det(10.0)

(b) performance parameters

Table 4: Data centre configuration parameters

The mean power consumption (E[P]) and mean response times (E[R]) are computed using the batch
means method. The batch means method requires the length of the simulation (tsim) to be very long,
which is usually around 100,000 virtual seconds, and the system should be stable after some warm-up
(wup) period, which is usually around 500 virtual seconds.

4.2.2 Policy implementation

Recall that the load balancer injects jobs in the queues of agents of the servers. Therefore, the load
balancer needs a policy to determine where each job should go. The policies, introduced in [21], have
two simple options: (i) random and (ii) shortest queue next. So, the load balancer required an extension
to support policies (cf. Section 4.2.2).

In order to implement these policies, information is required about the size of the queue of each server
and about the current power state. In order to select a server that support these policies an expression
should be defined to reward each server. The extension consist of a module class that has access to all the
relevant information, such that it can rate the servers based on the three parameters (cf. Section 3.2.4).
Additionally, a parameter variation experiment of the framework is implemented that allows for parallel
computation of the averages of many designs.

5 Experimental results

We show what results of the evaluated designs tell us about policies (in Section 5.1) and their validity (in
Section 5.2).

5.1 Lessons learned

Figure 6 shows the Anylogic results for all designs. It shows the effect of adjusting the parameters
in the policy for various values of queue threshold q ∈ {1,2,3,5,7,10,15,20,30,40} and the time-out
TO ∈ {1,2,3,4,5,7.5,10,15,30}. In Figure 6a equal values for q are marked with the same colour. It
shows that high values of q lead to low energy consumption and low values of q to high performance.
Figure 6b has similar colours TO. It shows that the efficiency frontier depends on the time-out value TO.
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(a) The value q determines the amount of power traded for performance.

(b) Time-out to determines the position of the frontier.

Figure 6: Average latency and power consumption outcomes for many designs
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Figure 7: Comparison of the iDSL (on the y-axis) on AnyLogic (on the x-axis) results for many designs,
using random non-determinism elimination
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5.2 Validity of the outcomes

We assess the validity of the iSDL and AnyLogic approaches by comparing their performance and energy
consumption outcomes for many different designs. The following distance measure, which returns the
ratio differences, is used to compare outcomes:

δ (v1,v2) = max
(

v1

v2
,
v2

v1

)
−1 (15)

The measure is partly like a metric, viz., δ (v,v) = 0, δ (v1,v2) = δ (v2,v1), and δ (av1,av2) = δ (v1,v2).
However, the triangular property δ (v1,v2)+δ (v2,v3)≥ δ (v1,v3) does not hold.

Figure 7 and 8 show the experimental outcomes of iDSL (on the y-axis) and AnyLogic (on the
x-axis) for resolving non-determinism with the random (in Figure 7) or the fixed order (in Figure 8)
way, respectively. Note that the distance δ is visualised around the diagonal for values 0, 0.1, 0.2 and
0.3. Generally, the results of both implementations match, because most designs are located near the
diagonal.

6 Conclusions

In this paper we have constructed a model to evaluate the performance and energy consumption of load
balancers. In this model, we define a powerful policy language that decide to which server jobs are
assigned by observing the system variables, e.g., queue sizes of servers.

To evaluate the performance and energy trade-off of many policies, we have implemented two load
balancers with exactly the same specifications in iDSL [5–8] and in AnyLogic [1]. Alternatives for iDSL,
which offers a high-level language, are PRISM [14], Modest [13] and UPPAAL [17]. Cloudsim [9] is an
alternative for AnyLogic.

Evaluation of many policies shows that parameter q, the queue threshold for switching servers on,
is useful to resolve the performance and power consumption trade-off, viz., low q values leads to good
performance, while higher q values reduce energy consumption. Parameter TO, the idling time of servers
before sleeping, determines the position of the so-called Pareto optimal frontier. A higher TO value
improves both performance and power consumption.

For validation, the evaluated performance and energy consumptions results of both implementations
have been compared. For half of all the designs, both the average latencies and power consumption of
iDSL and AnyLogic differed less than 6%. For 80% of the designs, this is 13% and 11%, respectively.

Related work The work of [22] simulate models that consider virtual machines and in particular
the power-performance trade-off. Similarly, [19] considers virtual machines and a power-performance
trade-off with testbed to apply their models for monitoring and control. In [11], power management
is discussed with a strong focus on server allocation. Furthermore, [20] performed on cluster-based
systems with a load balancer taking power and performance into account. Finally, [9] offers power and
performance analysis for data centres.

Our work distinguish itself in the following three ways: First, we have constructed a load balancer
policy with a powerful yet concise language which is used to access system variables, such as queue
sizes and power states of servers. Second, we have implemented this policy in two different development
environments, iDSL and AnyLogic. Both implementations were validated by comparison of evaluated
results. Third, evaluation of many designs provides insight in the meaning of the policies while only
using two parameters: The queue size threshold the affecting the performance power trade-off, the server
idle time affecting the level of Pareto optimality.
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