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Quite often, verification tasks for distributed systems are accomplished via counter abstractions. Such
abstractions can sometimes be justified via simulations and bisimulations. In this work, we supply
logical foundations to this practice, by a specifically designed technique for second order quantifier
elimination. Our method, once applied to specifications of verification problems for parameterized
distributed systems, produces integer variables systems that are ready to be model-checked by current
SMT-based tools. We demonstrate the feasibility of the approach with a prototype implementation
and first experiments.

1 Introduction

In this paper we introduce a methodology moving from higher order specifications down to sim-
ulations expressible inside first-order theories, where SMT techniques can be effectively applied. We
believe that this methodology, requiring user intervention only for initial choices at design phase, can
supply a good example of the interaction between logic engines operating at different expressivity levels.
The motivation of our research lies in the area of the verification of distributed (especially fault-tolerant)
algorithms, where benchmarks for our first experiments were taken from.

The automated, formal verification of distributed algorithms is a crucial, although challenging, task.
The processes executing these algorithms communicate with one another, their actions depend on the
messages received, and their number is arbitrary. These characteristics are captured by so called reactive
parameterized systems. The task of validating or refuting properties of these systems is daunting, due to
the difficulty of limiting the possible evolutions, thus having to deal with genuinely infinite-state systems.

Building accurate declarative models of these systems requires powerful formalisms, involving ar-
rays [20], [21] and, in the fault-tolerant case, also some fragment of higher order logic [16], [4] (this
is needed in order to have some form of comprehension to handle cardinalities of definable sets). On
the other hand, for a long time, it has been observed that counter systems [14, 15, 17] can be sufficient
to specify many problems (like cache coherence or broadcast protocols) in the distributed algorithms
area. Recently, counter abstractions have been effectively used also in the verification of fault-tolerant
distributed protocols [3, 25–27]. It should be noticed that, unlike what happens in the old framework
of [14, 15, 17], these new applications are often (although not always) based on abstractions that can
only simulate the original algorithms and such simulation may sometimes be the result of an a priori
reasoning on the characteristics of the algorithm, embedded into the model. Despite this fact, all runs
from the original specifications are represented in the simulations with counter systems (this is in fact the
formal content of the notion of a ‘simulation’), thus for instance safety certifications for the simulating
model apply also to the original model. The advantage of this approach is that, as it is evident e.g. from

∗The first authar was supported by the INdAM’s GNSAGA group.

http://dx.doi.org/10.4204/EPTCS.262.5
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


40 Counter Simulations

the experiments in [3], verification of counter systems is very well supported by the existing technology.
In fact, although basic problems about counter systems are themselves undecidable, the sophisticated
machinery (predicate abstraction [18], IC3 [13, 23], etc.) developed inside the SMT community lead to
impressively performing tools like µZ [24], nuXmv [10], SeaHorn [22], . . . which are nowadays being
used to solve many verification problems regarding counter systems.

Being conscious that building such simulations requires in any case some human interaction, we
tried to build in this paper a uniform framework. Our framework relies on recent powerful techniques
for deciding cardinality and array constraints [4, 6, 29]; as pointed out in [5, 19, 29], sometimes such
decision techniques can be modified so as to supply quantifier elimination results and, via these quantifier
elimination results, we shall show how to automatically build the best possible counter simulations users
can obtain once they fixed (i) the specification of the system, (ii) possibly some helpful invariants and
(iii) the counter variables involved in the projected simulation (such variables are cardinality counters for
definable sets). We demonstrate the effectiveness of our approach by producing, for some benchmarks,
counter systems simulations which are effectively model-checked by current SMT-based tools.

1.1 A four-steps strategy

Our general four-steps strategy can be summarized as follows: (1) system specifications (together with
their safety problems) are formulated in higher order logic, i.e. using a declarative formalism which
is sufficiently expressive and close to informal specifications; (2) counters for definable sets are added
by the user to the system specification, in such a way that the observationally relevant properties can
be reformulated as arithmetic properties of these counters; (3) higher order variables are eliminated, by
applying an automatic procedure; (4) the resulting system is finally model-checked by using an SMT-
based tool for counter systems. The reader is referred to Section 4 for a detailed example.

In this plan, only steps (1) and (2) require manual intervention; step (3) is effective every time the
syntactic restrictions for quantifier elimination procedures are matched; step (4) is subject to two risks,
namely to the fact that model-checkers may not terminate on such (undecidable) problems and to the
fact that simulations may introduce spurious traces. Non-termination, giving the actual state of the art
(much progress has been made both at the theoretical and at the practical level) is less frequent than one
can imagine and there are also positive theoretical results - both classical [1, 20] and more recent [28] -
that guarantee termination in some interesting cases. Concerning the second risk, notice that if spurious
traces arise, they can be recognized because SMT tools supply concrete values for counterexamples;
then, one can go back to step (2) and refine the abstraction by adding more counters.

The paper is structured as follows: Section 2 gives general foundations; Section 3 outlines the for-
malizations we use and supplies a basic quantifier elimination result; Section 4 analyzes a concrete
benchmark; Section 5 describes our implementation and our first experiments. Section 6 concludes.

2 System Specifications in Higher Order Logic

The behavior of a computer system can be modeled through a transition system, which is a tuple

T = (W,W0,R,AP,V )

such that (i) W is the set of possible configurations, (ii) W0 ⊆W is the set of initial configurations, (iii)
AP is a set of ‘atomic propositions’, (iv) V : W −→ AP is a function labeling each state with the set of
propositions ‘true in it’, (v) R ⊆W ×W is the transition relation: w1Rw2 describes how the system can
‘evolve in one step’.
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Definition 1. We say that the transition system T ′ = (W ′,W ′0,R
′,AP,V ′) simulates the transition system

T = (W,W0,R,AP,V ) (notice that AP is the same in the two systems) iff there is a relation ρ ⊆W ×W ′

(called simulation) such that

(i) for all w ∈W there is w′ ∈W ′ such that wρw′;

(ii) if wρw′ and w ∈W0, then w′ ∈W ′0;

(iii) if wρw′ and wRv, then there is v′ ∈W ′ such that w′R′v′ and vρv′;

(iv) if wρw′, then V (w) =V ′(w′);

If the converse ρop of ρ is also a simulation, then ρ is said to be a bisimulation and T ′ and T are said
to be bisimilar.

Bisimilar systems are equivalent in the sense that the properties expressible in common temporal
logic specifications (e.g. in CT L,LT L,CT L∗, etc.) are invariant under bisimulations; simulation is also
useful as important properties (like safety properties, or more generally properties expressible in sublog-
ics like ACT L) can be transferred from a system to the systems simulated by it (but not vice versa).

We write T ≤T ′ iff W ⊆W ′ and the inclusion is a simulation. This relation is a partial order; notice
that if T ′ simulates T and T ′ ≤ T ′′, then T ′′ also simulates T ; in this case, the simulation supplied
by T ′ is said to be stronger or better than the simulation supplied by T ′′ (in fact, one has more chances
of establishing e.g. a safety property of T by using T ′ than by using T ′′).

The above formalism of transition systems is often too poor, because it cannot cover rich features
arising in concrete applications. To have enough expressive power, we use higher order logic, more
specifically Church’s type theory (see e.g. [7] for an introduction to the subject).1 It should be noticed,
however, that our primary aim is to supply a framework for model-checking and not to build a deduc-
tive system. Thus we shall introduce below only suitable languages (via higher order signatures) and a
semantics for such languages - such semantics can be specified e.g. inside any classical foundational
system for set theory. In addition, as typical for model-checking, we want to constrain our semantics so
that certain sorts have a fixed meaning: the primitive sort Z has to be interpreted as the (standard) set of
integers, the sort Ω has to be interpreted as the set of truth values {tt,ff}; moreover, some primitive
sorted operations like +,0,S (addition, zero, successor for natural numbers) and ∧,∨,→,¬ (Boolean
operations for truth values) must have their natural interpretation. Some sorts might be enumerated,
i.e. they must be interpreted as a specific finite ‘set of values’ {a0, . . . ,ak}, where the ai are mentioned
among the constants of the language and are assumed to be distinct. Finally, we may ask for a primitive
sort to be interpreted as a finite set (by abuse, we shall call such sorts finite): for instance, we shall con-
strain in this way the sort Proc modeling the set of processes in a distributed system. In addition, if a
sort is interpreted into a finite set, we may constrain some numerical parameter (usually, the parameter
we choose for this is named N) to indicate the cardinality of such finite set. The notion of constrained
signature below incorporates all the above requirements in a general framework.

A constrained signature Σ consists of a set of (primitive) sorts and of a set of (primitive) sorted
function symbols,2 together with a class CΣ of Σ-structures, called the models of Σ.3 Using primitive

1Some notation we use might look slightly non-standard; it is similar to the notation of [30].
2These include 0-ary function symbols, called constants; constants of sort Z will be called (arithmetic) parameters.
3In the standard model-checking literature CΣ is a singleton; here we must allow many structures in CΣ, because our model-

checking problems are parametric: the sort modeling the set of processes of our system specifications must be interpreted onto
a finite set whose cardinality is not a priori fixed. Our definition of a ‘constrained signature’ is analogous to the definition of
a ‘theory’ in SMT literature; in fact, in SMT literature, a ‘theory’ is just a pair given by a signature and a class of structures.
When transferred to a higher order context, such definition coincides with that of a ‘constrained signature’ above (thus our
formal framework is very similar to e.g. that of [31]).
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sorts, types can be built up using exponentiation (= functions type); terms can be built up using variables,
function symbols, as well as λ -abstraction and functional application.

Our constrained signatures always include the sort Ω of truth-values; terms of type Ω are called
formulae (we use greek letters α,β , . . . ,φ ,ψ, . . . for them). For a type S, the type S→Ω is indicated as
℘(S) and called the power set of S; if S is constrained to be interpreted as a finite set, Σ might contain
a cardinality operator ] : ℘(S) −→ Z, whose interpretation is assumed to be the intended one (]s is the
number of the elements of s - as such it is always a nonnegative number). If φ is a formula and S a
type, we use {xS | φ} or just {x | φ} for λxSφ . We assume to have binary equality predicates for each
type; universal and existential quantifiers for formulæ can be introduced by standard abbreviations (see
e.g. [30]). We shall use the roman letters x,y, . . . , i, j, . . . ,v,w, . . . for variables (of course, each variable
is suitably typed, but types are left implicit if confusion does not arise). Bold letters like v (or underlined
letters like x) are used for tuples of free variables; below, we indicate with t(v) the fact that the term t
has free variables included in the list v (whenever this happens, we say that t is a v-term, or a v-formula
if it has type Ω). The result of a simultaneous substitution of the tuple of variables v by the tuple of (type
matching) terms u in t is denoted by t(u/v) or directly as t(u).

Given a tuple of variables v, a Σ-interpretation of v in a model M ∈ CΣ is a function I mapping
each variable onto an element of the correponding type (as interpreted in M ). The evaluation of a term
t(v) according to I is recursively defined in the standard way and is written as tM ,I . A Σ-formula φ(v)
is true under M ,I iff it evaluates to tt (in this case, we may also say that vM ,I satisfies φ ); φ is valid
iff it is true for all models M ∈ CΣ and all interpretations I of v over M . We write |=Σ φ (or just |= φ )
to mean that φ is valid and φ |=Σ ψ (or just φ |= ψ) to mean that φ → ψ is valid; we say that φ and ψ

are Σ-equivalent (or just equivalent) iff φ ↔ ψ is valid.
Constrained signatures are used for our system specifications as follows:

Definition 2. A system specification S is a tuple

S = (Σ,v,Φ, ι ,τ,AP)

where (i) Σ is a constrained signature, (ii) v is a tuple of variables, (iii) Φ, ι are v-formulæ and AP is a
set of v-formulæ, (iv) τ is a (v,v′)-formula (here the v′ are renamed copies of the v) such that

ι(v) |=Σ Φ(v), Φ(v)∧ τ(v,v′) |=Σ Φ(v′) . (1)

In the above definition, the v are meant to be the variables specifying the system status, ι is meant
to describe initial states, τ is meant to describe the transition relation and the AP are the ‘observable
propositions’ we are interested in. The v-formula Φ, as it is evident from (1), describes an invariant of
the system (known to the user). Of course, using the expressive power of our type theory, it would be
easy to write down the ‘best possible’ invariant describing in a precise way the set of reachable states;
however, the v-formula for such invariant might involve logical constructors (like fixpoints) lying outside
the tractable fragments we plan to use. On the other hand, invariants are quite useful - and often essential
- in concrete verification tasks, this is why we included them in Definition 2.

It is now clear how to associate a transition system with any system specification:
Definition 3. The transition system of the system specification S = (Σ,v,Φ, ι ,τ,AP) is the transition
system T S given by (WS ,WS

0 ,RS ,APS ,V S ), where: (i) the set of states WS is the set of the tuples
vM ,I satisfying Φ(v), varying M ,I among the Σ-models and Σ-interpretations of v; (ii) WS

0 is the
set of states satisfying ι(v); (iii) RS contains the couples of states vM ,I ,v′M ,I ′

4 satisfying τ(v,v′); (iv)
APS is AP; (v) for ψ(v) ∈ APS , we have that V (ψ) contains precisely the states satisfying ψ(v).

4Notice that M is the same; WS might be a proper class, but to avoid this it is sufficient to ask for the set of models CΣ of
our constrained signature Σ to be a set (not a proper class).
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3 Simulations and Counter Abstractions

Model-checking a transition system like T S might be too difficult, this is why it could be useful to
replace it with a (bi)similar, simpler system: in our applications, we shall try to replace S by some S ′

whose variables are all integer variables. To this aim, we ‘project’ S onto a subsystem S ′, i.e. onto a
system comprising only some of the variables of S .

In order to give a precise definition of what we have in mind, we must first consider subsignatures:
here a subsignature Σ0 of Σ is a signature obtained from Σ by dropping some symbols of Σ and taking as
Σ0-models the class CΣ0 of the restrictions M|Σ0 to the Σ0-symbols of the structures M ∈ CΣ.

Definition 4. Let S = (Σ,v,Φ, ι ,τ,AP) be a system specification; a sub-system specification of it is a
system specification S0 = (Σ0,v0,Φ0, ι0,τ0,AP0) where Σ0 is a subsignature of Σ, v0 ⊆ v, AP0 = AP and
we have

Φ(v) |=Σ Φ0(v0), ι(v) |= ι0(v0), Φ(v)∧ τ(v,v′) |= τ0(v0,v′0) (2)

The following fact is immediate:

Proposition 1. Let S0 be a sub-system specification of S like in Definition 4; then the map πS0 associ-
ating (v0)M|Σ0

,I|v0
to vM ,I is a simulation of T S by T S0 (called a projection simulation over Σ0,v0).

Projection simulations are ordered according to the ordering of the simulations of S they produce,
i.e. we say that S0 is stronger or better than S ′

0 iff T S0 ≤ T S ′
0 . Once Σ0,v0 are fixed, one may

wonder whether there exists the best projection simulation over Σ0,v0. The following straightforward
result supplies a (practically useful) sufficient condition:

Proposition 2. Let S = (Σ,v,Φ, ι ,τ,AP) be a system specification, let Σ0 be a subsignature of Σ and
let v0 ⊆ v be Σ0-variables. Suppose that there exist Σ0-formulæ Φ0(v0), ι0(v0),τ0(v0,v′0) such that (let
v := v0,v1):

(i) |=Σ Φ0(v0)↔∃v1Φ(v0,v1);

(ii) |=Σ ι0(v0)↔∃v1ι(v0,v1);

(iii) |=Σ τ0(v0,v′0)↔∃v1∃v′1(Φ(v0,v1)∧ τ(v0,v1,v′0,v′1)).
If we let S0 be the subsystem specification (Σ0,v0,Φ0, ι0,τ0,AP), then the projection simulation πS0 is
the best projection simulation over Σ0,v0.

Proof. That S0 = (Σ0,v0,Φ0, ι0,τ0,AP) is a subsystem specification of S is clear; let us now pick
another subsystem specification S ′ = (Σ0,v0,Φ

′, ι ′,τ ′,AP) of S inducing a projection simulation over
the same subsignature Σ0 and the same sub-tuple of variables v0. According to (2), we have

Φ(v) |=Σ Φ
′(v0), ι(v) |= ι

′(v0), Φ(v)∧ τ(v,v′) |= τ
′(v0,v′0)

that is
Φ0(v0) |=Σ Φ

′(v0), ι0(v0) |= ι
′(v0), τ0(v,v′) |= τ

′(v0,v′0)

which guarantees that T S0 ≤T S ′
0 .

To understand the meaning of the above proposition, one should keep in mind that there is no reason
why the Σ-formulæ ∃v1Φ,∃v1ι and ∃v1∃v′1(Φ∧ τ) should be equivalent to Σ0-formulæ (in our appli-
cations, Σ0 contains only the sort and the symbols of linear first-order arithmetic, so no higher order
variables are allowed in Σ0-formulæ). Thus, the road map to apply Proposition 2 is to prove some
quantifier-elimination results in order to find Σ0-formulæ equivalent to ∃v1Φ,∃v1ι ,∃v1∃v′1(Φ∧ τ).
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3.1 Counter Abstractions for Parameterized Systems

We now give a closer look at the signatures we need for modeling parameterized systems (i.e. systems
composed by a finite - but arbitrary! - number of indistinguishable processes). We fix a constrained
signature Σ for the remaining part of the paper. Such Σ should be adequate for modeling parameterized
systems, hence we assume that Σ consists of:

(i) the integer sort Z, together with some parameters (i.e. free individual constants) as well as all
operations and predicates of linear arithmetic (namely, 0,1,+,−,=,<,≡n);

(ii) the enumerated truth value sort Ω, with the constants tt,ff and the Boolean operations on them;

(iii) a finite sort Proc, whose cardinality is constrained to be equal to the arithmetic parameter N (this
sort models the processes - all identical to each other - taking part in our parameterized system as
actors); equality is the only predicate/function symbol defined on this sort;

(iv) further enumerated sorts Data, modeling local status, local flags, etc.

The subsignature Σ0 comprising only the items (i)-(ii) above is called the arithmetic subsignature of
Σ; the subsignature Σ2 comprising only the items (ii) and (iv) above is called the data subsignature of
Σ. Below, besides integer variables (namely variables of sort Z), data variables (namely variables of sort
Data) and index variables (namely variables of sort Proc), we use two other kinds of variables, that we
call enumerated and arithmetic array-ids: an enumerated array-id is a variable of type Proc→ Data and
an arithmetic array-id is a variable of type Proc→ Z.

Let now S = (Σ,v,Φ, ι ,τ,AP) be a system specification based on the above signature Σ. The vari-
ables v of S include some integer variables v0 and in addition variables for arithmetic and enumerated
arrays-ids. Let us suppose that v = v0v1, where v1 is the tuple of array variables and the v0 are all the
integer variables of the system. We suppose also that the formulæ in AP - namely the formulæ expressing
observable properties - are all open v0-formulæ (in particular, they are all Σ0-formulæ, where Σ0 is the
arithmetic subsignature of Σ).

Let S = (Σ,v0v1,Φ, ι ,τ,AP) be as above. A counter abstraction of S is a subsystem specifica-
tion of the kind S0 = (Σ0,v0,Φ0, ι0,τ0,AP); counter abstractions are ordered according to the ordering
of the simulations of S they produce, i.e. we say that S0 is stronger than S ′

0 iff T S0 ≤ T S ′
0 . We

are interested in sufficient conditions on Φ, ι ,τ ensuring the existence of a strongest counter abstrac-
tion. We describe below the sufficient conditions for which we have a first implementation (for stronger
conditions, requiring heavier machinery, see [19]).

Below we use notations like φ(x), t(x), . . . to mean that the formula φ , the term t, . . . contains at
most the free variables in the tuple x; notice also that, since there are no operation symbols defined on
the sort Proc, all Proc-atoms 5 must be equalities between Proc-variables; for the same reasons, all
subterms involving arrays-ids are flat, i.e. must be of the kind a(i) where i is a variable of sort Proc.
Since Data is enumerated, all Data-atoms must be of the kind a(i) = b(k) or a(k) = ai, where a,b
are enumerated arrays-ids, i,k are Proc-variables, and ai is a constant for a value of type Data.6 We
call Data-formula a Boolean combination of Data-atoms; we also call extended arithmetic term a term
of type Z which is an arithmetic parameter, a numeral, an arithmetic variable, a term of the kind a(i)
(where a is an arithmetic array-id and i a Proc-variable) or a term of the kind ]{k | ψ(k)}, where ψ(k)
is a Data-formula in which only the single Proc-variable k occurs. An extended arithmetic atom is a

5By a Proc-atom (resp. Data-atom) we mean an atomic formula whose root predicate is applied to terms denoting an
element of sort Proc (resp. Data).

6Atoms of the kind ai = aj are equivalent to ff or to tt because enumerated values are assumed to be distinct.
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formula obtained from extended arithmetic terms by applying to them the arithmetic operations +,− and
the arithmetic predicates =,<,≤,≡n.

Theorem 1. The system specification S = (Σ,v0v1,Φ, ι ,τ,AP) has a strongest (computable) counter
abstraction in case Φ, ι ,τ are disjunctions of formulæ of the kind

∀i φ(i) (3)

where φ(i) is a Boolean combination of Data-atoms and of extended arithmetic atoms (both containing
just the Proc-variable i).

Proof. In view of Proposition 2, it is sufficient to show that if a1, . . . ,an are array-ids and ∀i φ(i) is a
formula like (3), then ∃a1 · · ·∃an∀iφ(i) is equivalent to a formula in pure Presburger arithmetic.

We first show how to eliminate an existential arithmetic array-id quantifier ∃a. This is eliminated
(in favour of an extra existentially quantified arithmetic variable) by reverse skolemization [6, 31]: one
observes that ∃a∀iφ(i) is equivalent to the formula ∀i∃xφ(i,x/a(i)) (see the above observation about
the ‘flatness’ of array-ids terms). Then the extra arithmetic existentially quantified variables introduced
above are eliminated via Presburger quantifier elimination (notice that they do not occur inside Data-
atoms or inside abstraction like terms ]{k | ψ(k)}, because ψ is a Data-formula).

Finally, enumerated array-ids quantifiers can be eliminated using the methods of [5]. Alternatively,
since only arithmetic variables and enumerated array-ids are left at this point, it is also possible to make
a BAPA-encoding and to use the quantifier elimination procedure for BAPA [29]. Such encoding can be
obtained as follows. Notice that Data-atoms involving only the variable j can be written as a( j) = ak
for some enumerated value ak;7 thus if we introduce set variables Sa,ak for the sets { j | a( j) = ak} , we
can write the terms { j | ψ( j)} as Boolean combinations of these set variables Sa,ak . Finally, if ψ(i) is
a Boolean combination of Data-atoms and of extended arithmetic atoms without arithmetic array-ids,
extended arithmetic atoms can be abstracted out of ∀iψ(i) by ‘guessing’ which of them hold (formally,
we introduce a big disjunction, indexed by all Boolean assignments to such extended arithmetic atoms)
and, when ψ(i) is reduced to a Data-formula, ∀iψ(i) is equivalent to N = ]β , where β is a Boolean
combination of the Sa,ak introduced above.

4 An Example

In this section, we show how to apply the four-step methodology presented in Subsection 1.1 to a concrete
problem. All results below have been certified via our prototype ARCA SIM explained in Section 5
below.

The One-Third (OT) algorithm is designed to reach agreement in presence of benign transient faults [8,
9, 12]; the specification is reported in Algorithm 1. The protocol is supposed to work with an unlimited
number of failures, but failures are supposed to be transient (processes may behave correctly in some
rounds and not correctly in other rounds) and benign (processes, if they send any value, they send their
own real value - which might or might not be received by the others - i.e. no fake value is sent or re-
ceived). To be able to apply our techniques, we need the extra assumption that the value to be agreed on
is taken from a finite preassigned set - let it be {0,1} for simplicity. We apply our four-steps plan.

Step (1): we produce a formalization in higher order logic. We employ:

- an array-id V : Proc−→ {0,1} (V (x) is the value currently held by x);

7Atoms like a( j) = b( j) can be eliminated via
∨

k(a( j) = ak∧b( j) = ak).
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Algorithm 1 One-Third Algorithm:
Round k: each process executes the following

send val to all;
if received values from more than 2N/3 distinct processes

then set val to the smallest most often received value;
if more than 2N/3 received values equal to val,

then accept val.

- an array-id A : Proc−→ {⊥,0,1} (A(x) is the value accepted by x, initially A(x) =⊥);

- arithmetic array-ids R0,R1 (R0(x) is the number of 0-values received by x and R1(x) is the number of
1-values received by x).

We initialize the system using the following formula ι :

N> 2 ∧ ∀x A(x) =⊥ (4)

(the assumption N > 2 is not needed, but produces a more readable output). The transition relation is
specified by the formula τ below:

∀i [0≤ R′0(i)≤ ]{x |V (x) = 0}∧0≤ R′1(i)≤ ]{x |V (x) = 1}] ∧

∧ ∀i

 (R′0(i)+R′1(i)> 2N/3∧R′1(i)> R′0(i)∧V ′(i) = 1) ∨
∨ (R′0(i)+R′1(i)> 2N/3∧R′0(i)≥ R′1(i)∧V ′(i) = 0) ∨
∨ (R′0(i)+R′1(i)≤ 2N/3∧V ′(i) =V (i))

 ∧

∧ ∀i

 (R′1(i)> 2N/3∧A′(i) = 1) ∨
∨ (R′0(i)> 2N/3∧A′(i) = 0) ∨
∨ (R′0(i)≤ 2N/3 ∧ R′1(i)≤ 2N/3∧A′(i) = A(i))


As usual, the primed variables R′0,R

′
1,V

′,A′ denote the updated values of the arrays R0,R1,V,A (the arrays
R0,R1 actually do not occur in τ , because the update of the local status of the processes only depends
on the messages received in the current round - and the numbers of such messages are stored in R′0,R

′
1).

Notice that the formula τ matches the syntactic requirements of Theorem 1 (just swap the universal
quantifier ∀i and the conjunctions).

Step (2): we manually add counters to our specification. We introduce six counters, namely

z00 = ]{i | A(i) = 0∧V (i) = 0}, z10 = ]{i | A(i) = 1∧V (i) = 0},
z⊥0 = ]{i | A(i) =⊥∧V (i) = 0}, z01 = ]{i | A(i) = 0∧V (i) = 1},
z11 = ]{i | A(i) = 1∧V (i) = 1}, z⊥1 = ]{i | A(i) =⊥∧V (i) = 1}

(notice that the counters z10,z01 will in fact be constantly equal to 0 during a system run, but we do not
assume that this is known in advance). The formulæ ι ,τ are modified as follows

ι
+ :≡ ι ∧ δ , τ

+ :≡ τ ∧ δ ∧δ
′, (5)

where the auxiliary formulæ δ ,δ ′ are the counters definitions supplied in Figure 1. Our system specifi-
cation

S = (Σ,{V,A,R,z00,z10,z⊥0,z01,z11,z⊥1},Φ, ι+,τ+)
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is now complete (we do not need any invariant, so we take Φ to be >).

Step (3): using the quantifier elimination procedure of Theorem 1, we get rid of higher order vari-
ables and we compute the projected system

S0 = (Σ0,{z00,z10,z⊥0,z01,z11,z⊥1},Φ0, ι0,τ0) .

We give the result produced by ARCA SIM, with some hand-made manipulations aiming at making the
output more human-readable (all such manipulations are up to logical equivalence). We use the auxiliary
formulæ from Figure 1. The formula Φ0 turns out to be >, whereas ι0 is

ψ ∧ z00 = 0 ∧ z01 = 0 ∧ z10 = 0 ∧ z11 = 0 ∧ N= z⊥0 + z⊥1 ∧ N> 2 .

In order to introduce τ0, we need some extra notation. If u is an arithmetic term involving our counters,
we let u′ be the same term in which all counter variables are primed; we let also ∆(u) be u′− u and
Decr(u) (resp. Incr(u)) be ∆(u)≤ 0 (resp. ∆(u)≥ 0). Thus, for instance, ∆(z00) is z′00−z00 and Incr(z00)
is z′00− z00 ≥ 0. Now τ0 is the conjunction of ψ ∧ψ ′ (where ψ and ψ ′ are as defined in Figure 1) with
the disjunction of the 7 formulæ below:

¬p0 ∧¬p1 ∧¬p2 ∧ p3 ∧ Incr(z00)∧ Incr(z⊥0)∧ Incr(z10) ∧
∧ ∆(z00 + z01) = 0 ∧ ∆(z10 + z11) = 0 ∧ ∆(z⊥0 + z⊥1) = 0

¬p0 ∧¬p1 ∧ p2 ∧¬p3 ∧Decr(z00)∧ Decr(z⊥0)∧ Decr(z10) ∧
∧ ∆(z00 + z01) = 0 ∧ ∆(z10 + z11) = 0 ∧ ∆(z⊥0 + z⊥1) = 0

¬p0 ∧¬p1 ∧ p2 ∧ p3 ∧∆(z00 + z01) = 0 ∧ ∆(z10 + z11) = 0 ∧
∧ ∆(z⊥0 + z⊥1) = 0

¬p0 ∧ p1 ∧¬p2 ∧¬p3 ∧ Incr(z00)∧ Decr(z01)∧ Decr(z10) ∧
∧ Decr(z11)∧ Decr(z⊥0) ∧ Decr(z⊥1)

¬p0 ∧ p1 ∧¬p2 ∧ p3 ∧ Decr(z⊥1) ∧ Decr(z01) ∧ Decr(z11) ∧
∧ Decr(z10 + z11) ∧ Incr(z00 + z01 + z10 + z11)

p0 ∧¬p1 ∧¬p2 ∧¬p3 ∧ Decr(z00) ∧ Decr(z01) ∧ Decr(z10) ∧
∧ Decr(z⊥0) ∧ Decr(z⊥1)

p0 ∧¬p1 ∧ p2 ∧¬p3 ∧Decr(z00) ∧ Decr(z10) ∧ Decr(z⊥0) ∧
∧ Decr(z00 + z01) ∧ Decr(z⊥0 + z⊥1)

Step (4): we express the safety properties we are interested in using our projected counters and
we use an SMT-based tool to check them. The relevant properties are agreement, weak validity and
irrevocability (see Table 1). Agreement can be formalized with our counters by saying that the system
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δ : ≡ z00 = ]{i | A(i) = 0∧V (i) = 0}∧ z10 = ]{i | A(i) = 1∧V (i) = 0}∧
∧z⊥0 = ]{i | A(i) =⊥∧V (i) = 0}∧ z01 = ]{i | A(i) = 0∧V (i) = 1}
∧z11 = ]{i | A(i) = 1∧V (i) = 1}∧ z⊥1 = ]{i | A(i) =⊥∧V (i) = 1}

δ ′ :≡ z′00 = ]{i | A′(i) = 0∧V ′(i) = 0}∧ z′10 = ]{i | A′(i) = 1∧V ′(i) = 0}∧
∧z′⊥0 = ]{i | A′(i) =⊥∧V ′(i) = 0}∧ z′01 = ]{i | A′(i) = 0∧V ′(i) = 1}
∧z′11 = ]{i | A′(i) = 1∧V ′(i) = 1}∧ z′⊥1 = ]{i | A′(i) =⊥∧V ′(i) = 1}

ψ :≡ 0≤ z00 ≤ N ∧ 0≤ z10 ≤ N ∧0≤ z⊥0 ≤ N ∧
0≤ z01 ≤ N ∧ 0≤ z11 ≤ N ∧0≤ z⊥1 ≤ N ∧
N = z00 + z10 + z⊥0 + z01 + z11 + z⊥1

ψ ′ :≡ 0≤ z′00 ≤ N ∧ 0≤ z′10 ≤ N ∧0≤ z′⊥0 ≤ N ∧
0≤ z′01 ≤ N ∧ 0≤ z′11 ≤ N ∧0≤ z′⊥1 ≤ N ∧
N = z′00 + z′10 + z′⊥0 + z′01 + z′11 + z′⊥1

p0 : ≡ t < z1
p1 : ≡ t < z0
p2 : ≡ t +1 < 2z1 ∧ 0 < z0
p3 : ≡ t < 2z0 ∧ 0 < z1

Figure 1: Auxiliary formulæ for OT (we let t := x2N/3y, z0 := z00+ z10+ z⊥0 and z1 := z01+ z11+ z⊥1).

Agreement:
whenever two processes have reached a decision, the values they have decided on must be equal.

Weak Validity:
if all processes propose the same initial value, they must decide on that value.

Irrevocability:
if a process has decided on a value, it does not revoke the decision later.

Table 1: Properties to be certified for OT.

never reaches a status satisfying z00+z01 > 0∧z10+z11 > 0. Weak validity can be tested by checking that
the system never reaches a status satisfying z10 + z11 > 0, once initialized to ι ∧ z⊥0 = N. Irrevocability
cannot be fully expressed with our counters, but can be approximated by adding a switch S that is turned
to tt as soon as we have z00 > 0 and then checking that the system cannot reach a status satisfying
S = tt∧ z00 = 0. All the above problems can be formulated with a different choice of counters (we
employed a maximum choice above); in all variants,8 ARCA SIM takes 1-2 seconds to produce the
HORN SMT LIB file for µZ and the latter solves the related fixpoint problem in at most half a second,
see the experimental data in Section 5 below.

5 A First Implementation

We implemented the procedure of Theorem 1 in a prototype tool called ARCA SIM. Such tool accepts
system specifications matching the syntactic restrictions of Theorem 1 and produces as output a file in

8The expected obvious property that z01 + z10 is always equal to 0 can also be checked by our tool combination.
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the HORN SMT LIB format, ready to be model-checked e.g. by µZ [24], the fixpoint engine of the SMT
solver Z3. In successful cases, µZ produces an invariant (entirely expressed in terms of our counters)
which guarantees the safety of the original system.

A specification file for ARCA SIM should first contain declarations for parameters, integer vari-
ables and arithmetic and enumerated array-ids. Parameters include a symbol N denoting the (finite but
unknown) number of processes acting in the system; moreover, with each enumerated array-id, a number
m is associated, whose meaning is that of telling the tool that the values of such array-id are taken into
the set {0, . . . ,m− 1}. Then counters definitions are introduced: these must have the form of equal-
ities z = ]{k | ψ(k)}, where ψ is a data formula. The system transition is given as a single variable
universally quantified disjunction of cases ∀x

∨
i τi, where each τi is specified via a formula of the kind

φi1 ∧ φi2, where: (i) φi1(x) is a conjunction of extended arithmetic atoms (in such atoms, terms like
]{k | ψ(k)} must have been replaced by the corresponding counters); (ii) φi2(x) is a Data-formula. The
initial formula follows the same syntax as the transition formula (but only one case is allowed), whereas
the formula expressing the (negation of the) safety property must be an arithmetic formula containing
only counters, integer variables and parameters.

ARCA SIM produces a file for µZ basically following the proof of Theorem 1; it uses a BAPA-
quantifier elimination algorithm adapted to the shape of the formulæ arising from our benchmarks. More
specifically, the tool proceeds as follows:

(i) first, it eliminates (from the arithmetic part φi1 of each transition case) the arithmetic array-ids by
reverse skolemization and Presburger quantifier elimination;

(ii) then, the whole transition is rewritten as a disjunction of formulæ of the kind∧
i

(zi = ]{k | ψi(k)})∧α ∧∀k θ(k) (6)

where we have, besides the counter definitions zi = ]{k | ψi(k)}, a Boolean assignment α (seen as
a conjunction of literals) to the arithmetic atoms occurring in the problem, and a single-variable
universally quantified Data-formula ∀k θ(k);

(iii) auxiliary counters are now introduced: we have one counter z f for each function f associating values
to enumerated array-ids (z f counts the cardinality of the set {k |

∧
a a(k) = fa ∧

∧
a a′(k) = fa′});

the previous counters are expressed as linear combinations of these new counters; in addition, in
each disjunct (6), the universally quantified formula ∀kθ(k) is replaced by the equation N=∑ε f z f ,
where ε f is 0 or 1 depending on whether the Data-formula defining z f is consistent or not with θ ;

(iv) in the final steps, all arithmetic atoms involving old and new counters are collected for each dis-
junct (6); the new counters are eliminated by quantifier elimination and the resulting formulæ give
the disjuncts of the transition of the projected counter system.

Contrary to what one might expect, the quantifier elimination steps in (i) and (iv) are not so problem-
atic, because of the special shapes of the arithmetic formulæ arising from the benchmarks we analyzed.
In fact, we did not even use a full Presburger quantifier elimination module in ARCA SIM for the rea-
sons we are going to explain. In our examples, the quantifier elimination problems in (i) involve just
easy (‘difference bounds’-like) constraints and those in (iv) are usually solved by a substitution (in other
words, the formula where a variable z needs to be eliminated from, always contains an equality like
z = t).9 Notice also that, in case a difficult integer quantifier elimination problem arises, shifting to the

9In case a maximum choice of counters is made by the user, one can even formally prove that this is always the case.
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(better behaved from the complexity viewpoint) Fourier-Motzkin real arithmetic quantifier elimination
procedure is a sound strategy: this is because, in the end, the tool needs to produce just a simulation
(i.e. an abstraction). Although ARCA SIM was prepared to make such a shifting to Fourier-Motzkin
procedure, it never did it during our experiments.

The step (ii) basically amounts to an “all sat” problem (i.e. to the problem of listing all Boolean
assignments satisfying a formula), which is difficult but can be handled efficiently. The real bottleneck
seems to be the need of introducing in (iii) a large amount of auxiliary counters: future work should
concentrate on improving heuristics here. Notice that, even in the case the user made an (exponen-
tially expensive) maximum choice of counters, the counters we need in (iii) are even more, because
the auxiliary counters in (iii) must take into consideration both the actual and the updated enumerated
array-ids (by a ‘maximum choice of counters’ we mean the introduction of a counter for each of the sets
{k |

∧
a a(k) = fa}, varying f among the functions associating values to enumerated array-ids).

Some Experiments. In this Subsection we report our first experiments; the related files, as well as
ARCA SIM executables are available at the following link:

http://users.mat.unimi.it/users/ghilardi/arca/arcasim.zip .
Unfortunately, for various reasons, the specifications for the tool ARCA we used in [5] for invariant
checking and bounded model-checking are insufficient and not compatible with the specifications ac-
cepted by ARCA SIM. We only analyzed three representative benchmarks: (i) the One-Third (OT)
algorithm from [12], whose formalization is described in Section 4 above; (ii) the Byzantine Broadcast
Primitive (BBP) algorithm from [33], whose formalization is described in [5], Section 7.3; (iii) the Send
Receive Broadcast Primitive (SRBP) algorithm from [32], whose formalization is described in [5], Sec-
tion 6. For each of these benchmarks, we checked the relevant properties mentioned in the literature (for
OT also the emptyness of the sets counted by z01,z10, see Section 4).10

In the table below, we report the time employed by ARCA SIM to produce the Horn SMT-LIB
problem and the time employed by µZ to solve the latter problem. Timings are all in seconds. We used
a PC equipped with Intel Core i7 processor and operating system Linux Ubuntu 16.04 (64 bits). We also
tried (and included in the distribution) some buggy versions - taken from [5] - of the above algorithms; we
obtained the expected unsat answer from µZ (with performances similar to those in the above table).
Such unsat answers just mean that the system is ‘possibly unsafe’: they do not certify bugs, because
our counters simulations are, in fact, just simulations. Sometimes, with a maximum choice of counters,
it is possible to prove (only offline with the actual techniques) that we are in presence of a bisimulation
of the original system and in this case an unsat answer reveals the real presence of a bug.

Algorithm Property ARCA SIM Time µZ Time Total Time
SRBP [32] Correctness 2.68 0.09 2.77
SRBP [32] Unforgeability 2.73 0.06 2.79
SRBP [32] Relay I 2.68 0.06 2.74
SRBP [32] Relay II 2.72 0.03 2.32
BBP [33] Correctness 3.20 0.03 3.23
BBP [33] Unforgeability 3.23 0.07 3.30
BBP [33] Relay I 3.21 0.02 3.23
BBP [33] Relay II 3.21 0.13 3.34
OT [12] Agreement 0.76 0.26 1.02
OT [12] Weak Validity 0.76 0.02 0.78
OT [12] Irrevocability 2.03 0.42 2.45
OT [12] Empty Counters 0.24 0.11 0.35

10Relay properties are split into two safety properties, as explained in [5].

http://users.mat.unimi.it/users/ghilardi/arca/arcasim.zip
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6 Conclusions

We introduced a technique for automatically building counter simulations: the technique consists in
modeling system specifications in higher order logic, then in introducing counters for definable sets and
finally in exploiting quantifier elimination results to get rid of higher order variables. Such technique
is quite flexible and since, whenever it applies, it always supplies the best simulation, it should be in
principle capable to cover all results obtainable via counter abstractions. We underline some further
important specific features of our approach.

First of all, the approach is purely declarative: our starting point is the informal description of
the algorithms (e.g. in some pseudo-code) and the first step we propose is a direct translation into a
standard logical formalism (typically, classical Church type theory), without relying for instance on ad
hoc automata devices or on ad hoc specification formalisms. We believe that this choice can ensure
flexibility and portability of our method.

Secondly, the amount of human interaction we require is nevertheless very limited and confined
to design choices: although the final outcome of our investigations should be the integration of our
techniques into some logical framework, the key leading to their success relies almost entirely on results
(satisfiability and quantifier elimination algorithms) belonging to the realm of decision procedures.

A delicate point is related to the syntactic limitations we require on the formulæ describing system
specifications (see the statement of Theorem 1): such syntactic limitations are needed to ensure higher
order quantifier elimination. Although it seems that a significant amount of benchmarks are captured
despite such limitations, it is essential to develop techniques applying in more general cases. In fact,
Theorem 1 can be extended in various directions [19]; in particular, extensions covering specifications
with formulæ containing an extra layer of existentially quantified variables of sort Proc cover classical
benchmarks like those in [2] and look to be relatively easily implementable.

The integration of the methodology explained in this paper with proof assistants is another interesting
challenge to be pursued; such integration could on one hand double-check the invariants and the related
proof certificates given by the SMT-solvers and on the other hand use counters invariants supplied by our
techniques as lemmata inside complex interactive verifications tasks.

To conclude, we mention some recent work on the verification of fault-tolerant distributed systems,
starting with our own previous work. The additional original contributions with respect to our previous
paper [4] and its journal version [5] are due to the fact that in this paper we moved from bounded model-
checking and invariant checking to the much more challenging task of full model-checking via invariant
synthesis. As discussed in [5] (Section 7), standard model-checking techniques are difficult to apply in
the present context of fault-tolerant distributed systems because Pre- and Post-image computations are
very expensive and lead to fragments for which full decision procedures seem not to be available. This
is why we tried a different approach, via counter simulations.

Papers [25–27] represent a very interesting and effective research line (summarized in [27]), where
cardinality constraints are not directly handled but abstracted away using counters. In this sense, this
research line looks similar to the methodology we applied in this paper (and in contrast to the alternative
methodology we adopted in our previous paper [4]); however abstraction in [27] and in related papers is
not obtained via logical formalizations and quantifier elimination, but via a special specification language
(‘parametric Promela’) and/or via special devices, called ‘threshold automata’. A comparison with the
counter systems we obtain is not immediate and not always possible because the authors of [27] work
on asynchronous (not round-based) versions of the algorithms and because their method suffers of some
lack of expressiveness whenever local counters are unavoidable. On the other hand, they are able to
certify also liveness properties, whereas at the actual stage we can only do that by making reductions
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(whenever possible) to safety or bounded model checking problems.
Paper [9] directly handles cardinality constraints for interpreted sets by employing specifically tai-

lored abstractions and some incomplete inference schemata at the level of the decision procedures. Non-
trivial invariant properties are synthesized and checked, based on Horn constraint solving technology;
this is the same technology we rely on in our final step, however the counter systems we get are ‘as
accurate as possible’, in the sense that they supply ‘the best simulations’ as stated in Theorem 1.

Paper [16] introduces an expressive logic, specifically tailored to handle consensus problems (whence
the name ‘consensus logic’ CL). Such logic employs arrays with values into power set types, hence it
is naturally embedded in a higher order logic context. Paper [16] is not concerned with simulations and
bisimulations, rather it uses an incomplete algorithm in order to certify invariants. A smaller fragment
(identified via several syntactic restrictions) is introduced in the final part of the paper and a decidability
proof for it is sketched.

Finally, we mention the effort made by the interactive theorem proving community in formalizing
and verifying fault-tolerant distributed algorithms (see e.g. [11]); such approach is a natural complement
to ours.
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