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We implement a user-extensible ad hoc connection between the Lean proof assistant and the computer

algebra system Mathematica. By reflecting the syntax of each system in the other and providing

a flexible interface for extending translation, our connection allows for the exchange of arbitrary

information between the two systems. We show how to make use of the Lean metaprogramming

framework to verify certain Mathematica computations, so that the rigor of the proof assistant is not

compromised.

1 Introduction

Many researchers have noted the disconnect between computer algebra and interactive theorem proving.

In the former, one typically values speed and flexibility over absolute correctness. To be more efficient

or user-friendly, a computer algebra system (CAS) may blur the distinction between polynomial objects

and polynomial functions, assume that sufficiently small terms at the end of a series are zero, or resort to

numerical approximations without warning. Such simplifying assumptions can make sense in the context

of computer algebra; the capabilities of these systems make them indispensable tools to many working

mathematicians. These assumptions, though, are antithetical to the goals of interactive theorem proving

(ITP), where every inference must be justified by appeal to some logical principle. The strict logical

requirements and lack of many familiar algorithms discourage many mathematicians from using proof

assistants.

Integrating computer algebra into proof assistants is one way to reduce this barrier to entry, and

bridges between the two types of systems have been built in a variety of ways. We contribute another

such bridge, between the proof assistant Lean [17] and the computer algebra system Mathematica [22].

Our connection is inspired by the architecture described by Harrison and Théry [12]. By integrating with

the Lean metaprogramming framework, our design allows users to verify results from the CAS without

leaving the Lean environment. Since Mathematica is one of the most commonly used computer algebra

systems, and a user with knowledge of the CAS can extend the capabilities of our link, we hope that the

familiarity will lead to wider use.

Our link separates the steps of communication, semantic interpretation, and verification: there is

no a priori restriction on the type of information that can be shared between the systems. With the

proof assistant in the “master” role, Lean expressions are exported to Mathematica, where they can

be interpreted and manipulated. The results are then imported back into Lean and reinterpreted. Using

Lean’s metaprogramming framework, one can write scripts that verify properties of the translated results.

This style of interaction, where verification happens on a per-case basis after the computation has ended,

is called ad hoc.

By performing calculations in Mathematica and verifying the results in Lean, we relax neither the

rigor of the proof assistant nor the efficiency of the CAS. The CAS can alternatively be used as an
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untrusted oracle, or can play a purely informative role, where its output does not appear in the final

proof term. This range of possibilities is intended to make our link attractive to multiple audiences. The

working mathematician, who balks at the restrictions imposed by a proof assistant, may find that full

access to a familiar CAS is worth the tradeoff in trust. Industrial users are often happy to trust both

large-kernel proof assistants and computer algebra systems; the rigor of Lean with Mathematica as an

oracle falls somewhere in between. And certifiable algorithms are still available to users who demand

complete trust.

The source for this project, and supplementary documentation, is available at http://www.andrew.

cmu.edu/user/rlewis1/leanmm/. In this paper, we use Computer Modern for Lean code and TeX

Gyre Cursor for Mathematica code. We begin by describing some of the salient features of the two

systems. Section 3 discusses the translation of Lean expressions into semantically similar Mathematica

expressions, and vice versa. Section 4 describes further details of the implementation. In Section 5 we

give examples of the link in action. We conclude with a discussion of related and future work.

2 System descriptions: Lean and Mathematica

2.1 Lean

Lean is a proof assistant being developed at Microsoft Research [17]. Written in C++, the system is

highly performant. Lean has been designed from the beginning to support strong automation; it aims

to eventually straddle the line between an interactive theorem prover with powerful automation, and an

automated theorem prover with a verified code base and interactive mode.

Lean is based on the Calculus of Inductive Constructions (CIC), an extension of the lambda-calculus

with dependent types and inductive definitions. There is a non-cumulative hierarchy of type universes

Sort u, u ≥ 0, with the abbreviations Prop = Sort 0 and Type u = Sort (u+1). The bottom level

Prop is impredicative and proof-irrelevant. We refer readers to [7], [8], and [17] for more details about

the CIC and Lean’s implementation.

Lean’s standard library uses type classes to implement an abstract algebraic hierarchy. Arithmetic

operations, such as + and ∗, and numerals are generic over types that instantiate the appropriate classes.

As an example, the addition operator has the signature

add {u} : Π {A : Type u} [has_add A], A → A → A.

The notation {A : Type u} denotes that the argument A is an implicit variable, meant to be inferred from

further arguments; has_add : Type u → Type u is a type class, and the notation [has_add A] denotes

that a term of that type is to be inferred using type class resolution. The universe argument u indicates

that add is parametric over one universe level.

The dependently typed language implemented in Lean is flexible enough to serve as its own metapro-

gramming language [16]. Data types and procedures implemented in Lean’s underlying C++ code base

are exposed as constants, using the keyword meta to mark a distinction between the object language and

this extension. Expressions can be evaluated in the Lean virtual machine, which replaces these constants

with their underlying implementation. Meta-definitions permit unbounded recursion but are otherwise

quite similar to standard definitions.

Combined with the declaration of the types pexpr and expr, which expose the syntax of Lean (pre-

)expressions in Lean itself, and tactic_state, which exposes the environment and goals of a tactic

proof, this metaprogramming framework allows users to write complex procedures for constructing

proofs. A term of type tactic A is a function tactic_state → tactic_result A, where a result is
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either a success (pairing a new tactic_state with a term of type A) or a failure. Proof obligations can

be discharged by terms of type tactic unit; such a term is executed in the Lean virtual machine to

transform the original tactic_state into one in which all goals have been instantiated. More generally,

we can think of a term of type tactic A as a program that attempts to construct a term of type A, while

optionally changing the tactic state.

When writing tactics, the command do enables Haskell-like monadic syntax. For example, the fol-

lowing tactic returns the number of goals in the current tactic state. The type of get_goals is tactic

(list expr), where list is the standard (object-level) type defined in the Lean library.

meta def num_goals : tactic nat :=

do gs ← get_goals,

return (length gs)

Lean allows the user to tag declarations with attributes, and provides an interface name → tactic

(list name) to retrieve a list of declarations tagged with a certain attribute.

Many features and subtleties of the metaprogramming framework are discussed in [16]. In closing,

we note how the framework is used for this project.

We define the function mm_form_of_expr : expr → string recursively on the type expr to rep-

resent Lean syntax in Mathematica. We also define a function mathematica.execute : string →

tactic mmexpr. This function, which uses Lean’s IO monad to communicate with external programs,

passes the input string to Mathematica and returns a Lean expression encoding Mathematica’s output.

The type mmexpr, which represents Mathematica’s term structure, is described in Section 3.2. The pro-

gram expr_of_mmexpr : mmexpr → tactic expr and variants search the context for attributed trans-

lation rules, and try to apply these rules to convert the Mathematica expression into a meaningful Lean

expression. Finally, various tactics are defined to make use of these results.

2.2 Mathematica

Mathematica is a popular symbolic computation system developed at Wolfram Research, implement-

ing the Wolfram Language [22]. Along with support for a vast range of mathematical computations,

Mathematica includes collections of data of various types and tools for manipulating this data.

Mathematica provides comprehensive tools for rewriting and solving polynomial, trigonometric, and

other classes of equations and inequalities; solving differential equations, both symbolically and numeri-

cally; computing derivatives and integrals of various types; manipulating matrices; performing statistical

calculations, including fitting and hypothesis testing; and reasoning with classes of special functions.

This large library of functions is one reason to choose Mathematica for our linked CAS. Another

reason is its ubiquity: Mathematica is frequently used in undergraduate mathematics and engineering

curricula. Lean beginners who are accustomed to Mathematica do not need to learn a new CAS language

for the advanced features of this link.

For those unfamiliar with the syntax of the Wolfram Language, we note some features and terminol-

ogy that will help to understand the code fragments in this paper.

• Function application is written using square brackets, e.g. Plus[x, y]. Many functions are

variadic: that is, we can also write Plus[x, y, z]. Of course, we can use common notation

like x + y + z instead.

• Alternatively, we can write unary function application in postfix form:

xˆ2 - 2x + 1 // Factor is equivalent to Factor[xˆ2 - 2x + 1].
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• In the expression Plus[x, y], we refer to Plus as the head symbol and x and y as the arguments.

In general, non-numeric atoms like x and y are called symbols.

• There is no strong distinction between defined and undefined symbols. The user is free to introduce

a new symbol and use it at will. The computational behavior of a head symbol can be fully

or partially defined via pattern matching rules, such as F[x ,y ] := x + y; the underscores

indicate that x and y are patterns.

• The Wolfram Language is untyped, so head symbols such as Plus and Factor can be applied

to any argument or sequence of arguments. Evaluation is often restricted to certain patterns:

Plus[2, 3] will evaluate to 5, but Plus[Factor, Plus] will not reduce. Nevertheless, both

are well-formed Mathematica expressions.

3 The translation procedure

Our bridge is used to import information from Mathematica into Lean, usually about some particular

Lean expression. The logical foundations and semantics of the two systems are quite different, and we

should not expect a perfect correspondence between the two. However, in many situations, an expression

in Lean has a counterpart in Mathematica with a very similar intended meaning. We can exploit these

similarities by ignoring the unsoundness of the translations in both directions and attempting to verify,

post hoc, that the resulting expression has the intended properties.

As a running toy example, suppose we want to show in Lean that

x : real ⊢ x^2 - 2x + 1 ≥ 0.

Factoring the left-hand side of the inequality makes this a one-step proof (assuming we’ve proved that

squares are nonnegative). It is nontrivial to write a reliable and efficient polynomial factoring algorithm,

but luckily, one is implemented in Mathematica. So we would like to do the following:

1. Transform the Lean representation of x2−2x+1 into Mathematica syntax.

2. Interpret this into the Mathematica representation of the same polynomial.

3. Use Mathematica’s Factor function to factor the polynomial.

4. Transform this back into Lean syntax, and interpret it as a Lean polynomial.

5. Verify that the new expression is equal to the old.

6. Substitute this equality into the goal.

We discuss steps 5 and 6 in section 5; since checking that a polynomial has been factored correctly

is much easier than factoring it in the first place, these are handled easily by simplification and rewriting.

And, once we have a valid Mathematica expression, step 3 is trivial. In this section we describe steps 1,

2, and 4.

It is worth emphasizing the modularity and extensibility of this approach. Both directions of transla-

tion are handled independently, and the translation rules can be extended or changed at will. Translation

rules may be arbitrarily complex. Users may choose to use alternate verification procedures, or to forego

the verification step entirely.
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meta inductive expr

| var : nat → expr

| sort : level → expr

| const : name → list level → expr

| mvar : name → expr → expr

| local_const : name → name → binder_info → expr → expr

| app : expr → expr → expr

| lam : name → binder_info → expr → expr → expr

| pi : name → binder_info → expr → expr → expr

| elet : name → expr → expr → expr → expr

| macro : macro_def → list expr → expr

Figure 1: Lean expression kinds

3.1 Translating Lean to Mathematica

The Lean expression grammar is presented (in Lean syntax) in Figure 1; we elaborate below. For the

sake of brevity, we will not discuss the implementations of name, level, or binder_info. The type is

marked with the keyword meta because, during evaluation, the Lean virtual machine replaces terms of

type expr with the kernel’s expression datatype.

Each Lean expression exists in an environment, which contains the names, types, and definitions of

previous declarations. The const kind accesses a previous declaration, instantiated to particular universe

levels if the declaration is parametric. In addition to declarations in its environment, an expression may

refer to its local context, which contains variables and hypotheses of kind local_const. In the toy

example introduced above, x is a local constant. A local constant has a unique name, a formatting name,

and a type.

The expression kinds lam and pi respectively represent lambda-abstraction and the dependent func-

tion type. (Non-dependent function types are degenerate cases of pi types.) Each contains a name for

the bound variable, the type of the variable, and the expression body. Bound variables of kind var are

anonymous within the body, being represented by De Bruijn indices [15]. Application of one expression

to another is represented by the app kind.

Type universes are implemented by the expression kind sort. Metavariables represent placeholders

in partially constructed expressions; the mvar kind holds the name and type of the placeholder. Let

expressions (elet) bind a named variable with a type and value within a body. We do not describe macro

expressions, as they are not supported by our link.

To represent this syntax in Mathematica, we define mathematica_form_of_expr : expr → string

by recursion over the expr datatype. We associate a Mathematica head symbol LeanVar, LeanSort,

LeanConst, etc. to each constructor of expr. Names, levels, lists of levels, and binder information are

also represented.

Some of the information contained in a Lean expression has little plausible use in Mathematica, or

is needlessly verbose: for example, it is hard to contrive a scenario in which the full structure of a Lean

name is used in the CAS. Nonetheless, we do not strip any information at this stage, to preserve the

property that an expression reflected into and immediately back from Mathematica should translate to

the original expression without any additional information.

In our running example, we work on the expression x2−2x+1. The fully-elaborated Lean expression

and its Mathematica representation are too long to print here, but they can be viewed in the supplementary
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documentation; we consider the more concise example of x+ x. If we use strings to stand in for terms

of type name, natural numbers in place of universe levels, and the string "bi" in place of the default

binder_info argument, and we abbreviate

X := local_const "17.27" "x" "bi" (const "real" []),

the full form of x+ x is

app (app (app (app (const "add" [0]) (const "real" []))

(const "real.has_add" [])) X ) X .

The corresponding Mathematica expressions are

X := LeanLocal["17.27", "x", "bi", LeanConst["real", {}]]

LeanApp[LeanApp[LeanApp[LeanApp[LeanConst["add", {0}],

LeanConst["real", {}]], LeanConst["real.has_add", {}]],

X], X].

(In these expressions, “17.27” is a unique name for the variable x, used only internally.)

Since the head symbols LeanApp, LeanConst, etc. are uninterpreted in Mathematica, this repre-

sentation is not yet useful. We wish to exploit the fact that many Lean terms have semantically similar

counterparts in Mathematica. For instance, the Lean constants add and mul behave similarly to the Math-

ematica head symbols Plus and Times; both systems have notions of application, although they handle

the arity of applications differently; and Mathematica’s concept of a “pure function” is analogous to

lambda-abstraction in Lean.

We thus define a translation function LeanForm in Mathematica that attempts to interpret the syntac-

tic representation. Mathematica functions are typically defined using pattern matching. The LeanForm

function, then, will look for familiar patterns (e.g. add A h x y, in Mathematica syntax) and rewrite

them in translated form (e.g. Plus[LeanForm[x], LeanForm[y]]). Users can easily extend this

translation function by asserting additional equations; a default collection of equations is loaded auto-

matically.

For our factorization example, we want to convert Lean arithmetic to Mathematica arithmetic. Among

other similar rules, we will need the following:

LeanForm[LeanApp[LeanApp[LeanApp[LeanApp[LeanConst["add",_],

_], _], x_], y_]] := Inactive[Plus][LeanForm[x],LeanForm[y]]

Note that this pattern ignores the type argument and type-class instance in the Lean term. These

arguments are irrelevant to Mathematica and can be inferred again by Lean in the back-translation. We

block Mathematica’s computation with the Inactive head symbol; otherwise, Mathematica would

eagerly simplify the translated expression, which can be undesirable. The function Activate strips

these annotations and allows reduction.

Numerals in Lean are type-parametric and are represented using the constants zero, one, bit0, and

bit1. To illustrate, the type signature of the latter is

bit1 {u} : Π {A : Type u}, [has_add A] → [has_one A] → A → A

and the numeral 6 is represented as bit0 (bit1 one); the type of this numeral is expected to be inferable

from context. We can use rules similar to the above to transform Lean numerals into Mathematica

integers:

LeanForm[LeanApp[LeanApp[LeanApp[LeanApp[

LeanConst["bit1", _], _], _], _], t_]] := 2*LeanForm[t]+1.
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inductive mmexpr

| sym : string → mmexpr

| mstr : string → mmexpr

| mint : int → mmexpr

| app : mmexpr → list mmexpr → mmexpr

| mreal : float → mmexpr

Figure 2: Mathematica expression kinds

Applying LeanForm will not necessarily remove all occurrences of the head symbols LeanApp,

LeanConst, etc. This is not a problem: we only need to translate the “concepts” with equivalents

in Mathematica. Unconverted subterms – for instance X, which contains applications of LeanLocal

and LeanConst – will be treated as uninterpreted constants by Mathematica, and the back-translation

described below will return them to their original Lean form.

In our running example (keeping the abbreviation X), applying the LeanForm and Activate func-

tions produces the expression

Plus[1,Times[-2, X], Power[X, 2]].

Applying Factor produces Power[Plus[-1, X], 2].

The expression

X := LeanLocal["17.27", "x", "bi", LeanConst["real",{}]]

has been treated as a constant throughout the process, and contains information that will rarely if ever

be of use in Mathematica. The excess information does little harm here, but in more complex situ-

ations, carrying around this excess information can be unwieldy. We provide Mathematica functions

LeanCollapse and LeanInflate to reduce this excess baggage during computation.

3.2 Translating Mathematica to Lean

Mathematica expressions are composed of various atomic number types, strings, symbols, and applica-

tions, where one expression is applied to a list of expressions. We represent this structure in Lean with

the data type mmexpr (Figure 2).

The result of a Mathematica computation is reflected into Lean as a term of type mmexpr. This is

analogous to the original export of our Lean expression into Mathematica; it remains to interpret it as

something meaningful.

A pre-expression in Lean is a term where universe, implicit, and inferable arguments are omitted.

It is not expected to type check, but one can try to convert it into a type-correct term via elaboration.

For instance, the pre-expression ‘‘‘(add nat.one nat.one) elaborates to add.{0} nat nat.has_add

nat.one nat.one. The notation ‘‘‘(. . .) instructs Lean’s parser to interpret the quoted text as a term of

type pexpr. Pre-expressions share the same structure as expressions; in fact, the types expr and pexpr

are isomorphic.

Most Mathematica expressions correspond to pre-expressions: they may be type-ambiguous, and

contain less information than their Lean counterparts. Thus we normally expect to interpret terms of type

mmexpr as pre-expressions, and to use the Lean elaborator to turn them into full expressions. However,

in rare cases an mmexpr may already correspond to a full expression: the unmodified representation of

a Lean expression, sent back into Lean, should interpret as the original expression. We provide two
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extensible translation functions, expr_of_mmexpr and pexpr_of_mmexpr, to handle both of these cases.

Since the implementations are similar, we focus on the latter here.

The function pexpr_of_mmexpr : trans_env → mmexpr → tactic pexpr takes a translation en-

vironment and an mmexpr, and, using the attribute manager, attempts to return a pre-expression. (Since

the tactic monad includes failure, the process may also fail if no interpretation is found.) Interpreting

strings as pre-expressions, or, indeed, as expressions, is straightforward. Since Mathematica ints may be

used to represent numerals in many different Lean types, expressions built with mint are interpreted as

untyped numeral pre-expressions.

The sym and app cases are more complex: this part of the translation procedure is extensible by the

user. We define three classes of translation rules:

• A sym-to-pexpr rule, of type string × pexpr, identifies a particular Mathematica symbol with a

particular pre-expression. For example, the rule ("Real", ‘‘‘(real)) instructs the translation to

replace the Mathematica symbol Real with the Lean pre-expression const "real".

• A keyed app-to-pexpr rule is of type string × (trans_env → list mmexpr → tactic pexpr).

When the procedure encounters an mmexpr of the form app (sym head) args – that is, the Math-

ematica head symbol head applied to a list of arguments args – it will try to apply all rules that

are keyed to the string head. The rules for interpreting arithmetic expressions follow this pattern:

a rule keyed to the string "Plus" will interpret Plus[t1, ..., tn] by folding applications of

add over the translations of t1 through tn.

• An unkeyed app-to-pexpr rule is of type trans_env → mmexpr → list mmexpr → tactic

pexpr. If the head of the application is a compound expression, or if no keyed rules execute

successfully, the translation procedure will try unkeyed rules. One such rule attempts to translate

the head symbol and arguments independently, and fold application over these translations.

Rules of these three types can be declared by the user and tagged with the corresponding attribute.

The translation procedure uses Lean’s caching attribute manager to collect relevant rules at runtime.

Returning to our example, we have translated the expression x^2 - 2x + 1 and factored the result,

to produce Power[Plus[-1, X], 2]. This is reflected as the Lean mmexpr

app (sym "Power") [app (sym "Plus") [mint -1, X], mint 2],

where

X := app (sym "LeanLocal") [str "17.27", str "x", str "bi",

app (sym "LeanConst") [str "real", []]].

Applying pexpr_of_mmexprproduces the pre-expression pow_nat (add (neg one) x) (bit0 one),

which elaborates to the expression

pow_nat real real_has_pow_nat (add real real_has_add (neg real real_has_neg (one

real real_has_one) x) (bit0 nat nat_has_add one nat nat_has_one) : real.

Formatted with standard notation and implicit arguments hidden, we have constructed the term x :

real ⊢ (x + -1)^2 : real as desired.

3.3 Translating binding expressions

Lean’s expression structure uses anonymous bound variables to implement its pi, lam, and elet binder

constructs. Mathematica, in contrast, has no privileged notion of a binder. The Lean pre-expression λ
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x, x + x is analogous to the Mathematica expression Function[x, x+x], but the underlying repre-

sentation of the latter is an application of the Function head symbol to two arguments, the symbol x

and the application expression Plus[x, x]. Structurally it is no different from List[x, x+x].

To properly interpret binder expressions, both translation routines need a notion of an environment.

We extend the Mathematica function LeanForm with another argument, a list of symbols env tracking

binder depth. When the translation routine encounters a binding expression, it creates a new symbol,

prepends it to the env, and translates the binder body under this extended environment; a bound variable

LeanVar[i] is interpreted as the ith entry in env.

In the opposite translation direction, a translation environment is a map from strings (names of

symbols) to expressions, that is, trans_env := rb_map string expr. When translating a Mathemat-

ica expression such as Function[x, x+x], the procedure extends the environment by mapping x to

a placeholder variable, translates the body under this extended environment, and then abstracts over the

placeholder. Unlike in Lean, where pi, lam, and elet expressions are the only expressions that encode

binders, there are many Mathematica head symbols (e.g. Function, Integrate, Sum) that must be

translated this way.

4 Connection Interface

Because of the cost of launching a new Mathematica kernel, it is undesirable to do so every time Math-

ematica is queried from Lean. Instead, we implement a simple server in Mathematica, which recieves

requests containing expressions and returns the results of evaluating these expressions. Lean communi-

cates with this server by calling a simple Python client script. This short script is the only part of the link

that is implemented neither in either Lean nor in Mathematica.

This architecture ensures that a single Mathematica kernel will be used for as long as possible, across

multiple tactic executions and possibly even multiple Lean projects. To preserve an illusion of “state-

lessness,” each Mathematica evaluation occurs in a new context which is immediately cleared. While

this avoids accidental leaks of information, it is not a watertight seal, and users who consciously wish to

preserve information between sessions can do so.

The translation procedure is exposed in Lean using the tactic framework via the declaration

meta def mathematica.execute : string → tactic mmexpr.

This tactic evaluates the input string in Mathematica, and returns a term with type mmexpr representing

the result of the computation. From this basic tactic, it is easy to define variants such as

run_command_using : (string → string) → expr → string → tactic pexpr.

The first argument is a Mathematica command, including a placeholder bound variable, which is replaced

by the Mathematica representation of the expr argument. The string argument is the path to a file

which contains auxiliary definitions, usable in the command. This variant will apply the back-translation

pexpr_of_mmexpr to produce a pexpr.

Another variant, execute_global : string → tactic mmexpr, evaluates its input in Mathemat-

ica’s global context.

Going back to our running example from Section 3, assuming e is the unfactored expression, we

would call

run_command_on (λ s, s ++ " // LeanConvert // Activate // Factor") e
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to produce a pre-expression representing the factored form of e. (Recall that the Mathematica syntax

x // f reduces to f[x].) In fact, we can define

meta def factor (e : expr) : tactic pexpr :=

run_command_on (λ s, s ++ " // LeanConvert // Activate // Factor") e,

or a variant that elaborates the result into an expr with the same type as e.

5 Verification of results

So far we have described how to embed a Lean expression in Mathematica, manipulate it, and import

the result back into Lean. At this point, the imported result is simply a new expression: no connection

has been established between the original and the result. In our factoring example, we expect the two

expressions to be equal; if we were computing an antiderivative, we would expect the derivative of

the result to be equal to the original. More complex return types can lead to more complex relations.

For example, an algorithm using Mathematica’s linear arithmetic tools to verify the unsatisfiability of a

system of equations may return a certificate that must be converted into a proof of falsity.

Credulous users may simply decide to trust the translation and CAS computation, and assert without

proof that the result has an expected property. An example using this approach is given at the end of

this section. Of course, the level of trust needed to do this is unacceptably high for many situations. We

are often interested in performing certifiable calculations in Mathematica, and using this certificate to

construct proofs in Lean.

It would be hopeless to expect one tool to verify all results. Rather, for each common computation,

we will have a tactic script to (attempt to) prove the appropriate relation between input and output.

“Uncommon” or one-off computations can be verified in-line by the user. This method of separating

search (or computation) and verification is discussed at length by Harrison and Théry [12], and by many

others. It turns out that a surprising number of algorithms are able to generate certificates to this end.

The tactics used in this section, along with more examples, are available in the supplementary infor-

mation to this paper. These examples are not meant to be exhaustive, but rather to illustrate the ease with

which Mathematica can be accessed; with the possible exception of the linear arithmetic tactic, each is

fairly simple to implement. The Lean library is still under development, and some types and functions

used here are in fact axiomatized constants, but the implementation is not relevant to the behavior of our

link.

5.1 Factoring

In our running example, we have used Mathematica to construct the Lean expression (x + -1)^2 :

real. We expect to find a proof that x^2 - 2*x + 1 = (x + -1)^2. This type of proof is easy to

automate with Lean’s simplifier:

meta def eq_by_simp (e1 e2 : expr) : tactic expr :=

do gl ← mk_app ‘eq [e1, e2],

mk_inhabitant_using gl simp <|> fail "unable to simplify"

Using this machinery, we can easily write a tactic factor that, given a polynomial expression, factors

it and adds a constant to the local context asserting equality. (The theorem sq_nonneg proves that the

square of a real number is nonnegative.)
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example (x : R) : x^2-2*x+1 ≥ 0 :=

by factor x^2-2*x+1 using q; rewrite q; apply sq_nonneg

We provide more examples of this tactic in action in the supplementary material, including one in

which x^10-y^10 factors into

(x + -1 * y) * (x + y) * (x^4 + -1 * x^3 * y + x^2 * y^2 + -1 * x * y^3 + y^4) *

(x^4 + x^3 * y + x^2 * y^2 + x * y^3 + y^4).

In general, factoring problems are easily handled by this type of approach, since the results serve as

their own certificates. Factoring integers is a simple example of this (to verify, simply multiply out the

prime factors); dually, primality certificates can be checked as in Pratt [18].

Factoring matrices is slightly more complex. Mathematica implements a number of common matrix

decomposition methods, whose computation can be verified in Lean by re-multiplying the factors. We

can use these tools to, e.g., define a tactic lu_decomp which computes and verifies the LU decomposition

of a matrix.

example : ∃ l u, is_lower_triangular l ∧ is_upper_triangular u

∧ l ** u = [[1, 2, 3], [1, 4, 9], [1, 8, 27]] := by lu_decomp

5.2 Solving polynomials

Mathematica implements numerous decision procedures and heuristics for solving systems of equations.

Many of these are bundled into its Solve function. Over some domains, it is possible to verify solutions

in Lean using the simplifier, arithmetic normalizer, or other automation. Lean’s norm_num tactic, which

reduces arithmetic comparisons between numerals, is well-suited to verifying solutions to systems of

polynomial equations. The tactic solve_polys uses Solve and norm_num to prove theorems such as

example : ∃ x y : R, 99/20*y^2 - x^2*y + x*y = 0

∧ 2*y^3 - 2*x^2*y^2 - 2*x^3 + 6381/4 = 0 := by solve_polys.

Users familiar with Mathematica may recall that Solve outputs a list of lists of applications of the

Rule symbol, each mapping a variable to a value. A Rule has no close correspondent in Lean, and it

would involve some contortion to translate this output and extract a single solution in the proof assistant.

However, it is easy to perform this transformation within Mathematica, and processing the result of

Solve before transporting it back to Lean makes the procedure much simpler to implement. This type

of consideration appears often: some transformations are more easily achieved in one system or the other.

5.3 Linear arithmetic

Many proof assistants provide tools for automatically proving linear arithmetic goals, or equivalently for

proving the unsatisfiability of a set of linear hypotheses. There are various techniques for doing this,

including building proof terms incrementally using Fourier–Motzkin elimination [21]. Alternatively,

linear programming can be used to generate certificates of unsatisfiability. In this setting, a certificate

for the unsatisfiability of {pi(x̄) ≤ 0 : 0 ≤ i ≤ n} is a list of rational coefficients {ci : 0 ≤ i ≤ n} such

that ∑0≤i≤n ci · pi = q > 0 for some constant polynomial q; equivalently, this list serves as a witness for

Farkas’ lemma [19].

Given a set of hypotheses in Lean that express linear inequalities, we can prove their unsatisfiability

by generating a list of such coefficients (in Mathematica), automatically proving (in Lean) that these

coefficients have the necessary properties, and applying a verified proof of Farkas’ lemma.
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While passing a list of inequalities to Mathematica may seem different than passing an expression

such as x^2 - 2*x + 1, we are able to use the same translation procedure. The expression x + 1 ≤ 2*y

has type Prop, which is to say it is a type living in the lowest universe level Sort 0. A term of this

type is a proof of the claim x + 1 ≤ 2*y. In our factorization example, we translated a term of type

real, whereas here we translate the type of a hypothesis. But in dependent type theory, types are terms

themselves, and we are able to represent any term in Mathematica. In Lean we define

le {u} : Π {A : Type u} [has_le A], A → A → Prop.

We reduce this in Mathematica using the rule

LeanForm[LeanApp[LeanApp[LeanApp[LeanApp[LeanConst["le",

_], _], _], x_], y_]] = Inactive[LessEqual][x, y]

and define similar rules for <, ≥, >, and =.

Once the hypotheses have been translated to Mathematica, we must set up and solve the appropriate

linear program. (Note that we are not trying to solve the hypotheses as given, but rather to find a cer-

tificate of their unsatisfiability.) A program provided in the supplementary materials to this paper shows

how to use the Mathematica function FindInstance to produce the desired list of rational coefficients.

This list is translated back to Lean, where it can be elaborated with type list rat. Once this list is

confirmed to meet the requirements of Farkas’ lemma, the lemma is applied to produce a proof of false.

example (x y : R) (h1 : 2*x + 4*y ≤ 4) (h2 : -x ≤ 1)

(h3 : -y ≤ -5) : false :=

by not_exists_of_linear_hyps h1 h2 h3

5.4 Sanity checking

Even non-certifiable computations can sometimes be useful for proof assistant users. The FindInstance

function, for example, can be used to check that a goal is in fact provable. We define a tactic sanity_check,

which fails if Mathematica is able to find a variable assignment that satisfies the local hypotheses and the

negation of the current goal. The first example below fails when Mathematica decides that the goal does

not follow; the second succeeds.

example (x : R) (h1 : sin x = 0) (h2 : cos x > 0) : x = 0 :=

by sanity_check; admit

example (x : R) (h1 : sin x = 0) (h2 : cos x > 0)

(h3 : -pi < x ∧ x < pi) : x = 0 :=

by sanity_check; admit

5.5 Axiomatized computations

Since it is possible to declare axioms from within the Lean tactic framework, we can axiomatize the

results of Mathematica computations dynamically. This allows us to access a wealth of information

within Mathematica, at least when we are not concerned about complete verification. One interesting

application is to query Mathematica for special function identities. While these identities may be difficult

to formally prove, trusting Mathematica allows us to find some middle ground. The mk_bessel_eq tactic

uses Mathematica’s FullSimplify function to reduce the Bessel function expression on the left, and

after checking that it is equal to the one on the right, adds this equality as an axiom in Lean:
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example : ∀ x, x*BesselJ 2 x + x*BesselJ 0 x = 2*BesselJ 1 x :=

by mk_bessel_eq

We can also define a tactic that uses Mathematica to obtain numerical approximations of constants,

and axiomatizes bounds on their accuracy:

approx (100 * BesselJ 2 (13 / 25)) (0.001 : R)

declares an axiom stating that

75977 / 23000 < 100 * BesselJ 2 (13 / 25) < 76023 / 23000.

6 Concluding thoughts

6.1 Related work

The following discussion is not meant to be comprehensive, but rather to indicate the many ways in

which one can approach connecting ITP and computer algebra.

Harrison and Théry [12] describe a “skeptical” link between HOL and Maple that follows a similar

approach to our bridge. Computation is done in a standard, standalone version of the CAS, and sent

to the proof assistant for certification. The running examples used are factorization of polynomials and

antiderivation. The discussion is accompanied by an illuminating comparison between proof search and

proof checking, and the relation to the class NP. Delahaye and Mayero [10] provide a similar link between

Coq and Maple, specialized to proving field identities.

Ballarin and Paulson [3] provide a connection between Isabelle and the computer algebra library

ΣIT [5] that is more trusting than the previous approach. They distinguish between sound and unsound

algorithms in computer algebra: roughly, a sound algorithm is one whose correctness is provable, while

an unsound algorithm may make unreasonable assumptions about the input data. Their link accepts sound

algorithms in the CAS as oracles. A similarly trustful link between Isabelle and Maple, by Ballarin,

Homann, and Calmet [2] allows the Isabelle user to introduce equalities derived in the CAS as rewrite

rules. A third example by Seddiki, Dunchev, Khan-Afshar, and Tahar [20] connects HOL Light to

Mathematica via OpenMath, introducing results from the CAS as HOL axioms.

A related, more skeptical, approach is to formally verify CAS algorithms and incorporate them into a

proof assistant via reflection. This approach is taken by Dénès, Mörtberg, and Siles [11], whose CoqEAL

library implements a number of algorithms in Coq.

Kerber, Kohlhase, and Sorge [14] describe how computer algebra can be used in proof assistants for

the purpose of proof planning. They implement a minimal CAS, which is able to produce high-level

sketch information. This sketch can be processed into a proof plan, which can be further expanded into

a detailed proof.

Alternatively, one can build a CAS inside a proof assistant without reflection, such that proof terms

are carried through the computation. Kaliszyk and Wiedijk [13] implement such a system in HOL Light,

exhibiting techniques for simplification, numeric approximation, and antiderivation.

Going in the opposite direction, CAS users may want to access ATP or ITP systems. One example

of a link in this direction is Adams et al. [1], who use PVS to verify side conditions generated in

computations in Maple. Systems such as Analytica [4] and Theorema [6] provide ATP- or ITP-style

behavior from within Mathematica. Axiom [9] and its related projects provide a type system for computer

algebra, which is claimed to be “almost” strong enough to make use of the Curry–Howard isomorphism.
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6.2 Future work

There is much room for an improved interface under the current ITP–CAS relationship. We imagine a

link integrated with Lean’s supported editors, where the user effectively has access to the Mathematica

REPL augmented by the current Lean environment.

The server interface descriped in Section 4 only supports sequential evaluation of Mathematica com-

mands. Both systems support parallel computation, and integrating the two could increase the utility of

this link for large projects.

We have described a master–slave relationship between Lean and Mathematica respectively. The

Wolfram Language is able to express “propositions,” and has some capacity for evaluating such proposi-

tions, but has no notion of proof. Reversing the relationship, so that a Mathematica user could use Lean

to (automatically or interactively) verify propositions, is a promising direction for future work. The tools

described in this paper, particularly the Mathematica-to-Lean translation, provide building blocks for

such a project, and some preliminary work in this direction has begun. This approach has some caveats.

Since Mathematica is untyped, naive translations may be ambiguous; since there is not a well-specified

logic underlying the CAS, one must worry about inconsistencies between its built-in assumptions and

the logical rules of the proof assistant. There is no analogue to the ad hoc verification that we use in the

original direction. Nonetheless, it is an interesting direction to explore.
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