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We describe the first results of a project of analyzing in which theories formal proofs can be ex-

pressed. We use this analysis as the basis of interoperability between proof systems.

1 Introduction

Sciences study both individual objects and generic ones. For example, Astronomy studies both the

individual planets of the Solar system: Mercury, Venus, etc. determining their radius, mass, composition,

etc., but also the motion of generic planets: Kepler’s laws, that do not just apply to the six planets known

at the time of Kepler, but also to those that have been discovered after, and those that may be discovered

in the future. Computer science studies both algorithms that apply to generic data, but also specific

pieces of data. Mathematics mostly studies generic objects, but sometimes also specific ones, such as the

number π or the function ζ .

Proof theory mostly studies generic proofs. For example, Gentzen’s cut elimination theorem for

Predicate logic applies to any proof expressed in Predicate logic, those that were known at the time of

Gentzen, those that have been constructed after, and those that will be constructed in the future. Much

less effort is dedicated to studying the individual mathematical proofs, with a few exceptions, for example

[29].

Considering the proofs that we have, instead of all those that we may build in some logic, sometimes

changes the perspective. For example, consider a cut elimination theorem for a logic L . The stronger

the logic L , the stronger the theorem. In contrast, consider a specific proof π , say a proof of Fermat’s

little theorem, and consider a theorem of the form: the proof π can be expressed in the logic L . In

this case, the weaker the logic, the stronger the theorem. So, studying generic proofs leads to focus on

stronger and stronger logics, while studying individual proofs, on weaker and weaker ones.

In this paper, we present a program of analyzing the formal proofs that have been developed in

computerized proof systems such as COQ
1, MATITA

2, HOL LIGHT
3, ISABELLE/HOL4 , PVS5, FO-

CALIZE
6, etc. In particular, we want to be able to analyze in which logicsa each of these proofs can be

expressed.

Such a project is largely inspired by the reverse mathematics project [18, 34], but has some differ-

ences. First, we do not propose to classify theorems according to the logics in which they can be proved,

but to classify the proofs according to the logics in which they can be expressed. Some theorems, for

1coq.inria.fr
2matita.cs.unibo.it
3www.cl.cam.ac.uk/~jrh13/hol-light
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example, the prime number theorem, have very different proofs, some very elementary and some very

complex. Second, we focus on formal proofs, that is proofs expressed and checked in computerized

proof systems. Third, our project is in some sense less ambitious, as it focuses on stronger theories than

reverse mathematics. We typically address the question of the possibility to express a proof in the Calcu-

lus of constructions [12], or in Simple type theory [11], while reverse mathematics focuses on fragments

of Second-order arithmetic.

Knowing in which logics, which proof can be expressed is a fundamental question, as it is part of

our understanding of these proofs. It is also a practical one, as it opens the way to interoperability

between computerized proof systems. In the domain of formal proofs, we currently have COQ proofs,

HOL LIGHT proofs, etc. of various theorems. And, when we have a COQ proof of a theorem, we do

not necessarily have a HOL LIGHT proof of this theorem, and vice versa. The problem of exchanging

proofs between proof systems is not just a problem of translation, as these systems cannot express the

same proofs. It is primarily the problem of analyzing the logics in which these proofs can or cannot be

expressed.

2 From logics to theories

2.1 Logical Frameworks

When a proof is expressed in a logic L , analyzing the logics in which this proof can be expressed

amounts to analyzing the ingredients of the logic L that it uses. This requires to analyze this logic into

a number of ingredients, for example into a number of axioms. Set theory, for example, is naturally

analyzed into a number of axioms and axiom schemes, including, for example, the axiom of choice, and

this analysis permits to classify the proofs according to the axioms they use: the proof that every vector

has a unique decomposition in a given basis does not use the axiom of choice, the proof that every vector

space has a basis does. These ingredients of set theory are expressed in a logical framework: Predicate

logic. So, analyzing a logic amounts to expressing it as a theory in a logical framework.

To express set theory, it is also possible to choose another logical framework: Constructive predicate

logic and add the excluded middle as an axiom scheme. Then, we can express that the proof that every

vector has a unique decomposition in a given basis does not use the excluded middle, while the proof of

the Bolzano-Weierstrass theorem does.

The examples of the axiom of choice and of the excluded middle show that, even in everyday mathe-

matics, we do care about the analysis of proofs, even if this analysis is often restricted to the very specific

cases of the axiom of choice and of the excluded middle.

2.2 Axioms and rewrite rules

Predicate logic is certainly the most widely used logical framework. But it also has some limitations. For

example, many theories are expressed with an infinite number of axioms and eliminating axiom schemes,

like in Von Neumann-Bernays-Gödel set theory, is often cumbersome [28]. Moreover, if Simple type

theory can easily be expressed in Predicate logic, expressing the Calculus of constructions, the Calculus

of inductive constructions, etc. is more cumbersome.

Another logical framework is that of Pure type systems [6], where it is possible to express Simple

type theory, the λΠ-calculus, the system F, the Calculus of constructions, etc. and analyze these logics

into sorts, axioms, and rules. This permits to classify the proofs expressed, for example, in the Calculus of
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constructions, into those that use the polymorphic rules and those that do not. But this logical framework

also has limitations as the Calculus of inductive constructions cannot be expressed in it.

Another logical framework is the λΠ-calculus, that is the λ -calculus with dependent types [23]. Like

in Predicate logic, the ingredients of a logic expressed in this framework are axioms and it is difficult to

express in the λΠ-calculus the logics that include a computational, or definitional, equality that identifies

some terms.

So, we shall use another logical framework that is a synthesis of Predicate logic, Pure type systems

and the λΠ-calculus: the λΠ-calculus modulo theory [13], also called the Martin-Löf logical framework

[30], where the ingredients of a logic are axioms and rewrite rules, like in Deduction modulo theory

[16, 17]. Simple type theory can easily be expressed as a theory in the λΠ-calculus modulo theory,

with three rewrite rules, and the Calculus of constructions as a theory with just four rules. Moreover,

the λΠ-calculus modulo theory has an efficient implementation: the system DEDUKTI [5], whose first

implementation has been presented in [7] and its most recent in [33].

3 Translating proofs expressed in the Calculus of constructions into proofs

in Simple type theory

We show, in this section, how to express constructive Simple type theory and the Calculus of construc-

tions, in the λΠ-calculus modulo theory. We then discuss how this can be used to analyze if a proof,

expressed in the Calculus of constructions, can be reformulated in Simple type theory or not, according

to these expressions of these theories in the λΠ-calculus modulo theory.

3.1 Simple type theory as a theory in the λΠ-calculus modulo theory

Simple type theory can be expressed in Deduction modulo theory [15] and hence in the λΠ-calculus

modulo theory [3, 4].

The types of Simple type theory are expressed as terms of type type, with three constants o, nat, and

arrow. The type o is that of propositions, the type nat that of individuals, often written ι , and those built

with the constant arrow are the functional types. For example, the type of Simple type theory nat → nat

is expressed as the term (arrow nat nat) of type type. Then, to each term t of type type, is associated a

type (η t) of the λΠ-calculus modulo theory, using a constant η of type type → Type and the rewrite

rule

(η (arrow x y))−→ (η x)→ (η y)

For example, to the term (arrow nat nat), is associated the type (η (arrow nat nat)) that reduces to

(η nat)→ (η nat).

The terms of Simple type theory of type t are then expressed as terms of type (η t). For example, the

term λx : nat x of Simple type theory is expressed as the term λx : (η nat) x of type (η nat)→ (η nat).

In particular, the propositions are expressed as terms of type (η o), using two constants ⇒ and ∀. For

example, the proposition ∀X : o (X ⇒ X) is expressed as the term ∀ o λX : (η o) (⇒ X X). Note that,

in this expression of Simple type theory in the λΠ-calculus modulo theory, we do not have a quantifier

∀A for each type A, but a single quantifier ∀, that is applied to a term A of type type. Then, to each term

p of type (η o), is associated a type (ε p) of the λΠ-calculus modulo theory, using a constant ε of type

(η o)→ Type and the rewrite rules

(ε (⇒ x y))−→ (ε x)→ (ε y)
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type : Type

η : type → Type

o : type

nat : type

arrow : type → type → type

ε : (η o)→ Type

⇒ : (η o)→ (η o)→ (η o)
∀ : Πa : type (((η a)→ (η o))→ (η o))

(η (arrow x y)) −→ (η x)→ (η y)
(ε (⇒ x y)) −→ (ε x)→ (ε y)
(ε (∀ x y)) −→ Πz : (η x) (ε (y z))

Figure 1: Simple type theory

(ε (∀ x y))−→ Πz : (η x) (ε (y z))

For example, to the term ∀ o λX : (η o) (⇒ X X), is associated the type (ε (∀ o λX : (η o) (⇒ X X)))
that reduces to ΠX : (η o) ((ε X)→ (ε X)).

Finally, the proofs of a proposition p in Simple type theory are expressed as terms of type (ε p). For

example, the usual proof of the proposition ∀X : o (X ⇒ X) is expressed as the term λX : (η o) λα :

(ε X) α .

This leads to the theory presented in Figure 1.

3.2 The Calculus of constructions as a theory in the λΠ-calculus modulo theory

We consider a slight extension of the Calculus of constructions with a symbol nat of type Kind. Such

an extension can be obtained just by adding a constant nat and a rule assigning it the type Kind, a rule

allowing to declare a variable of type Kind, or an extra sort allowing to declare a variable of type Kind

[19, 20].

This logic can be expressed, in the λΠ-calculus modulo theory [13], as the theory presented in Figure

2. Note that this presentation slightly differs from that of [13]: the symbol UType has been replaced

everywhere by the term εKind( ˙Type) allowing to drop the rule

εKind( ˙Type)−→UType

Then, to keep the notations similar to those of Simple type theory, the constant UKind is written type,

the constant ˙Type, o, the constant εKind , η , the constant εType, ε , the constant Π̇〈Kind,Kind,Kind〉 , arrow,

the constant Π̇〈Type,Type,Type〉 , ⇒, the constant Π̇〈Kind,Type,Type〉 , ∀, and the constant Π̇〈Type,Kind,Kind〉 , π .

Finally, a symbol nat is added, as we consider an extension of the Calculus of constructions with such a

symbol.
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type : Type

η : type → Type

o : type

nat : type

arrow : Πx : type (((η x)→ type)→ type)
ε : (η o)→ Type

⇒ : Πx : (η o) (((ε x)→ (η o))→ (η o))
∀ : Πx : type (((η x)→ (η o))→ (η o))
π : Πx : (η o) (((ε x)→ type)→ type)

(η (arrow x y)) −→ Πz : (η x) (η (y z))
(ε (⇒ x y)) −→ Πz : (ε x) (ε (y z))
(ε (∀ x y)) −→ Πz : (η x) (ε (y z))
(η (π x y)) −→ Πz : (ε x) (η (y z))

Figure 2: The Calculus of constructions

3.3 Comparing Simple type theory and the Calculus of constructions

Now that the theories have been formulated in the same logical framework, we can compare their ex-

pressions.

A first difference is that the symbol arrow has type

type → type → type

that is

Πx : type (type → type)

in Simple type theory and

Πx : type (((η x)→ type)→ type)

in the Calculus of constructions. This reflects the fact that this symbol is non-dependent in Simple type

theory and dependent in the Calculus of constructions, where, in the type A → B, written Πx : A B, the

type B may contain a variable x of type A.

In the same way, the symbol ⇒ is non-dependent in Simple type theory, but it is dependent in the

Calculus of constructions, where, in the proposition A ⇒ B, also written Πx : A B, the proposition B may

contain a variable x, that is a proof of A.

In contrast, the symbol ∀ is dependent is both theories: in the expression ∀x : A B, the proposition B

may always contain the variable x of type A.

Finally, there is an extra constant π in the Calculus of constructions, with its associated rewrite rule.

This symbol permits to type functions mapping proofs to terms, for example a function mapping a proof

of ∃x P(x) to a term t verifying the predicate P.

So, the Calculus of constructions is an extension of Simple type theory, because the symbols arrow

and ⇒ are dependent and because it includes a symbol π .
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3.4 Analyzing proofs expressed in the Calculus of constructions

We can define a subset S of the proofs, expressed in the Calculus of constructions, that do not use the

dependency of the symbol arrow, do not use the dependency of the symbol ⇒, and do not use the symbol

π , where we say that a proof does not use the dependency of the symbol arrow if each time the symbol

arrow is used, it is applied to two terms, the second one being a λ -abstraction where the abstracted

variable does not occur in the body of the abstraction: (arrow A λx : (η A) B) with x not free in B, and

that it does not use the dependency of the symbol ⇒ if each time the symbol ⇒ is used, it is applied to

two terms, the second being a λ -abstraction where the abstracted variable does not occur in the body of

the abstraction: (⇒ A λx : (ε A) B) with x not free in B.

As we shall see, many proofs expressed in the Calculus of constructions are in this subset.

3.5 Translating proofs to Simple type theory

When a proof expressed in the Calculus of constructions is in the subset S, it can easily be translated to

Simple type theory. All that needs to be done is to replace the terms of the form (arrow A λx : (η A) B)
with (arrow A B) and the terms of the form (⇒ A λx : (ε A) B) with (⇒ A B).

If, in contrast a proof is not in the set S, then it genuinely uses a feature of the Calculus of construc-

tions that does not exist in Simple type theory and it cannot be expressed in Simple type theory. In the

same way a proof expressed in ZFC, that genuinely uses the axiom of choice, cannot be expressed in ZF.

When a proof, expressed in the Calculus of constructions, is an element of the set S and is translated to

Simple type theory, we say that the proof and its translation are the same mathematical proof, expressed

in different theories, although they are different linguistic objects. Generalizing this notion of identity of

proofs across theories remains to be done.

4 An arithmetic library

The example of the translation of proofs from the Calculus of constructions to Simple type theory is a toy

example, because there is no implementation of the Calculus of constructions per se. The systems COQ

and MATITA, for example, implement extensions of the Calculus of constructions with various features,

at least inductive types and universes.

M. Boespflug and G. Burel [8] have shown how to extend the theory presented in Figure 2 to inductive

types and A. Assaf [3, 4] has shown how to extend it to universes. This has permitted to express a large

library of MATITA proofs in DEDUKTI, including a proof of Fermat’s little theorem.

F. Thiré [35] has then shown that the symbol π , and the dependency of the symbols arrow and ⇒
could be eliminated from this library, but also that universes could be eliminated and that inductive type

could be replaced by a very simple principle: an induction principle on natural numbers, that permits to

prove propositions by induction and to define functions by induction.

So, we now have an evidence that Fermat’s little theorem not only has a proof in the Calculus of

inductive constructions with universes, but also in constructive Simple type theory. Such a result was

expected, but note that neither proving Fermat’s little theorem in MATITA, that contains dependent prod-

ucts, inductive types, universes, etc. nor proving it in HOL LIGHT, that contains the excluded middle,

extensionality, choice, etc., provides a proof in such a weak theory.

On the more practical side, this has permited to export this library from DEDUKTI to HOL LIGHT,

ISABELLE/HOL, HOL4, COQ, etc. [36], HOL LIGHT, ISABELLE/HOL, and HOL4 sharing a common

input language: OPENTHEORY [27].
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The size of this library is 1.5 Mo. It contains around 340 lemmas. It is checked in DEDUKTI in a few

milliseconds.

5 Abstracting enough

5.1 Natural numbers

Both in the Calculus of inductive constructions and in Simple type theory, it is possible to prove propo-

sitions by induction and to define functions by induction. But these principles are justified in different

ways.

In the Calculus of inductive constructions, the declaration of the inductive type nat comes with a

recursion operator that permits to define functions by induction and, as proofs are functions, this operator

permits also to build proofs by induction.

In Simple type theory, in contrast, the set of natural numbers is impredicatively defined as the inter-

section of all sets containing zero and closed by successor. From this definition, the induction principle

can be proved. Then, this induction principle and other properties of natural numbers permit to prove the

existence of functions defined by induction [24].

These details should be ignored by the arithmetic library, that should be exported to any system that

contains a notion of natural number, an induction principle and a way to define functions by induction,

regardless the way this induction principle is proved and this induction operator is defined there [36].

Using such an abstract definition of the natural numbers, R. Cauderlier and C. Dubois [10] have built

a proof of the correctness of Eratosthenes’ sieve in the expression of FOCALIZE in DEDUKTI, using

definitions coming from COQ and lemmas coming from HOL LIGHT.

5.2 Connectives and quantifiers

The same holds for the connectives and quantifiers, that are primitive neither in the Calculus of inductive

constructions nor in Simple type theory. They are defined as inductive types in the Calculus of inductive

constructions. They are defined from equality in Simple type theory [25, 1, 2].

But these details should be ignored by the library, that only needs to specify that A should be provable

when A∧B is, etc. regardless the way this connective ∧ is defined.

So, developing a library of proofs that can be exported to different proof systems gives a formal

counterpart to the slogan that defining real numbers with Cauchy’s construction or with Dedekind’s

is immaterial, or that defining complex numbers as ordered pairs of real numbers, as similarities, or

as classes of polynomials is immaterial. Here, the notions of structure and isomorphic structures are

essential, even when all the structures of a class—such as that of the complete Archimedean totally

ordered fields—are isomorphic.

Eventually, this should lead to defining algorithms to transform proofs of structural propositions,

about objects in a given structure to proofs about objects in an isomorphic structure [26, 37].

6 Classical and constructive logics

An important difference between logics, and proof systems implementing these logics, is that some of

them are classical and others are constructive, that is the excluded middle A∨¬A is provable in some
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but not in others. For example, Simple type theory, and HOL LIGHT, are classical and the Calculus of

inductive constructions, and MATITA, are constructive.

A logical framework, such as the λΠ-calculus modulo theory, and its implementation DEDUKTI,

should not make any choice on the excluded middle, but should be able to express both classical and

constructive logics as theories. A possibility is to not assume the excluded middle in the framework and

include it as an axiom in the definition of some theories. Then, the proofs of Simple type theory, for

instance those developed in the system HOL LIGHT, can be expressed in DEDUKTI using the excluded

middle and just like in Section 3, we can analyze which of these proofs use the excluded middle and

which do not, and translate these to another theory: constructive Simple type theory.

An alternative is to use the idea, defended for example in [22, 32, 14, 31], that the excluded middle

is not a question of theory, but a question of meaning of the connectives and quantifiers. This leads to

introduce two existential quantifiers: the constructive, ∃, and the classical, ∃c, two disjunctions, etc. and

deduction rules defining the meaning of these connectives and quantifiers, in such a way that A∨¬A is

not provable, but A∨c¬cA is.

This permits to define connectives and quantifiers once for all in the framework and to use various

quantifiers in various theories, as well as translating proofs using one set of quantifiers into proofs using

another [21, 9], changing, in this case, the statement of the theorem.

7 Future work

The arithmetic library, described in Section 4, is, of course, only the beginning of a library of proofs,

that could be shared by various proof systems. Each proof in this library should be labeled with the

ingredients it uses, hence the systems to which it may be exported.

Also, we now have a formal proof of Fermat’s little theorem, in constructive Simple type theory,

but we should continue to transform it, to express it in weaker theories, such as predicative type theory,

Heyting arithmetic, and beyond.
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