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We present LANG-N-SEND, a π-calculus that is equipped with language definitions. Processes can

define languages in operational semantics, and use them to execute programs. Furthermore, processes

can send and receive pieces of operational semantics through channels.

We present a reduction semantics for LANG-N-SEND, and we offer examples that demonstrate

some of the scenarios that LANG-N-SEND captures.

1 Introduction

In the last decades, we have seen significant advances in language semantics tools that make it possible

for programmers to quickly define and deploy their own programming languages and domain-specific

languages, and use them in their programming solutions [6].

It is not too far in the future that it would just be the common practice for programmers to upload,

in servers like Amazon AWS, code that does not belong to a programming language that has been fixed

beforehand, but rather belongs to a language that has been created on the fly. Programmers would upload

both the program and the language in which the program must be evaluated. Reuse is fundamental in this

scenario. Libraries of programming languages constructs, as envisioned by Peter Mosses’ Component-

Based Semantics [14], for example, can become the norm. Servers can provide pieces of languages to

clients, which can use them to complete their own language and, in turn, send the language so built to

(computing) servers to execute programs.

Current literature does not offer a foundation that directly formalizes this and similar scenarios. In

this paper, we present our work towards such a formal foundation.

We present LANG-N-SEND, a π-calculus that is equipped with language definitions. Processes can

define languages in operational semantics, add pieces of operational semantics together, and use them

to execute programs. Processes can also send and receive pieces of languages through channels. After

executing programs, LANG-N-SEND processes can also send the trace of executions to other processes,

which in turn can analyze these traces.

We present a reduction semantics for LANG-N-SEND, and we provide some selected examples that

demonstrate the scenarios that LANG-N-SEND captures. We have specifically chosen examples that

involve the communication of languages among processes. We show the following examples:

• A client that, when entering a sensitive region of code, asks a server to provide the semantics of an

interrupt operator, adds it to its language, and only then executes the code.

• A client that defines a language with an interrupt operator, but lets a server decide the semantics

of the interruption (whether interrupt or disrupt semantics) by receiving, from the server, the rest

of the rules that complete the semantics of the operator.

• A client that lets a server decide whether its language is synchronous or asynchronous by receiving

the semantics of the output operator from the server.
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We believe that LANG-N-SEND represents a first step towards a firm foundation for this type of pro-

gramming. The next section presents the syntax that LANG-N-SEND uses to define languages. Section

3 presents the syntax of LANG-N-SEND processes. Section 4 presents a reduction semantics. Section 5

provides examples. Section 6 discusses related work, and Section 7 concludes the paper.

2 Syntax for Language Definitions

The syntax of LANG-N-SEND consists of two parts: the syntax for creating languages, and a π-calculus

with language definitions. Language definitions can be created in operational semantics. The syntax

that we adopt is inspired by [5], and is the following, where cname ∈ CATNAME, X ∈ META-VAR,

opname ∈ OPNAME, and pn ∈ PREDNAME.

Language L ::= (G, I)
Grammar G ::= s1 · · · sn

Grammar Rule s ::= cname X ::= t1 | · · · | tn
Inference System I ::= r1 · · · rn

Rule r ::=
f1 · · · fn

f
Formula f ::= (pn t1 · · · tn)
Term t ::= X | (opname t1 · · · tn)

CATNAME is a set of grammar category names such as Process, and Action. META-VAR is a set

of meta-variables. OPNAME is a set of constructor names such as par (for the parallel operator |), and

choice (for the choice operator +). PREDNAME is a set of predicate names such as step (for reduction

rules). As names do not need to be strings, we shall use symbols for constructor and predicate names.

A language has a grammar and an inference rule system. A grammar has multiple grammar rules,

each of which defines a category name, and its meta-variable, by providing a series of grammar produc-

tions, which are terms. Terms are in abstract syntax tree style, that is, they have a top level constructor

applied to a list of terms. We can demonstrate LANG-N-SEND with languages that do not use binders.

Therefore, we do not include syntax for binding, though it could be added.

An inference rule system has multiple rules, each of which has a series of formulae as premises, and

a formula as conclusion. Formulae, too, are in abstract syntax tree style. Given a language definition,

LANG-N-SEND needs to invoke its evaluator to execute programs. As we need a way to locate such

evaluator, we fix the following convention: The labeled transition relation is always −→, and its first

argument is always the label of the transition, which is a term. (If reductions do not have labels, they

would still use the first argument with a term that is never used).

To make an example, let us consider Basic Process Algebra (BPA [3]) in its finite fragment (no

recursion, nor definitions). BPA is formed with actions, the choice operator, and sequential composition.

Below are the rules of BPA, where a ranges over actions. Besides transitions of the form P
a

−→ P′, BPA

makes use of a predicate P −→a X that says that P takes action a and successfully terminates.

a −→a X
P1 −→

a X

P1 +P2 −→
a X

P2 −→
a X

P1 +P2 −→
a X

P1
a

−→ P′
1

P1 +P2
a

−→ P′
1

P2
a

−→ P′
2

P1 +P2
a

−→ P′
2

P1
a

−→ P′
1

P1 ·P2
a

−→ P′
1 ·P2

P1 −→
a X

P1 ·P2
a

−→ P2
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LANG-N-SEND accommodates BPA as follows. The transition P
a

−→ P′ is encoded as (−→ a P P′).
We represent the formula P −→a X with (checkMark (a) P). Below, act is the operator for actions, and

seq is the sequential operator. We give this language the name bpa.

bpa , (Action A ::= (a) | (b) | (c) (* We assume that the set of actions is {a,b,c} *)

Process P ::= (act A) | (+ P P) | (seq P P),

(checkMark A (act A))
(checkMark A P1)

(checkMark A (+ P1 P2))

(checkMark A P2)

(checkMark A (+ P1 P2))

(−→ A P1 P′
1)

(−→ A (+ P1 P2) P′
1)

(−→ A P2 P′
2)

(−→ A (+ P1 P2) P′
2)

(−→ A P1 P′
1)

(−→ A (seq P1 P2) (seq P′
1 P2))

(checkMark A P1)

(−→ A (seq P1 P2) P2)
)

3 Syntax for Processes

The syntax of LANG-N-SEND processes P, Q, R, and so on, is defined as follows.

Trace T ::= tr | t · · · t

Language Builder ℓ ::= l | L | ℓ union ℓ
Processes P ::= 0 | x(y).P | x〈y〉.P | P | P | P+P

| (νx).P | !P

(using languages) | (ℓ,T)>x t

(analyzing executions) | isInTrace(t,T)⇒ P ; P

(communicating languages) | x(l).P | x〈ℓ〉.P
(communicating traces) | x(tr).P | x〈T〉.P

LANG-N-SEND contains the elements of the π-calculus [12, 13]. Channels are x, y, z, and so on. We

assume a set LANG-VAR of variables l for languages, and a set TRACE-VAR of variables tr for traces.

These sets are distinct from each other, and from the set of channels.

Language builder expressions ℓ build a language L , i.e., they ultimately evaluate to a language L .

This category can be extended with sophisticated language manipulations. We keep our syntax with the

minimal set of operations that are enough to demonstrate our approach. Thus, we have included only a

union operation for languages. union adds new grammar productions and inference rules to a language.

For example, bpa union (Process P ::= (loopOnNil P)) (−→ A (loopOnNil (nil)) (loopOnNil (nil))))
returns the language with the same grammar productions for Action, and with the additional production

(loopOnNil P) for P. Also, the rule above for loopOnNil is added to the rules of bpa.

LANG-N-SEND extends the processes of the π-calculus with the following constructors. A process

(ℓ,T)>x t is a program execution. This process executes the program t according to the operational

semantics defined in the language ℓ. In particular, we query the language for reductions that are provable

with −→. We also keep track of the trace of executions. Traces are sequences of labels. As we use terms

to represent labels, our traces T are sequences of terms. We assume that a program execution starts with

an empty sequence of labels, which we denote with [] to avoid a confusing empty space in our examples.

A reduction step of t carries a label, and we append it to T. Then, T contains all the labels of all the steps
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of t, that is, T is a trace of the execution of t. When the execution of t terminates, the trace is sent over

the channel x.

To make an example:

(bpa, [])>x (seq (act (a)) (seq (act (b)) (act (c)))) reduces to

(bpa,(a))>x (seq (act (b)) (act (c))) which reduces to

(bpa,(a) (b))>x (act (c)) which reduces to x〈(a) (b)〉.0.

Notice that, in BPA, this last c does not take a transition, but c −→c X holds. We could account for

this with a straightforward modification of BPA that performs the last action as a labeled transition, but

we prefer to use its original formulation.

A process isInTrace(t,T)⇒ P ; Q checks whether the label t is one of the labels in the trace T. In

that case, this process behaves as P, otherwise it behaves as Q.

A process x(l).P is a language input prefix. This process receives a language on the channel x, binds

it to l, and continues as P. A process x〈ℓ〉.P is a language output prefix. This process evaluates ℓ to a

language L , sends it over the channel x, and continues as P. Similarly, a process x(tr).P is a trace input

prefix and receives traces. A process x〈T〉.P is a trace output prefix and sends traces.

4 A Reduction Semantics for LANG-N-SEND

Figure 1 shows the reduction semantics of LANG-N-SEND. Structural congruence ≡ is standard. The

reduction relation for the processes of LANG-N-SEND is −→. This relation relies on two auxiliary

relations: the language building reduction relation −→lan, and the program reduction relation −→exe.

Below we describe the rules of Figure 1.

Rule (COMM) is standard. Rule (COMM-LANG) handles the communication of languages. In this

rule, −→∗
lan is the reflexive and transitive closure of −→lan. We evaluate ℓ to a language L , and only

then we perform the passing. Rule (COMM-TRACE) handles the communication of traces. Substitution

P{L /l} substitutes the free occurrences of l in P with L . Substitution P{T/tr} substitutes the free

occurrences of tr in P with T. Both substitutions are capture-avoiding, and their definition is straightfor-

ward, so we do not show it.

Rule (EXEC) handles program executions when the language is available, that is, it has been evaluated

to some L . This rule simply relies on −→exe. Rule (EXEC-CTX) evaluates ℓ with −→lan-reductions.

Rules (IS-IN-TRACE1) and (IS-IN-TRACE2) define the behavior of isInTrace. This process takes

a step to P if the label is in T, and takes a step to Q otherwise.

Rule (UNION) performs the union of two languages using the operation ∪snx. This operation adds

new grammar productions and inference rules to a language in the way that we have seen. This operation

has been previously defined in [5]. (We discuss related work in Section 6.) Rules (UNION-CTX1) and

(UNION-CTX2) evaluate the first and second argument of union, respectively.

Rule (PROGRAM-STEP) handles program executions (L ,T)>x t. This rule is responsible for ex-

ecuting t according to the operational semantics of L . To do so, we should query the inference rule

system in L . However, L contains syntax that represents an inference system. We adopt the solution

used in [5]: we translate the language into a higher-order logic program with JL Klp, and we use the

provability relation |= of logic programs to check whether a step from t is provable for some target t ′ and

some label t ′′. The translation JL Klp to logic programs is easy, and has been described in [5]. The way

this translation works was not novel in there either, as it has been demonstrated previously that inference

systems of the like map well into logic programs [11, 17]. The provability relation |= comes directly
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from the semantics of higher order logic programs, which can be found in [11]. Rule (PROGRAM-STEP)

also appends t ′′ to the trace recorded in the program execution.

Rule (PROGRAM-END) detects that a step is not provable for t. Then, the execution of t is terminated,

and we send the trace over the channel x.

Notice that t may fail to prove a step for several reasons, including that t is stuck because of miss-

ing reduction rules in an ill-defined language. Programmers are responsible for giving well-designed

languages, as LANG-N-SEND does not check that.

Reduction Semantics P ≡ P, P −→ P, ℓ−→lan ℓ, P −→exe P

P | 0 ≡ P P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R) !P ≡ P |!P

(νx).0 ≡ 0 (νx).(νy).P ≡ (νy).(νx).P (νx).(P | Q)≡ (νx).P | Q, if x is not a free name of Q

P1 −→ P′
1

P1 | P2 −→ P′
1 | P2

P −→ P′

(νx).P −→ (νx).P′

P ≡ P′ P′ −→ Q′ Q′ ≡ Q

P −→ Q

(COMM)

x(y).P | x〈z〉.Q −→ P{z/y} | Q

(COMM-LANG)

ℓ−→∗
lan L

x(l).P | x〈ℓ〉.Q −→ P{L /l} | Q

(COMM-TRACE)

x(tr).P | x〈T〉.Q −→ P{T/tr} | Q

(EXEC)

(L ,T)>x t −→exe P

(L ,T)>x t −→ P

(EXEC-CTX)

ℓ−→lan ℓ
′

(ℓ,T)>x t −→ (ℓ′,T)>x t

(IS-IN-TRACE1)

T= t1 · · · tn 1 ≤ i ≤ n

isInTrace(ti,T)⇒ P ; Q −→ P

(IS-IN-TRACE2)

T= t1 · · · tn t 6= ti, for all 1 ≤ i ≤ n

isInTrace(t,T)⇒ P ; Q −→ Q

(UNION)

L1 unionL2 −→lan L1 ∪snx L2

(UNION-CTX1)

ℓ1 −→lan ℓ
′
1

ℓ1 union ℓ2 −→lan ℓ
′
1 union ℓ2

(UNION-CTX2)

ℓ2 −→lan ℓ
′
2

ℓ1 union ℓ2 −→lan ℓ1 union ℓ
′
2

(PROGRAM-STEP)

JL Klp |= (t −→t′′ t ′)

(L ,T)>x t −→exe (L ,T t ′′)>x t ′

(PROGRAM-END)

JL Klp 6|= (t −→t′′ t ′)

(L ,T)>x t −→exe x〈T〉.0

Figure 1: Reduction semantics of LANG-N-SEND.

5 Examples

Server Provides a Disrupt Operator In this example, server is a server that offers two services: task

and quitOnFailureTask. These tasks are executed with BPA processes. However, quitOnFailureTask

is critical, and should stop if a mistake is detected. BPA does not have a way to model disruptions.

Therefore, at the moment of executing quitOnFailureTask (and only in that case), server requests the

piece of operational semantics of the disrupt operator of LOTOS [9], adapted for BPA in [2], and adds it
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to the language bpa from Section 2. Intuitively, P ◮ Q means that P can be disrupted by Q. This process

behaves as P, though at any point, non-deterministically, Q can start its computation, which discards P

forever. We repeat the inference rules for ◮ ([2]).

P1 −→
a X

P1 ◮ P2 −→
a X

P1
a

−→ P′
1

P1 ◮ P2
a

−→ P′
1 ◮ P2

P2
a

−→ P′
2

P1 ◮ P2
a

−→ P′
2

P2 −→
a X

P1 ◮ P2 −→
a X

We define the LANG-N-SEND counterpart of ◮ in two parts. almostDisrupt contains the first row of

the rules above. These rules define the behavior of ◮ insofar the preempted process is concerned. dis-

ruptRules contains the second row of rules, which are for the preempting process. Then, disrupt contains

the union of the two, and is the piece of language with the full definition of ◮.

almostDisrupt , (Process P ::= (◮ P P),

(checkMark A P1)

(checkMark A (◮ P1 P2))

(−→ A P1 P′
1)

(−→ A (◮ P1 P2) (◮ P′
1 P2))

)

disruptRules , (
(−→ A P2 P′

2)

(−→ A (◮ P1 P2) P′
2)

(checkMark A P2)

(checkMark A (◮ P1 P2))
)

disrupt , almostDisrupt union disruptRule

Below, the process disruptOperatorProvider is a server, different from server, that provides the dis-

rupt piece of language over the channel getDisrupt. The code for server is also below. We assume that

bpa program, a term, is a BPA process to be executed for quitOnFailureTask, and that bpa sorry is the

BPA process that can non-deterministically preempt bpa program. For readability, we use ◮ in infix

notation. The process for task is irrelevant, and we chose (act (a)).

disruptOperatorProvider ,!(getDisrupt〈disrupt〉)

server , !( task(x).(bpa, [])>x (act (a))
+
quitOnFailureTask(x).getDisrupt(l).(bpa union l, [])>x (bpa program ◮ bpa sorry) )

system , (server | disruptOperatorProvider | client1 | client2 . . . | clientn)

Suppose that bpa sorry performs the action (sorry). We can detect whether bpa program has been

disrupted with isInTrace. The second branch of the choice operator of server would be

quitOnFailureTask(x).getDisrupt(l).(νx).
((bpa union l, [])>x (bpa program ◮ bpa sorry) | x(tr).isInTrace((sorry), tr)⇒ P1 ; P2)

Here, server creates a private channel x over which the trace is sent. We assume that P1 and P2 are

two processes that server cares to execute depending on whether (sorry) is in the trace or not.

Server Decides Disrupt vs Interrupt In this example, the server disruptOperatorProvider is called

quitModeProvider. It takes in input a channel (such as quitOnFailureTask), and non-deterministically
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decides whether to provide the disrupt operator or the interrupt operator ⊲ from [2]. The process P⊲Q

means that P can be interrupted by Q. Differently from the disrupt operator, which completely discards

P when Q takes over, the interrupt operator resumes P after Q terminates.

bpa program uses one operator whose underlying semantics is given by quitModeProvider. We fix

the symbol for this operator to be ◮. Therefore, when quitModeProvider gives the interrupt semantics,

it does so by giving the rules of ⊲ for the symbol ◮. The piece of language for the preempted process,

almostDisrupt, is the same for ◮ and ⊲. The rules for the preempting process are the following ([2]).

P2
a

−→ P′
2

P1 ⊲P2
a

−→ P′
2 ·P1

P2 −→
a X

P1 ⊲P2
a

−→ P1

Below, interruptRules contains the LANG-N-SEND counterpart of these rules, though defined for

the symbol ◮, as explained above. When we add interruptRules to almostDisrupt we obtain the full

definition of the interrupt operator (given as ◮), which we call interrupt.

interruptRules , (
(−→ A P2 P′

2)

(−→ A (◮ P1 P2) (seq P′
2 P1))

(checkMark A P2)

(−→ A (◮ P1 P2) P1)
)

interrupt , almostDisrupt union interruptRules

quitModeProvider , !whatTask(y).( getQuitMode〈interrupt〉 + getQuitMode〈disrupt〉 )

server , !(task(x).(bpa, [])>x (act (a))
+

quitOnFailureTask(x).whatTask〈quitOnFailureTask〉.getQuitMode(l).
(bpa union l, [])>x (bpa program ◮ bpa sorry) )

system , (server | quitModeProvider | client1 | client2 . . . | clientn)

Server Decides Synchronous vs Asynchronous In this example, the process client executes a CCS

process called ccs program. However, client requests the semantics of the output prefix operator from

the server outputProvider, which decides, non-deterministically, whether ccs program must be executed

synchronously or asynchronously. There is a syntactic difference between the synchronous output a.P
and the asynchronous output a (with no continuation process). As ccs program is fixed, we settle to use

the more general output form a.P, though its semantics will be given by the server.

We define a partial CCS with inaction, input prefix, output prefix, a one-channel restriction operator

P\a, and the parallel operator. The semantics of the output prefix, however, is not given. As we do not

have negative premises in rules, we define P\a by cases. For simplicity, we only include channels x and y.

Channel a ::= x | y

Label L ::= τ | a | a

Process P ::= 0 | a.P | a.P | P | P | P\a

a.P
a

−→ P
P

τ
−→ P′

P\a
τ

−→ P′\a

P
y

−→ P′

P\x
y

−→ P′\x

P
y

−→ P′

P\x
y

−→ P′\x

P
x

−→ P′

P\y
x

−→ P′\y

P
x

−→ P′

P\y
x

−→ P′\y
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P1
L

−→ P′
1

P1 | P2
L

−→ P′
1 | P2

P2
L

−→ P′
2

P1 | P2
L

−→ P1 | P′
2

P1
a

−→ P′
1 P2

a
−→ P′

2

P1 | P2
τ

−→ P′
1 | P′

2

P1
a

−→ P′
1 P2

a
−→ P′

2

P1 | P2
τ

−→ P′
1 | P′

2

Below, partialCCS contains the LANG-N-SEND counterpart of the partial CCS defined above. Inac-

tion is called nil, input prefix is called in, output prefix is called out, the restriction operator is called res,

and the parallel operator is called par.

partialCCS ,

(Channel a ::= (x) | (y)
Label L ::= (tau) | (in a) | (out a)
Process P ::= (nil) | (in a P) | (out a P) | (res a P) | (par P P),

(−→ (in a) (in a P) P)
(−→ (tau) P P′)

(−→ (tau) (res a P) (res a P′))

(−→ (in (y)) P P′)

(−→ (in (y)) (res (x) P) (res (x) P′))

(−→ (out (y)) P P′)

(−→ (out (y)) (res (x) P) (res (x) P′))

(−→ (in (x)) P P′)

(−→ (in (x)) (res (y) P) (res (y) P′))

(−→ (out (x)) P P′)

(−→ (out (x)) (res (y) P) (res (y) P′))

(−→ L P1 P′
1)

(−→ L (par P1 P2) (par P′
1 P2))

(−→ L P2 P′
2)

(−→ L (par P1 P2) (par P1 P′
2))

(−→ (in A) P1 P′
1) (−→ (out A) P2 P′

2)

(−→ (tau) (par P1 P2) (par P′
1 P′

2))

(−→ (out A) P1 P′
1) (−→ (in A) P2 P′

2)

(−→ (tau) (par P1 P2) (par P′
1 P′

2))
)

To complete partialCCS with synchronous output, we add the usual rule for output prefix. To com-

plete partialCCS with asynchronous output, we add 1) the asynchronous output a to the grammar, added

as (out′ a) below, 2) its reduction rule a
a

−→ 0, and 3) the rule a.P
τ

−→ (a | P)1:

synchOutput , ( (−→ (out a) (out a P) P) ) (* this rule is a.P
a

−→ P *)

asynchOutput , ( Process P ::= (out′ a),
(−→ (out a) (out′ a ) (nil)) (−→ (tau) (out a P) (par (out′ a) P)) ).

We give the definitions of outputProvider, client, and system below. When ccs program is the pro-

cess (x.y.0 | y.0)\x, whether a communication over the channel y happens or not depends on whether

outputProvider sends synchOutput or asynchOutput.

outputProvider ,!( getOutput〈synchOutput〉 + getOutput〈asynchOutput〉 )

client , getOutput(l).(partialCCS union l, [])>x ccs program

system , client | outputProvider

1Notice that a simple rule like a.P
τ

−→ a.0 | P is problematic, as the rule applies to a.0, as well, replicating forever. Also

notice that this τ-transition does not resolve a choice, as partialCCS does not contain +.
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6 Related Work

Our closest related work is [5]. Such work offers a λ -calculus with first-class languages. We would like

to characterize precisely the differences between this paper and that work. This paper embeds language

definitions in the context of the π-calculus rather than the λ -calculus. The syntax for languages, the

language union operator, and the translation to logic programs are from [5]. The operator for program

executions, and rule (PROGRAM-STEP) are inspired by [5], but there are several differences in that [5]

does not allow for labeled transitions, and does not keep track of the trace of the execution. Moreover,

as a consequence of this latter remark, [5] does not have operations such as isInTrace, nor any other

operation for analyzing executions. Furthermore, [5] imposes that languages have a notion of values,

and successful program executions terminate ending up with a value. This hardly applies to process

algebras. [5] does not make any example of concurrent scenarios. All the examples in this paper are new.

Semantics engineering tools allow programmers to define their own programming languages [7, 18,

20]. Language workbenches [6] go even further in that direction, and can automatically generate many

components for the languages being defined, such as editors with syntax colouring, highlighting, com-

pletion, and reference resolution, and they assist in code generation, as well as other phases. However,

we are not aware of systems that allow pieces of languages to be sent and received.

Multi-language operational semantics has been studied in several works. Matthews and Findler pro-

vide a seminal work of this field [10]. Recent works in multi-language semantics are [15, 16, 19]. All

these works apply to two languages selected beforehand, and do not handle arbitrary languages specified

by users. Furthermore, they do not offer a formal semantics of processes that communicate languages.

7 Conclusion

We have presented LANG-N-SEND, a π-calculus that is equipped with language definitions. Processes

can define languages, and use them to execute programs. Moreover, processes can send and receive

pieces of languages through channels. We have presented a reduction semantics for LANG-N-SEND.

We have offered examples that show that LANG-N-SEND can express concurrent scenarios that are

not typical, where processes add language features based on semantics sent by servers, and where they

obtain which semantics their operators adopt from servers. We believe that LANG-N-SEND represents a

first step to a firm foundation for this type of programming.

In the future, we would like to extend LANG-N-SEND. Indeed, we see LANG-N-SEND as a minimal

foundational calculus that accommodates the communication of languages. We purposely did not include

operations that, in fact, are interesting in this context. We plan to extend LANG-N-SEND with more

operations on languages, such as removing rules, and renaming operators, as well as more complex

features such as converting languages from substitution-based to environment-based, among others.

Adding binders to our language definitions does not seem to be problematic. [5] has made that ad-

dition to model a λ -calculus as language definition. We plan to use binders to make examples with the

π-calculus and its variants as LANG-N-SEND language definitions.

We plan to add more operations that query traces more precisely, such as counting labels in traces,

and checking whether some labels appear before others. We also plan to add primitive operations for

slicing the traces received [1], and we plan to add monitors to program executions [4].

LANG-N-SEND does not allow for the term of a terminated program execution to be sent. We have

not included this feature because we believe that it enables rather complex dynamics, and we wanted

to confine our examples to the already interesting scenarios that sending/receiving languages allow. We
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plan to explore the sending of terms after execution as future work.

We plan to study more examples such as servers that decide the semantics of the parallel operator for

client processes (CCS style, only interleaving and no communication, or the synchronous CSP parallel

composition [8], for instance). Another example is that of servers that decide the semantics of the choice

operator, such as internal vs external, among other possibilities.

Finally, we would like to study an appropriate notion of bisimilarity equivalence in this context.
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Instrumentation Techniques. In: Proceedings Second International Workshop on Pre- and Post-Deployment

Verification Techniques, PrePost@iFM 2017, Torino, Italy, 19 September 2017, pp. 15–28, doi:10.4204/

EPTCS.254.2.

[5] Matteo Cimini (2021): A Calculus for Multi-language Operational Semantics. In: Software Verification -

13th International Conference, VSTTE 2021, New Haven, CT, USA, October 18-19, 2021, and 14th Interna-

tional Workshop, NSV 2021, Los Angeles, CA, USA, July 18-19, 2021, Revised Selected Papers, pp. 25–42,

doi:10.1007/978-3-030-95561-8_3.

[6] Sebastian Erdweg, Tijs Storm, Markus Völter, Meinte Boersma, Remi Bosman, WilliamR. Cook, Albert

Gerritsen, Angelo Hulshout, Steven Kelly, Alex Loh, Gabriël D. P. Konat, PedroJ. Molina, Martin Palatnik,

Risto Pohjonen, Eugen Schindler, Klemens Schindler, Riccardo Solmi, Vlad A. Vergu, Eelco Visser, Kevin

Vlist, Guido H. Wachsmuth & Jimi Woning (2013): The State of the Art in Language Workbenches. In Martin

Erwig, Richard F. Paige & Eric Wyk, editors: Software Language Engineering, Lecture Notes in Computer

Science 8225, Springer, pp. 197–217, doi:10.1007/978-3-319-02654-1_11.

[7] Matthias Felleisen, Robert Bruce Findler & Matthew Flatt (2009): Semantics Engineering with PLT Redex,

1st edition. The MIT Press.

[8] C.A.R. Hoare (1985): Communicating Sequential Processes. Prentice-Hall International Series in Computer

Science, Prentice Hall. Available at http://www.usingcsp.com/cspbook.pdf.

[9] ISO/IEC (1989): LOTOS — a formal description technique based on the temporal ordering of observational

behaviour. ISO IS 8807, doi:10.3403/00230466U.

[10] Jacob Matthews & Robert Bruce Findler (2007): Operational Semantics for Multi-Language Programs. In:

Proceedings of the 34th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages, POPL ’07, Association for Computing Machinery, New York, NY, USA, p. 3–10, doi:10.1145/

1190216.1190220.

[11] Dale Miller & Gopalan Nadathur (2012): Programming with Higher-Order Logic, 1st edition. Cambridge

University Press, New York, NY, USA, doi:10.1017/CBO9781139021326.

[12] Robin Milner, Joachim Parrow & David Walker (1992): A calculus of mobile processes, I. Information and

Computation 100(1), pp. 1–40, doi:10.1016/0890-5401(92)90008-4.

[13] Robin Milner, Joachim Parrow & David Walker (1992): A calculus of mobile processes, II. Information and

Computation 100(1), pp. 41–77, doi:10.1016/0890-5401(92)90009-5.

http://dx.doi.org/10.1145/93542.93576
http://dx.doi.org/10.1016/S0019-9958(84)80025-X
http://dx.doi.org/10.4204/EPTCS.254.2
http://dx.doi.org/10.4204/EPTCS.254.2
http://dx.doi.org/10.1007/978-3-030-95561-8_3
http://dx.doi.org/10.1007/978-3-319-02654-1_11
http://www.usingcsp.com/cspbook.pdf
http://dx.doi.org/10.3403/00230466U
http://dx.doi.org/10.1145/1190216.1190220
http://dx.doi.org/10.1145/1190216.1190220
http://dx.doi.org/10.1017/CBO9781139021326
http://dx.doi.org/10.1016/0890-5401(92)90008-4
http://dx.doi.org/10.1016/0890-5401(92)90009-5


56 Lang-n-Send: Processes That Send Languages

[14] Peter D. Mosses (2008): Component-Based Description of Programming Languages. In: Visions of Com-

puter Science - BCS International Academic Conference, Imperial College, London, UK, 22-24 September

2008, pp. 275–286, doi:10.14236/ewic/VOCS2008.23.

[15] Daniel Patterson & Amal Ahmed (2017): Linking Types for Multi-Language Software: Have Your Cake

and Eat It Too. In Benjamin S. Lerner, Rastislav Bodı́k & Shriram Krishnamurthi, editors: 2nd Summit

on Advances in Programming Languages (SNAPL 2017), Leibniz International Proceedings in Informat-

ics (LIPIcs) 71, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, pp. 12:1–12:15,

doi:10.4230/LIPIcs.SNAPL.2017.12.

[16] Daniel Patterson, Jamie Perconti, Christos Dimoulas & Amal Ahmed (2017): FunTAL: Reasonably Mixing a

Functional Language with Assembly. In: Proceedings of the 38th ACM SIGPLAN Conference on Program-

ming Language Design and Implementation, PLDI 2017, Association for Computing Machinery, New York,

NY, USA, pp. 495–509, doi:10.1145/3062341.3062347.
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