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Session Types offer a typing discipline that allows protocol specifications to be used during type-
checking, ensuring that implementations adhere to a given specification. When looking to realise
global session types in a dependently typed language care must be taken that values introduced in the
description are used by roles that know about the value.

We present Sessions, a Resource Dependent Embedded Domain Specific Language (EDSL)
for describing global session descriptions in the dependently typed language Idris. As we construct
session descriptions the values parameterising the EDSLs’ type keeps track of roles and messages
they have encountered. We can use this knowledge to ensure that message values are only used by
those who know the value. Sessions supports protocol descriptions that are computable, compos-
able, higher-order, and value-dependent. We demonstrate Sessions expressiveness by describing
the TCP Handshake, a multi-modal server providing echo and basic arithmetic operations, and a
Higher-Order protocol that supports an authentication interaction step.

1 Introduction

Multi-Party Session Types (MPSTs) are a well-known typing discipline for describing sequences of
message exchanges over communication channels [20]. Global session types present an overview of the
interactions made between each component, and local session types describe the interactions respective
to each participant. When realising MPSTs both global and local types are commonly presented ei-
ther as bespoke Domain Specific Languages (DSLs) [39]; EDSLs that extend an existing programming
language [24]; or a language extension [26].

MPSTs are, however, limited in their expressiveness. Session designers cannot specify value depen-
dencies between sent messages, or reason about message contents. Recent work has extended the theory
of MPST to incorporate value based reasoning on messages [37, 38, 5, 27].

Dependent types allow for more precise reasoning on programs by allowing types to depend on val-
ues. Existing work has shown how dependent types provide greater control over programs, and how
they can be used to reason about communication in concurrent programs [12, 11, 10, 38] and communi-
cating systems [19]. More generally, earlier work [8, 13] has shown how dependent types can provide
resource-based type-level reasoning about programs.

Idris is a general purpose functional language with dependent types [7], Figure 1a presents a naı̈ve im-
plementation of a global session description as an EDSL within Idris. The type for expressions, Session,
is indexed by a type describing participants (role) and type associated with expressions—type. Mes-
sage passing is described using Send in which the sending and receiving roles are specified, together
with the type of message being sent. Expressions are sequenced using a standard Let construct. This is
possible by indexing Session by the type associated with individual expressions. The Let expression
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data Session : (type, role : Type)
-> Type where

Let : (this : Session a role)
-> (into : a -> Session b role)
-> Session b role

Send : (from, to : role)
-> (type : Type)
-> Session type role

End : Session () role

(a) Specification.

data Packet = Syn | SynAck | Ack

tcpHandshakeN : (alice,bob : role)
-> Session () role

tcpHandshakeN alice bob = do
Send alice bob (Packet, Nat)
Send bob alice (Packet, Nat, Nat)
Send alice bob (Packet, Nat, Nat)
End

(b) Example

Figure 1: Naı̈ve Realisation of an EDSL for describing Global Session Types.

also leads to Do-notation through implementation of Idris’ monadic bind operator—(>>=). Sessions
descriptions are concluded using End.

Figure 1b demonstrates use of Session to describe the well-known TCP-handshake [33]. The roles
of “Alice” and “Bob” describe the client and server, and Packet describes the TCP messages themselves.
Each send operation describes how Alice and Bob send the packet and sequence numbers in a tuple. How-
ever, our session description does not describe the value dependencies between the sequence numbers,
nor which constructor of Packet should be sent. Specifically, we should be able to provide guarantees
that the sequence numbers are incremented by one when they are returned to their originators.

tcpHandshakeDep : (alice,bob : role) -> Session () role
tcpHandshakeDep alice bob = do

(_,x) <- Send alice bob (Packet, Nat)
(_,x',y) <- Send bob alice (Packet, (xplus1 ** xplus1 = S x), Nat)
Send alice bob (Packet, (samex ** samex = x'), (yplus1 ** yplus1 = S y))
End

(a) Value Dependent Specification
tcpHandshakeErr : (alice, bob, charlie : role) -> Session () role
tcpHandshakeErr alice bob charlie = do

(_,x) <- Send alice bob (Packet, Nat)
(_,x',y) <- Send bob alice (Packet, (xplus1 ** xplus1 = S x), Nat)
Send charlie alice (Packet, (xplus1 ** xplus1 = S x), Nat)
Send alice bob (Packet, (samex ** samex = x'), (yplus1 ** yplus1 = S y))
End

(b) Errorful Value Dependent Specification

Figure 2: Global Session Types described using EDSL presented in Figure 1a.

The Let construct of Session allows binding of, and pattern matching on, message values to an
identifier that can be reasoned about using standard Idris constructs. Figure 2a demonstrates how we
can use these bound values to describe messages that rely on previously seen values. A dependent pair
provides existential quantification that the type of Bob’s response to Alice contains the sequence number
x incremented by one. Standard equality types (=) ensure this relation is available at the type-level.
Similar use of dependent pairs ensures that the same incremented sequence number is returned to Bob,
together with their sequence number y also incremented by one. However, our EDSL does not reason
about message origin, nor who is aware of these values. Figure 2b demonstrates how we can insert a third
participant “Charlie” into the protocol who can send a message to Alice whose type depends on a value
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that Charlie is not aware of. When specifying EDSLs for global session descriptions in a dependently
typed language we must prevent roles from depending on values they are not aware of.

1.1 Contributions

Taking inspiration from Multi-Party Session Types we have been investigating how dependent types, as
presented in Idris, can be used to design, implement, and reason about communicating systems. Existing
work has presented a type-driven approach for designing and developing communicating concurrent
systems [11]. A limitation in this work is not being able to specify value-dependencies on messages for
multi-party protocols. This paper presents the initial outcomes of our research to address this limitation.

Resource-Dependent EDSLs are a common design pattern associated with EDSL construction in
Idris [10, 9] derived from existing work on parameterised monads and Hoare monads [3, 6]. Such
construction allows us to associate, and manage, an abstract state within the type of the EDSL itself.
Using this construction we can index the type of our EDSL by a knowledge index that captures the
messages seen by each participant. Using this index we ensure that value dependent messages are only
sent by participants using values that the participant knows about.

Our main contributions are:

1. Sessions, a Resource-Dependent EDSL to specify global session descriptions. Sessions im-
proves upon existing EDSL designs by introducing global session descriptions that are computable,
composable, higher-order, and value-dependent.

2. Several example session descriptions that describe the TCP Handshake (Section 3.1), a multi-
modal server providing echo and basic arithmetic operations (Section 3.2), and a higher-order
session description that emulates an authentication interaction—Section 3.3.

Sessions has been realised using Idris, however, the construction techniques presented are agnostic
to dependently typed languages. Other languages such as Agda [29] should be capable of realising this
EDSL.

2 A Language for Describing Sessions

Figure 3 presents Sessions, our EDSL for specifying global session descriptions. Messages are repre-
sented using variables that have an associated abstract state that keeps track of roles that have seen the
message. Central to the EDSLs operation is a parameterised monad that manages the set of variables and
their abstract state: The Knowledge Index.

Knowledge Index Figure 4a presents the various type-level data structures that make the knowledge
index. Roles within our EDSL are represented as an indexed data type tagged with a descriptive name.
The type Role is indexed by the type associated with roles to ensure that all roles are from the same
family. This representation of roles is a marked difference from the naı̈ve implementation presented in
Figure 1a. Tagging of roles with a string value provides role comparison and reuse of existing predicates
for list quantification. Each message in a session description is represented by an indexed type Var,
whose type is indexed by the type of the message being sent. During type checking Idris’ elaborator
allows us to distinguish between different instances of Var based on their names and type-level values.
The knowledge index itself is a list of state items. Items within our knowledge index associate a message
type, with a variable, and a list of roles that are aware of the message. Standard list quantifiers, such as
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data Sessions : (type : Type)
-> (roleType : Type)
-> (participants : List (Role roleType))
-> (old : List (Item roleType))
-> (new : type -> List (Item roleType))
-> Type where

Let : (this : Sessions a roleType ps old ctxt_fn)
-> (into : (value : a) -> Sessions b roleType ps (ctxt_fn value) ctxt_fn_new)
-> Sessions b roleType ps old ctxt_fn_new

NewMsg : (creator : Role roleType) -> (mType : Type) -> (prfInvolved : Elem creator ps)
-> Sessions (Var (MSG mType)) roleType ps old

(\lbl => MkItem (MSG mType) lbl ([creator]) :: old)

NewDepMsg : (creator : Role roleType) -> (dep : Var (MSG mType))
-> (prfKnows : Any (KnowsData creator dep) old) -> (pred : mType -> Type)
-> Sessions (Var (MSG (x ** pred x))) roleType ps old

(\lbl => MkItem (MSG (x ** pred x)) lbl ([creator]) :: old)

Send : (sender, receiver : Role roleType) -> (msg : Var (MSG mType))
-> (senderInvolved : Elem sender ps) -> (receiverInvolved : Elem receiver ps)
-> (prf : Any (KnowsData sender msg) old)
-> Sessions () roleType ps old

(const $ update old prf (Learn receiver))

Rec : Inf (Sessions () roleType ps Nil (const Nil))
-> Sessions () roleType ps ctxt (const Nil)

Call : Sessions () roleType ss Nil (const Nil) -> (prf : Overlapping ps ss)
-> Sessions () roleType ps ctxt (const ctxt)

End : Sessions () roleType ps old (const Nil)

Read : (msg : Var (MSG mType)) -> (prf : Any (AllKnow ps msg) old)
-> Sessions mType roleType ps old (const old)

Figure 3: Type definition for Sessions.

Any and All, help reason about the knowledge context itself, and such quantifiers allow construction of
operations acting on knowledge index instances—see Figure 4b.

Parameterised Type Sessions is a resource dependent EDSL in which the program’s abstract state is
the knowledge index. The parameters of Sessions form a Hoare monad [3, 6] where the resulting type-
level state is dependent on the expression value: type—the expression’s return type; roleType—the
underlying type for roles; participants—the set of roles involved in the protocol; old—the knowledge
index in which the expression must operate; and new—a function that computes the resulting knowl-
edge index that is dependent upon the result associated with the expression. A Let-binding allows us
to sequence expressions, and bind message values to identifiers. Each expression describes how the
knowledge index is affected by the result of the expression. When the result is not dependent on the
expression value the function const (which drops its first parameter) allows one to state the new value.
When sequencing expressions, together with result dependent changes, the value of the knowledge index
will change dynamically as we step through a session description.
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data Role : (type : Type) where
MkRole : (tag : String) -> Role type

data Ty = MSG Type

data Var : (metaType : Ty) -> Type where
MkVar : Var metatype

data Item : (type : Type) -> Type where
MkItem : (msgtype : Ty)

-> (label : Var msgtype)
-> (value : List (Role type))
-> Item type

(a) Definition.

update : (ctxt : List (Item roleType))
-> (idx : Any p ctxt)
-> (f : (item : Item roleType)

-> (prf : p item)
-> Item roleType)

-> List (Item roleType)
update (x :: xs) (Here y) f = f x y :: xs
update (x :: xs) (There y) f =

x :: update xs y f

(b) Operations.

Figure 4: Knowledge Index Definition and Helpers.

data KnowsData : (role : Role roleType)
-> (msg : Var (MSG typeM))
-> (item : Item roleType)
-> Type where

WhoKnows : Elem r rs
-> KnowsData r l (MkItem (MSG ty) l rs)

(a) Predicate stating that a role knows the message.

Learn : Role roleType
-> (i : Item roleType)
-> (prf : KnowsData s l i)
-> Item roleType

Learn r (MkItem (MSG ty) l rs) (WhoKnows prf) =
MkItem (MSG ty) l (r::rs)

(b) Function to add role to abstract state.
data AllKnow : (roles : List (Role roleType))

-> (msg : Var (MSG typeM))
-> (item : Item roleType) -> Type where

LastToKnow : (prfKnows : Elem r rs) -> AllKnow [r] l (MkItem (MSG ty) l rs)

NextToKnow : Elem r rs
-> AllKnow rs' lbl (MkItem (MSG ty) lbl rs)
-> AllKnow (r::rs') lbl (MkItem (MSG ty) lbl rs)

(c) Predicate stating all the roles know the message.

Figure 5: Predicates reasoning on Items within the Knowlege Context, and operations that use these
predicates.

Message Creation NewMsg and NewDepMsg are responsible for introducing message descriptions. The
constructor NewMsg will introduce a message of type mType created by creator if creator was in the
global set of participants ps. A list quantifier provides this guarantee. Creation of the message will
extend the knowledge context with a new Item instance that populates the list of roles with creator. The
constructor NewDepMsg will introduce a dependently typed message that depends on a previously seen
value if said value is known to the message creator. This proof is provided by prfKnows, an instance of
a list quantification that the predicate KnowsData holds for at least one element in the knowledge index.
Figure 5 presents the definition for KnowsData that states the given role is an element in the list of roles
associated with the given message. The parameter pred is a function that constructs the type of the
message to be sent, with the actual returned message type being a dependent pair that details the value
associated with dep that is passed to pred.
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Sending Messages The expression Send allows one to specify the type of message that is to be sent
and which roles are sending and receiving the message. As with all the other expressions evidence must
be given to ensure expression correctness. We require that both the sender and receiver are elements of
ps, and that the sender knows the message to be sent—cf. predicates associated with dependent message
creation. If a send is successfully described the knowledge index will be updated to add receiver to the
list of roles that know about msg using the function update.

Accessing Values By design Sessions forbids message descriptions to be bound to a value explicitly,
as not all participants will know the value. However, if all participants in the protocol are aware of the
message, then we can depend on the value. The expression Read facilitates this. The predicate AllKnow
(presented in Figure 5) constructs an inductive proof that each role in the session has knowledge of the
message. Section 3 presents an example of Read in action.

Recursion Not all sessions comprise of a linear sequence of actions, interactions between roles may
repeat. Rec and Call allow for recursively calling an already described session, and calling an external
session. These functions are restricted such that the knowledge of the called session must begin and end
with an empty context i.e. no knowledge is learned about the supplied session. A further restriction is on
the set of participants respective to the calling function. For Rec the caller and callee must have the same
set, while a call to Call must have overlapping sets. Here Overlapping is a thinning [1] that ensures
elements of ps appear in order within ss. A thinning allows for structures to be weakened respective to
some decision procedure [15, 2].

send : (sender, receiver : Role roleType)
-> (msg : Var (MSG mType))
-> {auto prfSender : Elem sender ps}
-> {auto prfReceiver : Elem receiver ps}
-> {auto prf : Any (KnowsData sender msg) ctxt_old}
-> Session () roleType ps ctxt_old (const $ update ctxt_old prf (Learn receiver))

send s r msg {prfSender} {prfReceiver} {prf} =
Send s r msg prfSender prfReceiver prf

Figure 6: Example API for Send.

A Clean API Separately, we provide a high-level API for protocol designers to use when specifying
protocols. Without this API the proofs required for each expression have to be explicitly presented. We
can use Idris’ auto implicit feature to automatically construct the proofs associated with an expression.
Idris’ compiler will attempt to search and combine values, found in the expressions context, that together
satisfy the type of the presented predicate. If a suitable value cannot be constructed the expression will
fail to type-check. Figure 6 demonstrates this approach for the Send expression. Further, we can provide
a function (Session) to describe the expected initial and final state of the knowledge index together with
the final expression type such that the only expression that will satisfy the end conditions would be the
End expression.
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3 Example Sessions

This section considers the expressiveness of our EDSL by considering three protocol descriptions. The
first example presents the TCP Handshake that demonstrates how we can construct value dependent
message descriptions. The second example is a multi-modal server that demonstrates how we can com-
pose protocol descriptions together and make interaction decisions based of message values. The final
example demonstrates how we can construct higher-order protocols.

3.1 TCP Handshake

tcpHandShakeDep : Session roleType [Alice, Bob]
tcpHandShakeDep = do
m1 <- newMsg Alice (Packet, Nat)
send Alice Bob m1
m2 <- newDepMsg Bob m1 (\v => (Packet, Next (snd v), Nat))
send Bob Alice m2
m3 <- newDepMsg Alice m2 (\v => (Packet,

(Literal $ fst $ snd $ (snd v)), (Next $ (snd $ snd $ (snd v)))))
send Alice Bob m3
end

Figure 7: A Dependently Typed Global Session Description for the TCP Handshake.

Figure 7 illustrates how the TCP handshake (presented earlier in Section 1) can be specified using
Sessions. Central to operation of the handshake is the sending of two sequence numbers that have
been correctly transformed. Within this example, Alice sends a non-dependently typed message (m1) to
Bob that contains the initial packet and Alice’s sequence number. In response, Bob constructs a value
dependent message (m2) that depends on the content of m1. The anonymous function states that m2 must
have a type in which the second postion in the tuple is the sequence number from m1 incremented by one.
Here the type Next is a type synonym for a dependent pair stating the transformation on the sequence
number from m1. The final message sent by Alice (m3) is dependent on m2. Alice must send a packet
together with the incremented sequence number from m2, and the second sequence number incremented
by one. Recall that the type of m2 is a dependent pair in which the message type is in the second position
and the dependend upon value is in the first. Therefore to access the underlying values we have to project
into these pairs, and their contents, accordingly. Use of anonymous functions here does complicate the
session description. Such complication can be resolved with named functions.

3.2 Multi-Modal Server

Figure 8 presents the complete specification of a global session description for interacting with a server
that offers simple arithmetic calculations, and an echo service. Figure 8a presents the messages sent.
Within this example: Alice represents the client; Bob the server; and Charlie a third-party for performing
simple arithmetic. Figure 8d presents the top-level interactions between Alice and Bob. Alice sends a
message of type CMD to Bob. Once Bob has received the message all participants specified in the top-
level protocol have seen the value. This enables the Read expression to access the value, and allow
case-splitting (analogous to offer and choice from MPST) to change behaviour based on the message’s
value. If the command was: Math then we call the Maths protocol and loop—Figure 8b; Echo then we
call the Echo protocol and loop—Figure 8c; or Quit then we end the interaction.
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data MathsCMD = Add Nat Nat | Sub Nat Nat | Div Nat Nat | Mul Nat Nat
data CMD = Maths | Echo | Quit

(a) Message Types and Values.
doMaths : Session roleType [Alice, Bob, Charlie]
doMaths = do

m1 <- newMsg Bob (Literal "Time for Maths!")
send Bob Alice m1
m2 <- newMsg Alice MathsCMD
send Alice Bob m2
send Bob Charlie m2
m3 <- newMsg Charlie Nat
send Charlie Bob m3
send Bob Alice m3
end

(b) A Maths Protocol.

doEcho : Session roleType [Alice, Bob]
doEcho = do

m1 <- newMsg Bob (Literal "Time to Echo!")
send Bob Alice m1
m2 <- newMsg Alice String
send Alice Bob m2
m3 <- newDepMsg Bob m2 (Literal)
end

(c) An Echo Protocol.

myServer : Session roleType [Alice, Bob]
myServer = do

m1 <- newMsg Alice CMD
send Alice Bob m1
m1val <- read m1
case m1val of

Maths => do {call doMaths; Rec myServer} Echo => do {call doEcho; Rec myServer}; Quit => end}

(d) The Server Protocol.

Figure 8: A Global Session Type for a Server.

The doEcho protocol is a non-recursive implementation of RFC862/RFC347 [34, 32] in which Bob
repeats the message Alice sent, back to Alice. We ensure this repetition of values using a dependent
message with a predicate to reason about the sent value. Here Literal is a type-synonym for a dependent
pair with an equality predicate. Note the use of Literal to ensure that the welcome message is the
literal string value given. The doMath protocol allows Alice to send Bob simple arithmetic expressions
(MathsCMD), that Bob sends to Charlie. Bob can use Charlie to generate a response to send to Alice.

3.3 Higher-Order Protocols

HoppyServer : Session roleType ss
-> {auto prf : Overlapping [Alice,Bob] ss}
-> Session roleType [Alice,Bob]

HoppyServer body = do
m1 <- newMsg Bob (Literal "Who are you!")
send Bob Alice m1
m2 <- newMsg Alice String
send Alice Bob m2
m3 <- newMsg Bob Bool
send Bob Alice m3
res <- read m3
case res of { True => do {call body; end}; False => end}

Figure 9: A Higher-Order Protocol.

Figure 9 presents a Higher-Order Protocol, in which we treat session descriptions as first class con-
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structs. Rather than explicitly calling a named description (cf. Figure 8d) we pass in descriptions as
parameters. The predicate Overlapping ensures that the participants of body (the called description)
overlap with those specified in HoppyServer. The description presented in Figure 9 presents a decision
procedure reminiscent of an authentication procedure. Alice sends some message that is checked by Bob
who responds with a decision, and the protocol’s next steps are based on that decision. This is not secure
but nonetheless demonstrates the potential power of Sessions. We can construct protocol descriptions
that are composable and higher-order.

4 Discussion

Sessions is an EDSL for describing global session descriptions within a dependently typed host lan-
guage. We introduce value dependent messages and reason about messages within a paramterised monad.
Construction of Sessions as a EDSL allows session descriptions to be first class, composable, and com-
putable. Overriding Do notation facilitates use of Idris’ control structures to describe decisions. Here
choice differs from branching/selection as traditionally seen in session type implementations. Sessions
supports value based choice using pattern-matching on message values or constant values.

MPSTs can provide guarantees towards several protocol properties. Namely, session fidelity, com-
munication safety, liveness, and progress [20, 21]. Many of these properties are for complete systems,
Sessions describes global descriptions only. Existing work has shown a correct-by-construction ap-
proach to linking session descriptions to implementations within a dependently typed language [11].
Global descriptions are projected to compute the local type for the viewpoint of a protocol participant
as a continuation. The type of the implementation is indexed by the continuation to ensure there is an
intrinsic link between the specified global session description and its implementation. Thus providing
communication safety and session fidelity. We are currently investigating how to build a similar frame-
work that includes our value dependent session descriptions.

Further, Idris is a total language that checks for program termination and coverage of pattern match-
ing clauses. Thus, our global session descriptions are checked for termination and coverage in the same
way as regular Idris programs. We believe that implementing local types and implementations within a
total language will help to provide guarantees towards liveness and progress.

5 Related Work

There are many implementations of Session Types available1. Generally, there are three approaches to
implementation either: as a DSL; as an EDSL; or as a language extension.

DSL Scribble is a DSL for describing MPSTs [39]. The DSL is limited in describing non-value de-
pendent message exchanges. There are various existing runtimes that generate code from these descrip-
tions [28, 24, 14]. As Sessions is an EDSL the resulting specifications cannot not be directly resused
by other projects2. However, the library can be extended to generate Scribble specifications directly
from the Session specification. StMungo is a Java oriented tool for generating local types from Scribble
descriptions [24].

1http://simonjf.com/2016/05/28/session-type-implementations.html
2Idris does, however, support multiple code generation targets, however, embedding compiled Idris code into other code

projects is non-trivial.

http://simonjf.com/2016/05/28/session-type-implementations.html
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Scribble-Refined Recent work [27] has extended Scribble specifically for F# to leverage the lan-
guage’s support for refinement types [17] and type providers [31]. The authors present an expressive
refinement language to specify boolean refinements related to messages being sent. Sessions comple-
ments this work by showing an alternative realisation to reasoning about value messages.

EDSL EDSLs have been realised for: Haskell [36, 30, 35]; Go [25]; and Rust [22]. These approaches
follow our approach, however, the host language chosen is not as expressive in describing global session
description and thus do not allow for reasoning on message descriptions.

Language Extension Not all implementations follow the DSL approach. Others have extended exist-
ing programming languages to embedded MPST directly within the language. For example, Links and
SIL [16, 26, 4]. However, these approaches require extending the language and compiler. Sessions
presents an opportunity to develop the specification in the same language as the implementation without
major changes required to the language itself.

MPST Theory Our work in using a dependently typed language to realise value dependent global ses-
sion descriptions compliments existing theoretical work [38, 37, 5]. Sessions achieves value-dependent
session descriptions by maintaining a knowledge index. This compliments existing work [37, 27] in
which the authors define knowledge in much the same way. However, we have embedded the knowledge
index directly within the type-system of the global session description ensuring that our EDSL instances
are correct-by-construction with respect to value dependencies. A Design-By-Contract approach has
been taken to extend MPST with message oriented assertions [5]. We remark that the assertions associ-
ated with messages are comparable to the dependent pair construct in which the message (first position)
must satisfy the predicate in the second position. Our use of dependent pair’s is different: the value in
the first position presents evidence that the predicate (message) in the second position is valid.

6 Conclusion

Type systems in modern programming languages are expressive enough to support EDSLs describing
session types. With the additional expressivity given by dependent types, we have shown that depen-
dently typed languages such as Idris provide a natural setting to further enhance the expressiveness of
EDSLs for describing global session descriptions.

Sessions demonstrates how we incorporate reasoning on value-dependencies between messages,
and provide first-class global session descriptions. Idris’ auto implicit mechanism has proven useful in
presenting correct-by-construction guarantees towards protocol design. With this new setting for global
session design we expect to be able to use Idris’ type-system to verify additional correctness guarantees
of our global descriptions. Especially properties required by security protocols [18, 23] where we also
need to reason about the content of messages, and more importantly how messages are related.

Sessions is an EDSL for global session descriptions. We wish to compliment our EDSL with
a complete system for protocol design, implementation, and verification such that we provide a self-
contained system within a single language. Of importance will be how we can correctly project our
descriptions to local types such that only correct local actions and knowledge are carried over.
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