
V.T. Vasconcelos and P. Haller (Eds.): Workshop on Programming Language

Approaches to Concurrency- and Communication-cEntric Software (PLACES’17)

EPTCS 246, 2017, pp. 21–27, doi:10.4204/EPTCS.246.5

c© P. Haller & L. Axelsson

Quantifying and Explaining Immutability in Scala

Philipp Haller

KTH Royal Institute of Technology
Stockholm, Sweden

phaller@kth.se

Ludvig Axelsson

KTH Royal Institute of Technology
Stockholm, Sweden

ludvigax@kth.se

Functional programming typically emphasizes programming with first-class functions and immutable

data. Immutable data types enable fault tolerance in distributed systems, and ensure process isola-

tion in message-passing concurrency, among other applications. However, beyond the distinction

between reassignable and non-reassignable fields, Scala’s type system does not have a built-in no-

tion of immutability for type definitions. As a result, immutability is “by-convention” in Scala, and

statistics about the use of immutability in real-world Scala code are non-existent.

This paper reports on the results of an empirical study on the use of immutability in several

medium-to-large Scala open-source code bases, including Scala’s standard library and the Akka actor

framework. The study investigates both shallow and deep immutability, two widely-used forms of

immutability in Scala. Perhaps most interestingly, for type definitions determined to be mutable,

explanations are provided for why neither the shallow nor the deep immutability property holds; in

turn, these explanations are aggregated into statistics in order to determine the most common reasons

for why type definitions are mutable rather than immutable.

1 Introduction

Immutability is an important property of data types, especially in the context of concurrent and distributed

programming. For example, objects of immutable type may be safely shared by concurrent processes

without the possibility of data races. In message-passing concurrency, sending immutable messages

helps ensure process isolation. Finally, in distributed systems immutability enables efficient techniques

for providing fault tolerance.

Scala’s type system does not have a built-in notion of immutability for type definitions. Instead,

immutability is ”by-convention” in Scala. In addition, statistics about the use of immutability in real-

world Scala code are non-existent. This is problematic, since such statistics could inform extensions of

Scala’s type system for enforcing immutability properties.

Contributions This paper presents the first empirical results evaluating the prevalence of immutability

in medium-to-large open-source Scala code bases, including the Scala standard library and the Akka actor

framework [7]. We considered three different immutability properties, all of which occur frequently in

all our case studies. In addition, we provide empirical results, evaluating causes for mutability of type

definitions.

2 Immutability Analysis

This paper uses a notion of immutability that applies to type definitions rather than object references as

in other work [11, 3]. For example, the definition of an immutable class implies that all its instances

http://dx.doi.org/10.4204/EPTCS.246.5


22 Quantifying and Explaining Immutability in Scala

are immutable. We refer to class, trait, and object definitions collectively as templates, following the

terminology of the Scala language specification [9].

We distinguish three different immutability properties: (a) deep immutability, (b) shallow immutabil-

ity, and (c) conditional deep immutability. Deep immutability is the strongest property; it requires that

none of the declared or inherited fields is reassignable, and that the types of all declared or inherited

fields are deeply immutable. Shallow immutability requires that none of the parents is mutable and that

none of the declared or inherited fields is reassignable. Conditional deep immutability requires that none

of the declared or inherited fields is reassignable, and that the types of all declared or inherited fields

are deeply immutable, unless they are abstract types. For example, the type parameter T of the generic

class Option[T] is abstract; type T is unknown within the definition of type Option[T]. Similarly, a

Scala abstract type member [1] is treated as an abstract type. Finally, a class that declares or inherits a

reassignable field (a Scala var) is mutable.

2.1 Implementation

We implement our analysis as a compiler plugin for Scala 2.11.x.1 The plugin can be enabled when

building Scala projects using the sbt or Maven build tools. The immutability analysis is implemented

using Reactive Async [4] which extends LVars [6], lattice-based variables, with cyclic dependency res-

olution. For each template definition we maintain a “cell” that keeps track of the immutability property

of the template. The value of the cell is taken from an immutability lattice; the analysis may update cell

values monotonically according to the immutability lattice, based on evidence found during the analysis.

For example, the cell value of a subclass is updated to Mutable when the analysis detects that one of the

superclasses is mutable. Initially, all templates are assumed to be deeply immutable; this assumption is

then updated incrementally based on evidence found by the analysis.

3 Empirical Study

We evaluate the prevalence of the immutability properties defined in Section 2 in four medium-to-large

Scala open-source projects: Scala’s standard library (version 2.11.8), Akka’s actor package (version

2.4.17), ScalaTest (version 3.0.1), and Signal/Collect (version 8.0.2).

The Scala standard library consists of 33107 source lines of code (excluding blank lines and com-

ments).2 The library includes an extensive collection package [8] with both mutable and immutable

collection types, as well as math, I/O, and concurrency packages such as futures [5]. Certain packages

are designed to only define immutable types, including package scala.collection.immutable and

package scala.collection.parallel.immutable. Other packages are designed to define muta-

ble types, including packages scala.collection.mutable, scala.collection.concurrent, and

scala.collection.parallel.mutable.

Akka’s actor package is the standard actor implementation for Scala. ScalaTest [2] is the most

widely-used testing framework for Scala. Signal/Collect [10] is a distributed graph processing framework

based on Akka.

Our empirical study aims to answer the following two main research questions:

RQ1 How frequent is each immutability property for classes, traits, and objects?

1See https://github.com/luax/scala-immutability-plugin
2Measured using cloc v1.70, see https://github.com/AlDanial/cloc

https://github.com/luax/scala-immutability-plugin
https://github.com/AlDanial/cloc


P. Haller & L. Axelsson 23

Template Occurrences Mutable Shallow Deep Cond. Deep

Class 626 (33,5%) 330 (52,7%) 54 (8,6%) 124 (19,8%) 118 (18,8%)

Case class 75 (4,0%) 19 (25,3%) 7 (9,3%) 9 (12,0%) 40 (53,3%)

Anon. class 330 (17,7%) 209 (63,3%) 26 (7,9%) 95 (28,8%) 0 (0%)

Trait 466 (25,0%) 224 (48,1%) 15 (3,2%) 93 (20,0%) 134 (28,8%)

Object 358 (19,2%) 106 (29,6%) 29 (8,1%) 223 (62,3%) 0 (0%)

Case object 12 (0,6%) 3 (25,0%) 0 (0%) 9 (75,0%) 0 (0%)

Total 1867 (100,0%) 891 (47,7%) 131 (7,0%) 553 (29,6%) 292 (15,6%)

Table 1: Immutability statistics for Scala standard library.

Template Occurrences Mutable Shallow Deep Cond. Deep

Class 299 (26,8%) 115 (38,5%) 93 (31,1%) 82 (27,4%) 9 (3,0%)

Case class 206 (18,4%) 23 (11,2%) 64 (31,1%) 90 (43,7%) 29 (14,1%)

Anon. class 77 (6,9%) 33 (42,9%) 8 (10,4%) 36 (46,8%) 0 (0%)

Trait 239 (21,4%) 22 (9,2%) 17 (7,1%) 140 (58,6%) 60 (25,1%)

Object 220 (19,7%) 9 (4,1%) 47 (21,4%) 164 (74,5%) 0 (0%)

Case object 76 (6,8%) 2 (2,6%) 0 (0%) 74 (97,4%) 0 (0%)

Total 1117 (100,0%) 204 (18,3%) 229 (20,5%) 586 (52,5%) 98 (8,8%)

Table 2: Immutability statistics for Akka (akka-actor package).

RQ2 For classes/traits/objects that are not deeply immutable: what are the most common reasons why

stronger immutability properties are not satisfied?

3.1 Research Question 1

Tables 1 shows the immutability statistics for Scala’s standard library. One of the most important results

is that the majority of classes/traits/objects in Scala’s standard library satisfy one of the immutability

properties. This confirms the intuition that functional programming with immutable types is an impor-

tant programming style in Scala. Interestingly, the most common immutability property for case classes

and traits is conditional deep immutability. Thus, whether a case class or trait is deeply immutable

in most cases depends on the instantiation of type parameters or abstract types. In contrast, the ma-

jority of classes that are not case classes is mutable. Note that objects and anonymous classes cannot

be conditionally deeply immutable, since these templates cannot have type parameters or abstract type

members.

Table 2 shows the immutability statistics for Akka. The percentage of mutable classes/traits/objects

is significantly lower compared to Scala’s standard library (18.3% for Akka versus 47.7% for the Scala

library).

Table 4 shows the immutability statistics for Signal/Collect. Unique to Signal/Collect is the high

percentage of mutable singleton objects (46.3%), which ranges between 4.1% (Akka) and 29.6% (Scala

library). However, also in Signal/Collect is the percentage of mutable case classes low compared to other

kinds of templates.

Summary In our case studies, the majority of classes/traits/objects satisfy one of our immutability

properties. The prevalence of mutability is especially low for case classes (with structural equality)



24 Quantifying and Explaining Immutability in Scala

Template Occurrences Mutable Shallow Deep Cond. Deep

Class 791 (36,1%) 216 (27,3%) 249 (31,5%) 288 (36,4%) 38 (4,8%)

Case class 153 (7,0%) 15 (9,8%) 81 (52,9%) 54 (35,3%) 3 (2,0%)

Anon. class 688 (31,4%) 200 (29,1%) 293 (42,6%) 195 (28,3%) 0 (0%)

Trait 227 (10,3%) 61 (26,9%) 45 (19,8%) 91 (40,1%) 30 (13,2%)

Object 254 (11,6%) 19 (7,5%) 18 (7,1%) 217 (85,4%) 0 (0%)

Case object 81 (3,7%) 2 (2,5%) 0 (0%) 79 (97,5%) 0 (0%)

Total 2194 (100,0%) 513 (23,4%) 686 (31,3%) 924 (42,1%) 71 (3,2%)

Table 3: Immutability statistics for ScalaTest.

Template Occurrences Mutable Shallow Deep Cond. Deep

Class 160 (58,0%) 78 (48,8%) 24 (15,0%) 14 (8,8%) 44 (27,5%)

Case class 42 (15,2%) 4 (9,5%) 11 (26,2%) 15 (35,7%) 12 (28,6%)

Anon. class 4 (1,4%) 4 (100,0%) 0 (0%) 0 (0%) 0 (0%)

Trait 24 (8,7%) 6 (25,0%) 1 (4,2%) 3 (12,5%) 14 (58,3%)

Object 41 (14,9%) 19 (46,3%) 5 (12,2%) 17 (41,5%) 0 (0%)

Case object 5 (1,8%) 0 (0%) 0 (0%) 5 (100,0%) 0 (0%)

Total 276 (100,0%) 111 (40,2%) 41 (14,9%) 54 (19,6%) 70 (25,4%)

Table 4: Immutability statistics for Signal/Collect.

Reason Immutability Property Attribute Key

Parent type mutable (assumption) Mutable A

Parent type mutable Mutable B

Reassignable field (public) Mutable C

Reassignable field (private) Mutable D

Parent type unknown Mutable E

Parent type shallow immutable Shallow immutable F

val field with unknown type Shallow immutable G

val field with mutable type Shallow immutable H

val field with mutable type (assumption) Shallow immutable I

Table 5: Template attributes and their influence on immutability properties.

and singleton objects. Except for Signal/Collect, which is unique in this case, the majority of singleton

objects are deeply immutable, ranging between 62.3% and 85.4% in our case studies. The percentage of

deeply immutable case objects is even higher, ranging between 75% and 100%, including Signal/Collect.

In order to answer RQ2, we identified nine template attributes, shown in Table 5, which explain why

certain immutability properties cannot be satisfied. The presence of the first five attributes forces the

corresponding template to be classified as mutable. For example, a template is classified as mutable if

it declares a reassignable field (attributes C and D). The last four attributes prevent the corresponding

template from satisfying either deep of conditionally deep immutability. For example, if a parent class

or trait is only shallow immutable (but not deeply immutable), then the corresponding template cannot

be deeply immutable or conditionally deeply immutable either (attribute F).



P. Haller & L. Axelsson 25

Attribute(s) Occurrences

B 609 (68,4%)

B C 71 (8,0%)

B C D 1 (0,1%)

B D 19 (2,1%)

B E 7 (0,8%)

C 26 (2,9%)

C D 1 (0,1%)

D 87 (9,8%)

D E 4 (0,4%)

E 66 (7,4%)

Table 6: Scala library: attributes causing muta-

bility.

Attribute(s) Occurrences

F 28 (21,4%)

F G 5 (3,8%)

F G H 1 (0,8%)

F H 4 (3,1%)

F J 6 (4,6%)

G 22 (16,8%)

G H 4 (3,1%)

G H J 3 (2,3%)

G J 2 (1,5%)

H 40 (30,5%)

H J 3 (2,3%)

J 7 (5,3%)

Table 7: Scala library: attributes causing shal-

low immutability (instead of deep immutabil-

ity).

3.2 Research Question 2

Tables 6 and 7 show the causes for mutability and shallow immutability, respectively, for the Scala library.

The main cause for a template to be classified as mutable is the existence of a parent which is mutable.

Important causes for templates to be classified as shallow immutable rather than deeply immutable are

(a) the existence of a non-reassignable field with a mutable type (attribute H), and (b) the existence of a

parent which is shallow immutable (attribute F).

Tables 8 and 9 show the causes for mutability and shallow immutability, respectively, for Akka ac-

tors. The main cause for a template to be classified as mutable is the existence of a parent which is

mutable; this matches the statistics of the Scala library. Other important causes are (a) parent types

whose immutability is unknown (e.g., due to third-party libraries for which no analysis results are avail-

able) and (b) private reassignable fields. Unlike the Scala library, the most important cause for shallow

immutability (rather than deep immutability) in Akka are non-reassignable fields of a type whose im-

mutability is unknown; this suggests that the absence of analysis results for third-party libraries has a

significant impact on the classification of a type as shallow immutable rather than deeply immutable. On

the other hand, this means that the actual percentage of deeply immutable templates may be even higher.

Therefore, an important avenue for future work is to enable the analysis of third-party libraries. The

second most important cause is the existence of a parent which is shallow immutable (attribute F).

4 Conclusion

Immutability is an important property of data types, especially in the context of concurrent and dis-

tributed programming. For example, objects of immutable type may be safely shared by concurrent

processes without the possibility of data races. In message-passing concurrency, sending immutable

messages helps ensure process isolation. In this paper we presented the first empirical results evaluating

the prevalence of immutability in medium-to-large open-source Scala code bases, including the Scala

standard library and the Akka actor framework. We considered three different immutability properties,



26 Quantifying and Explaining Immutability in Scala

Attribute(s) Occurrences

A 3 (1,5%)

A B D 1 (0,5%)

A E 1 (0,5%)

B 76 (37,3%)

B C 3 (1,5%)

B C D 1 (0,5%)

B D 6 (2,9%)

B E 6 (2,9%)

C 7 (3,4%)

C D 2 (1,0%)

C D E 1 (0,5%)

D 24 (11,8%)

D E 1 (0,5%)

E 72 (35,3%)

Table 8: Akka: attributes causing mutability.

Attribute(s) Occurrences

F 38 (16,6%)

F G 9 (3,9%)

F G H 2 (0,9%)

F G J 3 (1,3%)

F H 3 (1,3%)

F J 3 (1,3%)

G 94 (41,0%)

G H 8 (3,5%)

G H I 1 (0,4%)

G H J 1 (0,4%)

G J 16 (7,0%)

H 22 (9,6%)

H J 4 (1,7%)

J 25 (10,9%)

Table 9: Akka: attributes causing shallow im-

mutability (instead of deep immutability).

all of which occur frequently in all our case studies. In our case studies, the majority of classes/traits/ob-

jects satisfy one of our immutability properties. The prevalence of mutability is especially low for case

classes (classes with structural equality) and singleton objects. The most important causes for mutabil-

ity are mutable parent classes and private reassignable fields. To our knowledge we presented the first

empirical study of its kind. We believe our insights are valuable both for informing the further evolution

of the Scala language, and for designers of new wide-spectrum languages, combining functional and

imperative features.

References

[1] Nada Amin, Samuel Grütter, Martin Odersky, Tiark Rompf & Sandro Stucki (2016): The Essence of De-

pendent Object Types. In: A List of Successes That Can Change the World, Springer, pp. 249–272, doi:10.

1007/978-3-319-30936-1_14.

[2] Artima, Inc. (2009): ScalaTest. http://www.scalatest.org.

[3] Colin S. Gordon, Matthew J. Parkinson, Jared Parsons, Aleks Bromfield & Joe Duffy (2012): Uniqueness

and reference immutability for safe parallelism. In: OOPSLA, ACM, pp. 21–40, doi:10.1145/2384616.

2384619.

[4] Philipp Haller, Simon Geries, Michael Eichberg & Guido Salvaneschi (2016): Reactive Async: Expres-

sive Deterministic Concurrency. In: ACM SIGPLAN Scala Symposium, ACM, pp. 11–20, doi:10.1145/

2998392.2998396.

[5] Philipp Haller, Aleksandar Prokopec, Heather Miller, Viktor Klang, Roland Kuhn & Vojin Jovanovic (2012):

Futures and promises. http://docs.scala-lang.org/overviews/core/futures.html.

[6] Lindsey Kuper, Aaron Turon, Neelakantan R. Krishnaswami & Ryan R. Newton (2014): Freeze after writ-

ing: quasi-deterministic parallel programming with LVars. In: POPL, ACM, pp. 257–270, doi:10.1145/

2535838.2535842.

[7] Lightbend, Inc. (2009): Akka. http://akka.io/.

http://dx.doi.org/10.1007/978-3-319-30936-1_14
http://dx.doi.org/10.1007/978-3-319-30936-1_14
http://www.scalatest.org
http://dx.doi.org/10.1145/2384616.2384619
http://dx.doi.org/10.1145/2384616.2384619
http://dx.doi.org/10.1145/2998392.2998396
http://dx.doi.org/10.1145/2998392.2998396
http://docs.scala-lang.org/overviews/core/futures.html
http://dx.doi.org/10.1145/2535838.2535842
http://dx.doi.org/10.1145/2535838.2535842
http://akka.io/


P. Haller & L. Axelsson 27

[8] Martin Odersky & Adriaan Moors (2009): Fighting bit Rot with Types (Experience Report: Scala Collec-

tions). In: FSTTCS, LIPIcs 4, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, pp. 427–451, doi:10.

4230/LIPIcs.FSTTCS.2009.2338.

[9] Martin Odersky et al. (2014): The Scala Language Specification Version 2.11. Available at http://www.

scala-lang.org/files/archive/spec/2.11/.

[10] Philip Stutz, Abraham Bernstein & William W. Cohen (2010): Signal/Collect: Graph Algorithms for the

(Semantic) Web. In: ISWC, Springer, pp. 764–780, doi:10.1007/978-3-642-17746-0_48.

[11] Matthew S. Tschantz & Michael D. Ernst (2005): Javari: adding reference immutability to Java. In: OOP-

SLA, ACM, pp. 211–230, doi:10.1145/1094811.1094828.

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2009.2338
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2009.2338
http://www.scala-lang.org/files/archive/spec/2.11/
http://www.scala-lang.org/files/archive/spec/2.11/
http://dx.doi.org/10.1007/978-3-642-17746-0_48
http://dx.doi.org/10.1145/1094811.1094828

	1 Introduction
	2 Immutability Analysis
	2.1 Implementation

	3 Empirical Study
	3.1 Research Question 1
	3.2 Research Question 2

	4 Conclusion

