
V.T. Vasconcelos and P. Haller (Eds.): Workshop on Programming Language
Approaches to Concurrency- and Communication-cEntric Software (PLACES’17)
EPTCS 246, 2017, pp. 10–20, doi:10.4204/EPTCS.246.4

Actors without Borders: Amnesty for Imprisoned State

Elias Castegren Tobias Wrigstad
Uppsala University, Sweden

In concurrent systems, some form of synchronisation is typically needed to achieve data-race
freedom, which is important for correctness and safety. In actor-based systems, messages
are exchanged concurrently but executed sequentially by the receiving actor. By relying on
isolation and non-sharing, an actor can access its own state without fear of data-races, and
the internal behavior of an actor can be reasoned about sequentially.

However, actor isolation is sometimes too strong to express useful patterns. For example,
letting the iterator of a data-collection alias the internal structure of the collection allows
a more efficient implementation than if each access requires going through the interface of
the collection. With full isolation, in order to maintain sequential reasoning the iterator must
be made part of the collection, which bloats the interface of the collection and means that a
client must have access to the whole data-collection in order to use the iterator.

In this paper, we propose a programming language construct that enables a relaxation of
isolation but without sacrificing sequential reasoning. We formalise the mechanism in a simple
lambda calculus with actors and passive objects, and show how an actor may leak parts of its
internal state while ensuring that any interaction with this data is still synchronised.

1 Introduction
Synchronisation is a key aspect of concurrent programs and different concurrency models handle
synchronisation differently. Pessimistic models, like locks or the actor model [1] serialise compu-
tation within certain encapsulated units, allowing sequential reasoning about internal behavior.

In the case of the actor model, for brevity including also active objects (which carry state,
which actor’s traditionally do not), if a reference to an actor A’s internal state is accessible
outside of A, operations inside of A are subject to data-races and sequential reasoning is lost.
The same holds true for operations on an aggregate object behind a lock, if a subobject is leaked
and becomes accessible where the appropriate lock is not held.

In previous work, we designed Kappa [4], a type system in which the boundary of a unit of
encapsulation can be statically identified. An entire encapsulated unit can be wrapped inside some
synchronisation mechanism, e.g., a lock or an asynchronous actor interface, and consequently
all operations inside the boundary are guaranteed to be data-race free. An important goal of
this work is facilitating object-oriented reuse in concurrent programming: internal objects are
oblivious to how their data-race freedom is guaranteed, and the building blocks can be reused
without change regardless of their external synchronisation.

This extended abstract explores two extensions to this system, which we explain in the
context of the actor model (although they are equally applicable to a system using locks). Rather
than rejecting programs where actors leak internal objects, we allow an actor to bestow its
synchronisation mechanism upon the exposed objects. This allows multiple objects to effectively
construct an actor’s interface. Exposing internal operations externally makes concurrency more
fine-grained. To allow external control of the possible interleaving of these operations, we introduce
an atomic block that groups them together. The following section motivates these extensions.

http://dx.doi.org/10.4204/EPTCS.246.4

E. Castegren & T. Wrigstad 11

class Node[t]
var next : Node[t]
var elem : t
// getters and setters omitted

actor List[t]
var first : Node[t]
def getFirst() : Node[t]

return this.first

def get(i : int) : t
var current = this.first
while i > 0 do

current = current.next
i = i - 1

return current.elem

(a)

class Iterator[t]
var current : Node[t]
def init(first : Node[t]) : void

this.current = first

def getNext() : t
val elem = this.current.elem
this.current = this.current.next
return elem

def hasNext() : bool
return this.current != null

actor List[t]
def getIterator() : Iterator[t]

val iter = new Iterator[t]
iter.init(this.first)
return iter

(b)

Figure 1: (a) A list implemented as an actor. (b) An iterator for that list.

2 Breaking Isolation: Motivating Example

We motivate breaking isolation in the context of an object-oriented actor language, with actors
serving as the units of encapsulation, encapsulating zero or more passive objects. Figure 1a shows
a Kappa program with a linked list in the style of an actor with an asynchronous external interface.
For simplicity we allow asynchronous calls to return values and omit the details of how this is
accomplished (e.g., by using futures, promises, or by passing continuations).

Clients can interact with the list for example by sending the message get with a specified
index. With this implementation, each time get is called, the corresponding element is calculated
from the head of the list, giving linear time complexity for each access. Iterating over all the
elements of the list has quadratic time complexity.

To allow more efficient element access, the list can provide an iterator which holds a pointer
to the current node (Figure 1b). This allows constant-time access to the current element, and
linear iteration, but also breaks encapsulation by providing direct access to nodes and elements
without going through the list interface. List operations are now subject to data-races.

A middle ground providing linear time iteration without data-races can be implemented
by moving the iterator logic into the list actor, so that the calls to getNext and hasNext are
synchronised in the message queue of the actor. This requires a more advanced scheme to map
different clients to different concurrent iterators, clutters the list interface, creates unnecessary
coupling between List and Iterator, and complicates support of e.g., several kinds of iterators.

Another issue with concurrent programs is that interleaving interaction with an actor makes
it hard to reason about operations that are built up from several smaller operations. For example,
a client might want to access two adjacent nodes in the list and combine their elements somehow.
When sending two get messages, there is nothing that prevents other messages from being
processed by the list actor after the first one, possibly removing or changing one of the values.

12 Actors without Borders: Amnesty for Imprisoned State

actor List[t]
...
def getIterator() : B(Iterator[t])

val iter = new Iterator[t]
iter.init(this.first)
return bestow iter

val iter = list!getIterator()
while iter!hasNext() do

val elem = iter!getNext()
...

Figure 2: A list actor returning a bestowed iterator, and the code for a client using it

Again, unless the list actor explicitly provides an operation for getting adjacent values, there is
no way for a client to safely express this operation.

3 Bestowing and Grouping Activity

Encapsulating state behind a synchronisation mechanism allows reasoning sequentially about
operations on that state. However, since Kappa lets us identify the encapsulation boundary of
the data structure [4], it is possible to bestow objects that are leaked across this boundary with a
synchronisation wrapper. Statically, this means changing the type of the returned reference to
reflect that operations on it may block. Dynamically it means identifying with what and how the
leaked object shall synchronise.

For clarity, we explicate this pattern with a bestow operation. In the case of actors, an actor
a that performs bestow on some reference r creates a wrapper around r that makes it appear like
an actor with the same interface as r, but asynchronous. Operations on the bestowed reference
will be relayed to a so that the actor a is the one actually performing the operation. If r was
leaked from an enclosure protected by a lock l, r’s wrapper would instead acquire and release l
around each operation.

Figure 2 shows the minimal changes needed to the code in Figure 1b, as well as the code for
a client using the iterator. The only change to the list is that getIterator() returns a bestowed
iterator (denoted by wrapping the return type in B(...)1), rather than a passive one. In the
client code, synchronous calls to hasNext() and getNext() become asynchronous message sends.
These messages are handled by the list actor, even though they are not part of its interface. This
means that any concurrent usages of iterators are still free from data-races.

It is interesting to ponder the difference between creating an iterator inside the list and
bestowing it, or creating an iterator outside the list, and bestowing each individual list node it
traverses. In the former case, getNext() is performed without interleaved activities in the same
actor. In the latter case, it is possible that the internal operations are interleaved with other
operations on list. The smaller the object returned, the more fine-grained is the concurrency.

Sometimes it is desirable that multiple operations on an object are carried out in a non-
interleaved fashion. For this purpose, we use an atomic block construct that operates on a an
actor or a bestowed object, cf. Figure 3. In the case of operations on an actor, message sends
inside an atomic block are batched and sent as a single message to the receiver. In the case of
operations on an object guarded by a lock, we replace each individual lock–release by a single
lock–release wrapping the block. It is possible to synchronise across multiple locked objects in a
single block.

1If desired, this type change can be implicit through view-point adaptation [9].

E. Castegren & T. Wrigstad 13

class Iterator[t]
var current : B(Node[t])
def getNext() : t

val elem = this.current ! elem()
// Possible interleaving of other messages
this.current = this.current ! next()
return elem

class Iterator[t]
var current : B(Node[t])
def getNext() : t

atomic c <- this.current
val elem = c ! elem()
this.current = c ! next()
return elem

Figure 3: Fine-grained (left) and coarse-grained (right) concurrency control.

An atomic block allows a client to express new operations by composing smaller ones. The
situation sketched in § 2, where a client wants to access two adjacent nodes in the list actor
without interleaving operations from other clients is easily resolved by wrapping the two calls to
get (or getNext, if the iterator is used) inside an atomic block. This will batch the messages and
ensure that they are processed back to back:

atomic it <- list ! getIterator()
val e1 <- it.getNext()
val e2 <- it.getNext()

=⇒ (e1, e2) =
list ! λ this .

{val it = this.getIterator();
val e1 = it.getNext();
val e2 = it.getNext();
return (e1, e2)}

4 Formalism
To explain bestow and atomic we use a simple lambda calculus with actors and passive objects. We
abstract away most details that are unimportant when describing the behavior of bestowed objects.
For example, we leave out classes and actor interfaces and simply allow arbitrary operations on
values. By disallowing sharing of (non-bestowed) passive objects, we show that our language is
free from data-races (cf. § 4.4).

The syntax of our calculus is shown in Figure 4. An expression e is a variable x, a function
application e e′ or a message send e!v. Messages are sent as anonymous functions, which are
executed by the receiving actor. We abstract updates to passive objects as e.mutate(), which has
no actual effect in the formalism, but is reasoned about in § 4.4. A new object or actor is created
with new τ and a passive object can be bestowed by the current actor with bestow e. We don’t
need a special atomic construct in the formalism as this can be modeled by composing operations
in a single message as sketched in the end of the previous section.

Statically, values are anonymous functions or the unit value (). Dynamically, id is the identifier
of an actor, ι is the memory location of a passive object, and ιid is a passive object ι bestowed
by the actor id. A type is an active type α, a passive type p, a function type τ → τ , or the Unit
type. An active type is either an actor type c or a bestowed type B(p). Note that for simplicity,

e ::= x | e e | e!v | e.mutate() | new τ | bestow e | v
v ::= λx : τ.e | () | id | ι | ιid

τ ::= α | p | τ → τ | Unit
α ::= c | B(p)

Figure 4: The syntax of a simple lambda calculus with actors, bestow and atomic.

14 Actors without Borders: Amnesty for Imprisoned State

p and c are not meta-syntactic variables; every passive object has type p, every actor has type c,
and every bestowed object has type B(p).

Γ ` e : τ (Expressions)

e-var
Γ(x) = τ

Γ ` x : τ

e-apply
Γ ` e : τ ′→ τ

Γ ` e′ : τ ′

Γ ` e e′ : τ

e-new-passive

Γ ` newp : p

e-new-actor

Γ ` newc : c

e-mutate
Γ ` e : p

Γ ` e.mutate() : Unit

e-bestow
Γ ` e : p

Γ ` bestowe : B(p)

e-send
Γ ` e : α Γα,x : p ` e′ : τ ′

6 ∃ ι . ι∈ e′

Γ ` e!λx : p.e′ : Unit

e-fn
Γ,x : τ ` e : τ ′

Γ ` (λx : τ.e) : τ → τ ′

e-unit

Γ ` () : Unit

e-loc

Γ ` ι : p

e-id

Γ ` id : c

e-bestowed

Γ ` ιid : B(p)

Figure 5: Static semantics. Γ maps variables to types. Γα contains only the active types α of Γ.

4.1 Static Semantics

The typing rules for our formal language can be found in Figure 5. The typing context Γ maps
variables to types. The “normal” lambda calculus rules E-VAR and E-APPLY are straightforward.
The new keyword can create new passive objects or actors (E-NEW-*). Passive objects may be
mutated (E-MUTATE), and may be bestowed activity (E-BESTOW).

Message sends are modeled by sending anonymous functions which are run by the receiver
(E-SEND). The receiver must be of active type (i.e., be an actor or a bestowed object), and the
argument of the anonymous function must be of passive type p (this can be thought of as the
this of the receiver). Finally, all free variables in the body of the message must have active type
to make sure that passive objects are not leaked from their owning actors. This is captured by
Γα which contains only the active mappings _ : α of Γ. Dynamically, the body may not contain
passive objects ι. Typing values is straightforward.

4.2 Dynamic Semantics

Figure 6 shows the small-step operational semantics for our language. A running program is a
heap H, which maps actor identifiers id to actors (ι,L,Q,e), where ι is the this of the actor, L is
the local heap of the actor (a set containing the passive objects created by the actor), Q is the
message queue (a list of lambdas to be run), and e is the current expression being evaluated.

An actor whose current expression is a value may pop a message from its message queue and
apply it to its this (EVAL-ACTOR-MSG). Any actor in H may step its current expression, possibly
also causing some effect on the heap (EVAL-ACTOR-RUN). The relation id ` 〈H,e〉 ↪→ 〈H ′,e′〉
denotes actor id evaluating heap H and expression e one step.

E. Castegren & T. Wrigstad 15

H ↪→H ′ (Evaluation)

eval-actor-msg
H (id) = (ι,L,Q v′,v)

H ′ = H [id 7→ (ι,L,Q,v′ ι)]
H ↪→H ′

eval-actor-run
H (id) = (ι,L,Q,e) id ` 〈H ,e〉 ↪→ 〈H ′,e′〉

H ′(id) = (ι,L′,Q′,e)
H ′′ = H ′[id 7→ (ι,L′,Q′,e′)]

H ↪→H ′′

id ` 〈H,e〉 ↪→ 〈H ′,e′〉 (Evaluation of expressions)

eval-send-actor
H (id ′) = (ι,L,Q,e)

H ′ = H [id ′ 7→ (ι,L,v Q,e)]
id ` 〈H , id ′!v〉 ↪→ 〈H ′,()〉

eval-send-bestowed
H (id ′) = (ι′,L,Q,e)

H ′ = H [id ′ 7→ (ι′,L,(λx : p.v ι)Q,e)]
id ` 〈H , ιid′!v〉 ↪→ 〈H ′,()〉

eval-apply
e′ = e[x 7→ v]

id ` 〈H ,(λx : τ.e)v〉 ↪→ 〈H ,e′〉

eval-mutate

id ` 〈H , ι.mutate()〉 ↪→ 〈H ,()〉

eval-bestow

id ` 〈H ,bestow ι〉 ↪→ 〈H , ιid〉

eval-new-passive
H (id) = (ι,L,Q,e) ι′ fresh
H ′ = H [id 7→ (ι,L∪{ι′},Q,e)]

id ` 〈H ,newp〉 ↪→ 〈H ′, ι′〉

eval-new-actor
id ′ fresh ι′ fresh

H ′ = H [id ′ 7→ (ι′,{ι′}, ε,())]
id ` 〈H ,newα〉 ↪→ 〈H ′, id ′〉

eval-context
id ` 〈H ,e〉 ↪→ 〈H ′,e′〉

id ` 〈H ,E[e]〉 ↪→ 〈H ′,E[e′]〉

E[•] ::= • e | v • | • !v | • .mutate() | bestow •

Figure 6: Dynamic semantics.

Sending a lambda to an actor prepends this lambda to the receiver’s message queue and
results in the unit value (EVAL-SEND-ACTOR). Sending a lambda v to a bestowed value instead
prepends a new lambda to the queue of the actor that bestowed it, which simply applies v to the
underlying passive object (EVAL-SEND-BESTOWED).

Function application replaces all occurrences of the parameter x in its body by the argument
v (EVAL-APPLY). Mutation is a no-op in practice (EVAL-MUTATE). Bestowing a passive value ι
in actor id creates the bestowed value ιid (EVAL-BESTOW).

Creating a new object in actor id adds a fresh location ι′ to the set of the actors passive
objects L and results in this value (EVAL-NEW-PASSIVE). Creating a new actor adds a new actor
with a fresh identifier to the heap. Its local heap contains only the fresh this, its queue is empty,
and its current expression is the unit value (EVAL-NEW-ACTOR).

We handle evaluation order by using an evaluation context E (EVAL-CONTEXT).

4.3 Well-formedness

A heap H is well-formed if all its actors are well-formed with respect to H, and the local heaps
Li and Lj of any two different actors are disjoint (WF-HEAP). We use LH(H(id)) to denote the
local heap of actor id. An actor is well-formed if its this is in its local heap L and its message

16 Actors without Borders: Amnesty for Imprisoned State

`H H ` (ι,L,Q,e) H `Q (Well-formedness)

wf-heap
∀id1 6= id2 . LH(H (id1)) ∩ LH(H (id2)) = ∅

∀id∈ dom(H) . H `H (id)
`H

wf-actor
ι∈ L H ;L `Q ε ` e : τ

∀ι∈ e . ι∈ L
∀id∈ e . id∈ dom(H)
∀ιid ∈ e . ι∈ LH(H (id))

H ` (ι,L,Q,e)

wf-queue-message
H ;L `Q x : p ` e : τ

∀ι∈ e . ι∈ L
∀id∈ e . id∈ dom(H)
∀ιid ∈ e . ι∈ LH(H (id))

H ;L ` (λx : p.e)Q

wf-queue-empty

H ;L ` ε

Figure 7: Well-formedness rules. LH gets the local heap from an actor: LH((ι,L,Q,e)) = L

queue Q is well-formed. The current expression e must be typable in the empty environment,
and all passive objects ι that are subexpressions of e must be in the local heap L. Similarly, all
actor identifiers in e must be actors in the system, and all bestowed objects must belong to the
local heap of the actor that bestowed it (WF-ACTOR).

A message queue is well-formed if all its messages are well-formed (WF-QUEUE-*). A message
is well-formed if it is a well-formed anonymous function taking a passive argument, and has a
body e with the same restrictions on values as the current expression in an actor.

4.4 Meta Theory
We prove soundness of our language by proving progress and preservation in the standard fashion:

Progress: A well-formed heap H can either be evaluated one step, or only has actors
with empty message queues and fully reduced expressions:

`H =⇒ (∃H ′ . H ↪→H ′) ∨ (∀id ∈ dom(H) . H(id) = (ι,L,ε,v))

Preservation: Evaluation preserves well-formedness of heaps: `H ∧ H ↪→H ′ =⇒`H ′

Both properties can be proven to hold with straightforward induction.
The main property that we are interested in for our language is data-race freedom. As we

don’t have any actual effects on passive objects, we show this by proving that if an actor is about
to execute ι.mutate(), no other actor will be about to execute mutate on the same object:

Data-race freedom: Two actors will never mutate the same active object id1 6= id2
∧ H(id1) = (ι1,L1,Q1, ι.mutate())
∧ H(id2) = (ι2,L2,Q2, ι

′.mutate())

 =⇒ ι 6= ι′

E. Castegren & T. Wrigstad 17

This property is simple to prove using two observations on what makes a well-formed heap:

1. An actor will only ever access passive objects that are in its local heap (WF-ACTOR).
2. The local heaps of all actors are disjoint (WF-HEAP).

The key to showing preservation of the first property is in the premise of rule E-SEND which states
that all free variables and values must be active objects (Γα,x : p ` e′ : τ ′ and 6 ∃ι . ι ∈ e′). This
prevents sending passive objects between actors without bestowing them first. Sending a message
to a bestowed object will always relay it to the actor that owns the underlying passive object
(by the premise of WF-ACTOR: ∀ιid ∈ e . ι ∈ LH(H(id))). Preservation of the second property
is simple to show since local heaps grow monotonically, and are only ever extended with fresh
locations (EVAL-NEW-PASSIVE).

Having made these observations, it is trivial to see that an actor in a well-formed heap H
that is about to execute ι.mutate() must have ι in its own local heap. If another actor is about to
execute ι′.mutate(), ι′ must be in the local heap of this actor. As the local heaps are disjoint, ι
and ι′ must be different. Since well-formedness of heaps are preserved by evaluation, all programs
are free from data-races.

5 Related Work

An important property of many actor-based systems is that a single actor can be reasoned about
sequentially; messages are exchanged concurrently but executed sequentially by the receiving
actor. For this property to hold, actors often rely on actor isolation [10], i.e., that the state of
one actor cannot be accessed by another. If this was the not the case, concurrent updates to
shared state could lead to data-races, breaking sequential reasoning.

Existing techniques for achieving actor isolation are often based on restricting aliasing, for
example copying all data passed between actors [2], or relying on linear types to transfer ownership
of data [3, 5, 6, 10]. Bestowed objects offer an alternative technique which relaxes actor isolation
and allows sharing of data without sacrificing sequential reasoning. Combining bestowed objects
with linear types is straightforwand and allows for both ownership transfer and bestowed sharing
between actors in the same system.

Miller et al.propose a programming model based on function passing, where rather than passing
data between concurrent actors, functions are sent to collections of stationary and immutable
data called silos [7]. Bestowed objects are related in the sense that sharing them doesn’t actually
move data between actors. In the function passing model, they could be used to provide an
interface to some internal part of a silo, but implicitly relay all functions passed to it to its owning
silo. While the formalism in § 4 also works by passing functions around, this is to abstract away
from unimportant details, and not a proposed programming model.

References to bestowed objects are close in spirit to remote references in distributed program-
ming or eventual references in E [8]. In the latter case, the unit of encapsulation, e.g., an actor
or an aggregate object protected by a lock, acts similar to a Vat in E, but with an identifiable
boundary and an identity with an associated interface. By bestowing and exposing sub-objects, a
unit of encapsulation can safely delegate parts of its interface to its inner objects, which in turn
need not be internally aware of the kind of concurrency control offered by their bestower.

18 Actors without Borders: Amnesty for Imprisoned State

6 Discussion
Although our formal description and all our examples focus on actors, bestow also works with
threads and locks. An object protected by a lock can share one of its internal objects while
requiring that any interaction with this object also goes via this lock. We believe there is also
a straightforward extension to software transactional memory. In the future, we would like to
study combinations of these.

Bestowed objects lets an actor expose internal details about its implementation. Breaking
encapsulation should always be done with care as leaking abstractions leads to increased coupling
between modules and can lead to clients observing internal data in an inconsistent state. The
latter is not a problem for bestowed objects however; interactions with bestowed objects will be
synchronised in the owning actor’s message queue, so as long as data is always consistent between
messages, we can never access data in an inconsistent state (if your data is inconsistent between
messages, you have a problem with or without bestowed objects).

Sharing bestowed objects may increase contention on the owner’s message queue as messages
to a bestowed object are sent to its owner. Similarly, since a bestowed object is protected by the
same lock as its owner, sharing bestowed objects may lead to this lock being polled more often.
As always when using locks there is a risk of introducing deadlocks, but we do not believe that
bestowed objects exacerbate this problem. Deadlocks caused by passing a bestowed object back
to its owner can be easily avoided by using reentrant locks (as accessing them both would require
taking the same lock twice).

When using locks, atomic blocks are very similar to Java’s synchronized-blocks. With actors,
an atomic block groups messages into a single message. For fairness, it may make sense to only
allow atomic blocks that send a limited number of messages.

It is possible to synchronise on several locked objects by simply grabbing several locks.
Synchronising on several actors is more involved, as it requires actors to wait for each other and
communicate their progress so that no actor starts or finishes before the others. The canonical
example of this is atomically withdrawing and depositing the same amount from the accounts
of two different actors. Interestingly, if the accounts are bestowed objects from the same actor
(e.g., some bank actor), this atomic transaction can be implemented with the message batching
approach suggested in this paper. We leave this for future work.

6.1 Implementation

We are currently working on implementing bestowed objects and atomic blocks in the context of
Encore [3], which uses active objects for concurrency. In Encore, each object (passive or active)
has an interface defined by its class, and only the methods defined therein may be invoked. Thus
it does not follow the formal model from § 4, where message passing is implemented by sending
anonymous functions. It does however use the same approach for the implementation of bestowed
objects and atomic blocks.

We extend each active class with an implicit method perform which takes a function, applies
it to the this of the receiver, and returns the result wrapped in a future. A bestowed object is
logically implemented as an object with two fields owner and object. A message send x ! foo() to a
bestowed object is translated into the message send x.owner ! perform((λ _ . x.object.foo())).

The atomic block can be implemented as sketched in the end of § 3, where messages are batched
and sent as a single message:

E. Castegren & T. Wrigstad 19

atomic x <- e
x ! foo(42)
x ! bar(-42)

=⇒ e ! perform(λ this . {this.foo(42); this.bar(-42)})

This implementation works for the use-cases discussed here, but is somewhat limiting as it
doesn’t allow the caller to react to intermediate values. We are therefore exploring an alternative
approach where we temporarily switch the message queue of an active object to one that only
the caller can submit messages to. Other messages passed to the active object will end up in the
original message queue, and will be processed first when the atomic block finishes.

Each active object would implicitly be extended with two methods override, which switches
the current message queue to a new one, and resume, which discards the temporary queue and
resumes execution with the original queue. Logically, the translation could look like this:

atomic x <- e
val v1 = x ! foo(42)
val v2 = this.bar(v1)
x ! baz(v2)

=⇒

val q = new MessageQueue()
e ! override(q) // 1
val v1 = q.enqueue(("foo", [42]))
val v2 = this.bar(v1)
q.enqueue(("baz", [v2]))
q.enqueue(("resume", [])) // 2

When the message at 1 is processed by receiver, it stops reading from its regular message
queue and instead starts using the queue provided by the caller. Rather than sending messages
normally, the caller interacts with x through this queue (waiting for responses if necessary). When
the message at 2 has been processed by the receiver, it goes back to reading messages normally.

6.2 Abstracting Over Synchronisation Methods
Finally, we note the connection to the safe type qualifier introduced by the Kappa type system [4],
which ranges over both actors and locks (and immutables etc.). A value with a safe type can be
accessed concurrently without risk of data-races, but how this is achieved depends on the type of the
value at runtime. Let x have the type safe τ . Now, z = x.foo() is equivalent to z = x!foo().get()
when x is an actor returning a future value, and get() is a blocking read on the future. When
x is protected by a lock l, the same access is equivalent to lock(l); z = x.foo(); unlock(l);.
When x is immutable, no special synchronisation is needed.

Consequently, the safe qualifier can be used to express operations on objects with concurrency
control abstracted out, without losing safety. An atomic block can be used to atomically compose
operations on a safe object, and the choice of concurrency control mechanism can be relegated to
the runtime. Similarly, bestowed objects internally has no knowledge about their own concurrency
control. Thus, when a bestowed object is used as a safe object, neither the object itself nor its
client needs knows how the interaction is made safe.

7 Conclusion
Actor isolation is important to maintain sequential reasoning about actors’ behavior. By bestowing
activity on its internal objects, an actor can share its representation without losing sequential
reasoning and without bloating its own interface. With atomic blocks, a client can create new
behavior by composing smaller operations. The bestowed objects themselves do not need to know
why access to them is safe. They can just trust the safety of living in a world where actors have
no borders.

20 Actors without Borders: Amnesty for Imprisoned State

References

[1] G. Agha (1986): Actors: a Model of Concurrent Computation in Distributed Systems, Series
in Artificial Intelligence. MIT Press 11.

[2] J. Armstrong (2007): A History of Erlang. In: HOPL III, doi:10.1145/1238844.1238850.
[3] S Brandauer et al. (2015): Parallel Objects for Multicores: A Glimpse at the Parallel Language

Encore. In: Formal Methods for Multicore Programming, doi:10.1007/978-3-319-18941-3_1.
[4] E. Castegren & T. Wrigstad (2016): Reference Capabilities for Concurrency Control. In:

ECOOP, doi:10.4230/LIPIcs.ECOOP.2016.5.
[5] S. Clebsch, S. Drossopoulou, S. Blessing & A. McNeil (2015): Deny Capabilities for Safe,

Fast Actors. In: AGERE, doi:10.1145/b2824815.2824816.
[6] P. Haller & M. Odersky (2010): Capabilities for Uniqueness and Borrowing. In: ECOOP,

doi:10.1007/978-3-642-14107-2_17.
[7] Heather Miller, Philipp Haller, Normen Müller & Jocelyn Boullier (2016): Function

Passing: A Model for Typed, Distributed Functional Programming. In: Onward!,
doi:10.1145/2986012.2986014.

[8] M. Miller (2006): Robust Composition: Towards a Unified Approach to Access Control and
Concurrency Control. Ph.D. thesis, Johns Hopkins University, USA.

[9] P. Müller (2002): Modular Specification and Verification of Object-oriented Programs.
Springer-Verlag, Berlin, Heidelberg, doi:10.1007/3-540-45651-1.

[10] S. Srinivasan & A. Mycroft (2008): Kilim: Isolation-Typed Actors for Java. In: ECOOP,
doi:10.1007/978-3-540-70592-5_6.

http://dx.doi.org/10.1145/1238844.1238850
http://dx.doi.org/10.1007/978-3-319-18941-3_1
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2016.5
http://dx.doi.org/10.1145/b2824815.2824816
http://dx.doi.org/10.1007/978-3-642-14107-2_17
http://dx.doi.org/10.1145/2986012.2986014
http://dx.doi.org/10.1007/3-540-45651-1
http://dx.doi.org/10.1007/978-3-540-70592-5_6

	1 Introduction
	2 Breaking Isolation: Motivating Example
	3 Bestowing and Grouping Activity
	4 Formalism
	4.1 Static Semantics
	4.2 Dynamic Semantics
	4.3 Well-formedness
	4.4 Meta Theory

	5 Related Work
	6 Discussion
	6.1 Implementation
	6.2 Abstracting Over Synchronisation Methods

	7 Conclusion

