
S. J. Gay and J. Alglave (Eds.): Programming Language Approaches to
Concurrency- and Communication-Centric Software (PLACES 2015).
EPTCS 203, 2016, pp. 109–120, doi:10.4204/EPTCS.203.9

c© Franco & Drossopoulou
This work is licensed under the
Creative Commons Attribution License.

Behavioural types for non-uniform memory accesses

Juliana Franco and Sophia Drossopoulou
Imperial College London, United Kingdom

{j.vicente-franco, s.drossopoulou} @ imperial.ac.uk

Concurrent programs executing on NUMA architectures consist of concurrent entities (e.g. threads,
actors) and data placed on different nodes. Execution of these concurrent entities often reads or up-
dates states from remote nodes. The performance of such systems depends on the extent to which the
concurrent entities can be executing in parallel, and on the amount of the remote reads and writes.

We consider an actor-based object oriented language, and propose a type system which expresses
the topology of the program (the placement of the actors and data on the nodes), and an effect system
which characterises remote reads and writes (in terms of which node reads/writes from which other
nodes). We use a variant of ownership types for the topology, and a combination of behavioural and
ownership types for the effect system.

1 Introduction

A prevalent paradigm in high performance machines is NUMA (non uniform memory access) systems,
e.g., the AMD Bulldozer server[1]. NUMA systems have many nodes which contain processors and
memory; Figure 1 shows the common NUMA structure.

Figure 1: NUMA system [13].

The nodes are connected with the other nodes
through a system bus that allows processes run-
ning on a specific node to access the memory of
the other nodes.

Memory access is either local, i.e. accessing
memory in the local node, or remote, i.e. access-
ing memory of remote nodes. Remote accesses
require requests to the system bus, and are thus
more expensive than local accesses. Moreover, dif-
ferent remote accesses do not necessarily have the
same cost (the time to obtain/write data in mem-
ory). Therefore, to characterize the communica-
tion (read/write) costs of a concurrent program, we
need to know its topology (the placement of the ac-
tors and data on the nodes), and a characterisation of the reads and writes across nodes.

In this work we consider a concurrent language based on actors (or active objects) and objects [5],
which we call Lnuma, a language where, for the sake of simplicity, mutually recursive (synchronous and
asynchronous) method invocations with communication are assumed to be not allowed and all the active
objects must be created in the main class.

We develop a variant of ownership types [6] to express the location of actors and of data. In particular,
we propose two levels of abstraction: classes have ownership (location) parameters, the main program
defines the abstract locations and creates objects in these abstract locations; and at runtime the abstract
locations are mapped to nodes (cf. Appendix C). We also propose a combination of behavioural and

http://dx.doi.org/10.4204/EPTCS.203.9
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

110 Behavioural types for NUMA

ownership types to characterise the interactions (reads, writes and messages sent) among objects located
in different nodes.

Ownership types [4, 6, 12] were first introduced to statically describe the heap topology. Here we
introduce ownership-like annotations to describe the system topology, that is, its nodes and where threads
are running and data is allocated. Behavioural types [2, 8, 9, 14, 18] are usually used to describe and
statically, or dynamically, verify patterns of interaction between processes/threads/participants of con-
current and parallel computations. Here we present a type system that allows the programmer to specify
the interactions among objects located in different nodes, and therefore we abstract the communication
made through the system bus.

Outline. This paper is organised as follows: Section 2 introduces the syntax of Lnuma, Section 3 gives
the operational semantics, Section 4 presents the typing rules, and Section 4 shows properties of Lnuma,
and finally Section 6 concludes. Several definitions are given in the appendix.

2 Syntax

Figure 2 presents the syntax of Lnuma. A program consists of a set of class declarations representing
actors and passive objects. The use of the keyword active in a class declaration indicates that the class
represents actors. Passive objects are similar to ordinary Java objects while actors have all the properties
of passive objects, and in addition also have their own execution thread and may send messages to other
actors. As in actor-based languages, messages are stored in private queues. A more detailed definition
can be found in [5].

P ∈ Program ::= Cd∗

Cd ∈ ClassDecl ::= [active] class C〈p+〉 Fd Md

Fd ∈ FieldDecl ::= f : T

Md ∈MethodDecl ::= def m(x : T) : T as b {e}

ot ∈ OwnershipType ::=C〈l+〉
T ∈ Type ::= bool | nil | int | ot

l ∈ Location ::= p | L
val ∈ Value ::= null | true | false

var ∈ Variable ::= x | this

e ∈ Expr ::= var | val | if e then e else e

| e.m(e) | e!m(e) | e. f
| e. f = e | new ot

| for i in n1..n2 do e

| let x = e in e | return e

π ∈ RemAccess ::= rd(l, l) | wrt(l, l) | msg(l, l,m)

bop ::= π | {b or b} | Loop(n : b)

b ∈ Behaviour ::= ε | bop.b | [b,b]

Figure 2: Syntax of classes and (behavioural) types. The boxed constructs are not user syntax. In the
class declaration Cd the use of [] means that the keyword active is optional.

Each class, active or passive, is annotated with a set of location parameters p1, . . . , pn where p1
represents the place where the instance of the class is allocated and p2, . . . , pn locations that can be used
in the types of the rest of the class. The location parameters of the main class, L1, ...,Ln, are abstractions
of the concrete nodes, and at runtime will be mapped to concrete node identifiers.

A class declaration might have field and method declarations. A field declaration consists of a field
identifier and a type; a method declaration consists of a method identifier, one parameter (variable and
type), return type, behavioural type and an expression (method body). Lnuma has the types bool, nil,
and an ownership type C〈l1, ..., ln〉 which represents objects located in l1 that may contain references to

Franco & Drossopoulou 111

objects in locations l2, ..., ln. The syntax of expressions is similar to other OO programming languages;
note only the asynchronous method call (message sending), e!m(e).

The most interesting part of the syntax is our treatment of behavioural types. We have basic op-
erations, π , which are reading from a remote node (rd(l, l)), writing to a remote node (wrt(l, l)), and
message sending (msg(l, l,m))—this has to be reflected in the behaviour, as it adds messages to queues
in remote memory. For all of them the first location is where the expression is being executed and the
second is the location where a read/write is made or a message sent. We also have types to describe
conditional expressions, {b or b}, (the two branches in the if-then-else expression imply two branches
in the type), and for-loops, Loop(n : b). A behavioural type, b, may be empty, ε , meaning that there is
no “communication” across different nodes, the sequence of operations, bop.b, and two types in parallel,
[b,b], introduced by message sendings.

3 Semantics

We now describe the dynamic semantics of Lnuma. Nodes, N, defined in Figure 3, aim to reflect NUMA
nodes. Namely, a node in our formalism has an identifier, a heap with all the data allocated in it, and
several execution threads EThread. An execution thread belongs to an actor, and has a stack and an
expression being executed. A heap is a mapping from addresses to (passive and active) objects. An

N ∈ Node = NodeId×Heap×EThread

T ∈ EThread = Stack×Expr

h ∈ Heap = Addr→ Object

σ ∈ Stack = Addr×Frame

ϕ ∈ Frame = var→ value

Q ∈ Queue ::= • | /0 | m(v) :: Q

L ∈ LocsMap = LocId→ NodeId

κ ∈ NodeId =N

l ∈ Location ::= as before | κ

o ∈ Object = ClassId×NodeId×
(FieldId→ value)×Queue

α ∈ Addr = NodeId×N
v ∈ value = val | Addr | skip | NPE

E[] ::= [·] | [·].m(e) | α.m([·]) | [·]!m(e)

| α!m([·]) | [·]. f | [·]. f = e

| α. f = [·] | let x = [·] in e

| if [·] then e1 else e2 | let x = [·] in e

| return [·]

Figure 3: Dynamic Entities. We assume the existence of a map L that maps abstract locations (declared
by the programmer in the main class) to NUMA node identifiers.

object consists of a class identifier C, a sequence of node identifiers representing the actual location
parameters, a mapping from field identifiers to their values, and a message queue, where the queue of a
passive object is •. An address, α , consists of a node identifier, κ ∈ NodeId, and an offset, n ∈N.

In our system, a configuration N can be reduced to another configuration N
′

either without any
communication or implying a remote access from one of the nodes to another node. In the first case, the
rule [GSEXEC1] should be applied, where only one node is involved in the reduction. In the second case
the rule [GSEXEC2] should be used, where two nodes are involved in the reduction, as shown in Figure 4.

In the same way, expression reduction may result in accessing remote memory or not; therefore we
divide the operational semantics rules as follows:

1. Expressions that do not access memory or send messages. These are defined in Figure 5.

112 Behavioural types for NUMA

[GSEXEC1]

κ,h,σ ,e π→ h′,σ ′,e′

N,(κ,h,T,〈σ ,e〉) π→N,(κ,h′,T,〈σ ′,e′〉)
[GSEXEC2]

κ1,h1,σ1,e1 ‖ κ2,h2
π→ h′1,σ

′
1,e
′
1 ‖ h′2

N,(κ1,h1,T1,〈σ1,e1〉),(κ2,h2,T2)
π→N,(κ1,h′1,T1,〈σ ′1,e′1〉),(κ2,h′2,T2)

Figure 4: Global semantics

2. Expressions that result in accesses to memory. These are defined in Figure 6 and are further divided
in:

(a) The access happens locally—only one node required.

(b) The access happens remotely—two different nodes required.

Figure 5 shows shows the rules for the point 1, where no accesses to memory, eiher in the same node
or not, are made. Each rule takes a node identifier, its heap, a stack and an expression, and reduces to

[SIFTRUE]

κ,h,σ , if true then e1 else e2
ε→ h,σ ,e1

[SIFFALSE]

κ,h,σ , if false then e1 else e2
ε→ h,σ ,e2

[SLET]

x fresh inϕ ϕ ′ = ϕ[x 7→ v]
κ,h,σ .ϕ, let x = v in e ε→ h,σ .ϕ ′,e

[SRET]

κ,h,σ .ϕ, return v ε→ h,σ ,v

[SVAR]

ϕ(x) = v
κ,h,σ .ϕ,x ε→ h,σ .ϕ,v

[SFOR]

x fresh inϕ e′ = (let x = ein for i in (n1 +1)..n2 do e)
κ,h,σ .ϕ, for i in n1..n2 do e ε→ h,σ .ϕ[i 7→ n1],e′

[SFORSKIP]

n1 > n2

κ,h,σ , for i in n1..n2 do e ε→ h,σ , skip

[SSKIP]

κ,h,σ , skip
ε→ h,σ ,null

[SCALLL]

owners(h,α) =C〈κ〉 ϕ = α · (this 7→ α,x 7→ v)
κ,h,σ ,α.m(v) ε→ h,σ .ϕ, return M(C,m)↓3 [κ]

[SRECEIVEL]

α↓1= κ h(α) = (C,κ, ,m(v) :: Q) e =M(C,m)[κ]

κ,h,α · /0,null ε→ h[α 7→ Q],α · (this 7→ α,x 7→ v), return e

[SCONTEXTNPE]

κ,h,σ ,E[NPE] ε→ h,σ ,NPE

[SNPE]

κ,h,σ ,enpe
ε→ h,σ ,NPE

where enpe can be null. f , null. f = e, null.m(e), null!m(e), null[i], null[i] = e′

Figure 5: Semantic rules for expressions that do not perform remote operations. Null-pointer exceptions
included.

Franco & Drossopoulou 113

a new heap, a new stack and a new expression. They have the form κ,h,σ ,e π→ h′,σ ′,e′. These rules
show reduction without any communication among different nodes (they show reduction through ε).
The intuition behind them is standart and similar can be found in the literature. Note only the rule for
the message receiving, [SRECEIVEL], which takes an empty stack and a null expression, meaning that the
expression of the thread being executed is fully reduced, and returns a new frame and expression after
taking the next message in the queue to be processed. The expression returned is the body of the method
asynchronously invoked, as there is a new frame with the values passed as arguments.

Figure 6 shows the semantic rules for the point 2. The rules on the left belong to 2(a); they have the
same form of the rules introduced in Figure 5. The rules on the right belong to 2(b); they take two node
identifiers, their heaps, a stack and an expression, and reduce to two new heaps, a new stack and a new
expression. They have the form κ1,h1,σ ,e ‖ κ2,h2

π→ h′1,σ
′,e′ ‖ h′2. In both cases they reduce through

an operation described by π—the remote operation made or empty, ε (in the case of the absence of a
remote operation). For instance, message sending in rule [SMSGL] adds a message to the queue of an

[SMSGL]

h′ = h[〈κ.n〉 :: m(v)]
κ,h,σ ,〈κ.n〉!m(v) ε→ h′,σ ,null

[SMSGR]

π = msg(κ1,κ2,m) h′2 = h2[〈κ2.n〉 :: m(v)]
κ1,h1,σ ,〈κ2.n〉!m(v) ‖ κ2,h2

π→ h1,σ ,null ‖ h′2
[SFREADL]

κ,h,σ ,〈κ.n〉. f ε→ h,σ ,h(κ.n)(f)

[SFREADR]

π = rd(κ1,κ2) v = h2(〈κ2.n〉)(f)
κ1,h1,σ ,〈κ2.n〉. f ‖ κ2,h2

π→ h1,σ ,v ‖ h2

[SFWRITEL]

κ,h,σ ,〈κ.n〉. f = v ε→ h[〈κ.n〉, f 7→ v],σ ,v

[SFWRITER]

π = wrt(κ1,κ2) h′2 = h2[〈κ2.n〉, f 7→ v]
κ1,h1,σ ,〈κ2.n〉. f = v ‖ κ2,h2

π→ h1,σ ,v ‖ h′2
[SNEWL]

κ = L(L1) 〈κ.n〉 /∈ dom(h)
h′ = h[〈κ.n〉 7→ initObj(C〈L〉)]
κ,h,σ ,new C〈L〉 ε→ h′,σ ,〈κ.n〉

[SNEWR]

κ2 = L(L1) 〈κ2.n〉 /∈ dom(h2) π = wrt(κ1,κ2)
h′2 = h2[〈κ2.n〉 7→ initObj(C〈L〉)]

κ1,h1,σ ,new C〈L〉 ‖ κ2,h2
π→ h1,σ ,〈κ2.n〉 ‖ h′2

[SCONTEXTL]

κ,h,σ ,e π→ h′,σ ′,e′

κ,h,σ ,E[e] π→ h′,σ ′,E[e′]

[SCONTEXTR]

κ1,h1,σ ,e ‖ κ2,h2
π→ h′1,σ

′,e′ ‖ h′2
κ1,h1,σ ,E[e] ‖ κ2,h2

π→ h′1,σ
′,E[e′] ‖ h′2

Figure 6: Set of semantic rules described in 2. The left rules show the reduction of expressions that
execute locally (a) and the right rules, expressions that interact with remote objects (b).

actor in the same node as this, while [SMSGR] adds the message to the queue of an object in a different
node. In the first case π is empty and in the second case it is msg(κ1,κ2,m). In both cases, the stack
remains unchanged and the returned expression is null; namely execution is asynchronous. All the other
rules, except the context rules, on the left show, as expected, reads and writes to the local heap and on
the right present reads and writes to a remote heap.

114 Behavioural types for NUMA

4 Type Checking

Figure 7 shows the typing rules of Lnuma. They have the form Γ ` e . T,b where an expression e is
verified against a sequence of typing contexts Γ resulting in a type T and an effect b. A typing context is
a mapping from variables and addresses to types:

Γ ∈ TypingContext = (var ∪ Addr)→ Type

The effect b describes the behaviour of e, that is, the memory accesses and messages sent to remote
locations. Effects are concatenated via the function ◦ as defined below.

ε ◦b = b (bop.b1)◦b2 = bop.(b1 ◦b2) [b1,b2]◦b3 = [b1 ◦b3,b2]

The type T associated to an expression is found in a standard way: similar can be found in [4],

[T-VAR/ADDR]

Γ.Γ ` var .Γ(var),ε
Γ.Γ ` α .Γ(α),ε

[T-TRUE/FALSE]

Γ ` true.bool,ε
Γ ` false.bool,ε

[T-SKIP/NULL]

Γ ` skip.nil,ε
Γ ` null.nil,ε

[T-LET]

Γ.Γ ` e1 .T1,b1 x /∈ dom(Γ)
Γ.Γ[x 7→ T1] ` e2 .T2,b2

Γ.Γ ` let x = e1 in e2 .T2,b1 ◦b2

[T-COND]

Γ ` e1 .bool,b1 Γ ` e2 .T,b2 Γ ` e3 .T,b3

Γ ` if e1 then e2 else e3 .T,b1 ◦{b2 or b3}

[T-FOR]

k > j Γ = Γ
′
.Γ Γ

′
.Γ[i 7→ int] ` e.T,b

Γ ` for i in j..k do e.T,Loop(k− j+1: b)

[T-RET]

Γ ` e.T,b
Γ.Γ ` return e.T,b

[T-NEWO]

isActive(C) =⇒ isMain(Γ, this) ot =C〈l1, ..., ln〉 l1 6= ... 6= ln
Γ ` new ot .ot,wrt(`(Γ), l1)

[T-FWRITE]

Γ ` e.C〈l〉,b1 F(C, f)[l] = T Γ ` e′ .T,b2

Γ ` e. f = e′ .T,b1 ◦b2 ◦wrt(`(Γ), l1)

[T-FREAD]

Γ ` e.C〈l〉,b1 F(C, f)[l] = T
Γ ` e. f .T,b1 ◦ rd(`(Γ), l1)

[T-CALL]

Γ ` e1 .C〈l〉,b1 Γ ` e2 .T ′,b2

`(Γ) = l1 M(C,m)[l] = (T,T ′,e3,b3)

Γ ` e1.m(e2).T,b1 ◦b2 ◦b3

[T-MESSAGE]

Γ ` e1 .C〈l〉,b1 Γ ` e2 .T ′,b2

`(Γ) = l0 M(C,m)[l] = (nil,T ′,e3,b)
Γ ` e1!m(e2).nil,b1 ◦b2 ◦msg(l0, l1,m).[ε,b]

Figure 7: Typing rules

therefore we focus only in the behaviour produced. The rules for variables and values, [T-VAR/ADDR],
[T-TRUE/FALSE], [T-SKIP/NULL] result in empty effects, ε , because they do not represent any communi-
cation. The typing rule [T-LET] results in the concatenation of the behaviour of both expressions. The
resulting behaviour of the rule [T-COND] is the behaviour of the predicate concatenated with a choice type
which describes the behaviour of both branches. The rule [T-FOR] returns a loop type Loop(n : b), where
n is the number of iterations of the loop and b is the behavioural type of its body.

The behaviour of the creation of an object, with [T-NEWO], is a write behaviour, from the location of
this to the location of the new object, as new data is written to memory. The predicate isActive(C) is
true if the class of the object being created in annotated as active and the predicate isMain(Γ, this) is true
if the class being verified is the main class. The field write is also represented by the write behaviour,

Franco & Drossopoulou 115

given that it changes data already in memory. Typing the expression e. f = e′ with the rule [T-FWRITE]

returns the concatenation of the behaviour of e, the behaviour of e′ and the write from the location of
this to the location of the object changed. Following the same idea, the field read, e. f , is represented by
the read behaviour and therefore the rule [T-FREAD] gives the concatenation of the behaviour of e with
a read type from the location of this and to the location of the object read. The typing rule, [T-CALL],
describes synchronous method invocation which is only allowed if the receiver is in the same location
as the this object. Its behaviour is the behaviour of the receiver concatenated with the behaviour of the
expression passed as argument and the behavioural type annotated in the body of the invoked method.
The typing rule for the message send, [T-MESSAGE], is similar. However, it is possible to send a message
to a different location and moreover it introduces parallelism in our types: the receiving of the message
should be executed in parallel with the continuation of the message sending—the resulting behaviour
has the continuation type, which in this case is ε , in parallel with the expression to be executed due the
message received.

5 The global behaviour

We define a global behaviour, Σ, as a sequence of behavioural types

Σ ∈ Behaviour

The behaviour of a node N describes the remote reads, writes and message sends to be executed by the
node; it is obtained from the behaviour of the execution threads and message queues of all actors in
that node. The global behaviour of a runtime configuration, N, describes the remote reads, writes and
message sends to be executed by all nodes; it is the parallel combination of the behaviours of each the
nodes Ni. Both definitions, the behaviour of a node and the global behaviour of a configuration, are
below.

Definition 1 (The global behaviour).

(1) N1, . . . ,Nn I b1, . . . ,bn iff ∀i ∈ 1..n : Ni I bi

(2) κ,h,〈σ1,e1〉, . . . ,〈σn,en〉I b1, . . . ,bn iff ∀i ∈ 1..n : h,σi,ei I bi

(3) h,σ ,e I filter(b◦b1 ◦ ...◦bn) iff ∃T : h,σ ` e.T,b ∧ (h(σ↓1) = (C,κ+, ,m1(v1) :: ... :: mn(vn) :: /0)

∧ ∀ j ∈ 1..n : ∃T : h,(this 7→ σ↓1,x 7→ v j) `M(C,m j)[κ
+].T,b j)

Using this notion of global behaviour, we implicitly assume a well-formed program and we state
soundness of our typing, which says that if a well-formed configuration, N, with a global behaviour Σ,
reduces to another configuration N

′
through a communication step π then the resulting configuration N

′

will have behaviour Σ′ which is a reduction of Σ through π .

Theorem 1. If `N ∧ N I Σ ∧ N
π→N

′
then ∃Σ′ : N′ I Σ′ ∧ Σvπ Σ′

The definitions of well-formed configuration (including well-formed heap and well-formed stack)
and (global) behaviour reduction are defined below:

116 Behavioural types for NUMA

Definition 2 (Well-formed (1) configuration, (2) node, (3) heap, (4) stack and (5) stack frame).

(1) `N iff ∀i, j : Ni↓1=N j↓1 =⇒ i = j ∧ ∀N′ : N `N′

(2) N ` κ,h,(〈σ1,e1〉, ...,〈σn,en〉) iff

∀α ∈ dom(h) : α↓1= κ ∧ h(α)↓2= κ, ∧ N ` h

∧ ∀i ∈ {1..n} : heaps(N) ` σi ∧ ∃Ti,bi : h,σi ` ei .Ti,bi

(3) N ` h iff ∀α ∈ dom(h) : heaps(N) ` α : owners(h,α)

(4) h ` α ·ϕ1, ...,ϕn iff ∀i ∈ {1..n} : h ` ϕi

(5) h ` (this 7→ α,x1 7→ v1, . . . ,xn 7→ vn) iff {α,v1...vn} ⊆ {true, false,null}∪dom(h)

Definition 3 (Global behaviour reduction).

Σvπ Σ
′ iff Σ = b1,b,b2 ∧ Σ

′ = b
′
1,b
′,b
′
2 ∧ bvπ b′ ∧

(b = [b1,b2] =⇒ b′ = b1 ∧ ∃b j ∈ Σ,b′j ∈ Σ
′ : b′j = b j ◦b2)

Definition 4 (Behaviour reduction).

b1 vπ b2 iff b1 = π.b2

b1 vε b2 iff b1 = b2 ∨ b1 = {b2 or } ∨ b1 = { or b2} ∨
(b1 = Loop(n : b).b′ ∧ b2 = b.Loop(n−1: b).b′) ∨ b1 = [b2,]

Theorem 1 is a corollary of Lemmas 1 and 2.

Lemma 1. If N ` h ∧ h ` σ ∧ κ,h,σ ,e π→ h′,σ ′,e′ ∧ h,σ ` e .T,b ∧ ¬(σ↓2= /0 ∧ e = null) then
∃b′ : h′,σ ′ ` e′ .T,b′ ∧ filter(b)vπ filter(b′)

Lemma 2. If N ` h1 ∧ N ` h2 ∧ h1∪h2 `σ ∧ κ1,h1,σ ,e ‖ κ2,h2
π→ h′1,σ

′,e′ ‖ h′2 ∧ h1∪h2,σ ` e.T,b
then ∃b′ : h′1∪h′2,σ

′ ` e′ .T,b′ ∧ filter(b)vπ filter(b′)

6 Final Remarks

Related Work. To the best of our knowledge there is no integration of behavioural types in the
active/passive object paradigm, or any formalism that combines behavioural types with ownership types
to describe memory accesses; however there are already a few programming languages that use session
(behavioural) types in actor-based languages, namely: the integration of session types in a Featherweight
Erlang introduced by Mostrous and Vasconcelos [10]; an implementation of multiparty session types
in an actor library written in Python presented by Neykova and Yoshida [11]; and the behavioural type
system for an actor calulus, proposed by Crafa [7].

With respect to programming languages with the notion of locations and proximity among processes
and data, Rinard presented an extension of the programming language Jade (an implicitly parallel pro-
gramming language designed to explore task-level concurrency [16]) that allows the execution of tasks
close to the data that they will use [15]. The language has constructs to describe how the processes access
to the data; this information is analysed and used to improve the communication. Given that it is more
expensive to access data remotely than locally, the author introduces a locality optimization algorithm
that schedules the execution of tasks on places (processors) close to the data. The programming language
X10 [17], developed by IBM, also features a notion of locality/places. In X10, each object can be either

Franco & Drossopoulou 117

assigned to a place or distributed among different places. Chandra et al. [3] presented a new dependent
type system for X10 that captures information about the locality of the resources in a partitioned heap
for distributed data structures, called place types. It provides information not only about whether a ref-
erence is local or remote, but also if two remote references point to resources in the same place or not.
Therefore, the compiler may use this information to decrease the runtime overhead.

Conclusion. This paper presents the fomalisation of a small oject-oriented programming language
that amalgamates behavioural types with ownership types in order to describe remote memory accesses
in NUMA systems. Ownership types play a role in the representation of the topology and behavioural
types in the definition of reads, writes and messages sent to remote locations. This sequence of memory
access operations are annotated in the method declarations as the ownership/location parameters are
annotated in class declarations. This formalisation is just the first step towards a programming language
that optimises performance by moving objects to nodes where they have a cheaper cost (the cost of
interacting with other objects and of doing remote accesses).

Acknowledgements. This work was funded by the EU project UpScale FP7-612985 (http://www.
upscale-project.eu/).

References

[1] AMD Bulldozer Server. http://www.amd.com/en-us/products/server.

[2] Giuseppe Castagna & Luca Padovani (2009): Contracts for Mobile Processes. In: CONCUR’2009, LNCS,
Springer, pp. 211–228, doi:10.1007/978-3-642-04081-8 15.

[3] Satish Chandra, Vijay Saraswat, Vivek Sarkar & Rastislav Bodik (2008): Type Inference for Locality Analysis
of Distributed Data Structures. In: PPoPP ’08, ACM, pp. 11–22, doi:10.1145/1345206.1345211.

[4] Dave Clarke & Sophia Drossopoulou (2002): Ownership, Encapsulation and the Disjointness of Type and
Effect. SIGPLAN Not. 37, pp. 292–310, doi:10.1145/583854.582447.

[5] Dave Clarke, Tobias Wrigstad, Johan Östlund & Einar Broch Johnsen (2008): Minimal Ownership for Active
Objects. In: APLAS ’08, Springer, pp. 139–154, doi:10.1007/978-3-540-89330-1 11.

[6] David G. Clarke, John M. Potter & James Noble (1998): Ownership Types for Flexible Alias Protection. In:
OOPSLA ’98, ACM, pp. 48–64, doi:10.1145/286936.286947.

[7] Silvia Crafa (2012): Behavioural Types for Actor Systems. Technical Report. Available at http://arxiv.
org/abs/1206.1687.

[8] Kohei Honda, Vasco T. Vasconcelos & Makoto Kubo (1998): Language primitives and type disciplines for
structured communication-based programming. In: European Symposym on Programming, LNCS 1381,
Springer, pp. 22–138, doi:10.1007/BFb0053567.

[9] Naoki Kobayashi (2003): Type Systems for Concurrent Programs. In: Formal Methods at the Crossroads.
From Panacea to Foundational Support, LNCS 2757, Springer, pp. 439–453, doi:10.1007/978-3-540-40007-
3 26.

[10] Dimitris Mostrous & Vasco Thudichum Vasconcelos (2011): Session Typing for a Featherweight Erlang. In:
COORDINATION 2011, LNCS 6721, Springer, pp. 95–109, doi:10.1007/978-3-642-21464-6 7.

[11] Rumyana Neykova & Nobuko Yoshida (2014): Multiparty Session Actors. In: COORDINATION 2014,
LNCS 8459, Springer, pp. 131–146, doi:10.1007/978-3-662-43376-8 9.

[12] James Noble, Jan Vitek & John Potter (1998): Flexible Alias Protection. In: ECOOP’98, Springer, pp.
158–185, doi:10.1007/BFb0054091.

http://www.upscale-project.eu/
http://www.upscale-project.eu/
http://www.amd.com/en-us/products/server
http://dx.doi.org/10.1007/978-3-642-04081-8_15
http://dx.doi.org/10.1145/1345206.1345211
http://dx.doi.org/10.1145/583854.582447
http://dx.doi.org/10.1007/978-3-540-89330-1_11
http://dx.doi.org/10.1145/286936.286947
http://arxiv.org/abs/1206.1687
http://arxiv.org/abs/1206.1687
http://dx.doi.org/10.1007/BFb0053567
http://dx.doi.org/10.1007/978-3-540-40007-3_26
http://dx.doi.org/10.1007/978-3-540-40007-3_26
http://dx.doi.org/10.1007/978-3-642-21464-6_7
http://dx.doi.org/10.1007/978-3-662-43376-8_9
http://dx.doi.org/10.1007/BFb0054091

118 Behavioural types for NUMA

[13] Optimizing Applications for NUMA. https://software.intel.com/en-us/articles/

optimizing-applications-for-numa.
[14] B. Pierce & D. Sangiorgi (1993): Typing and subtyping for mobile processes. In: LICS’93, pp. 376–385,

doi:10.1109/LICS.1993.287570.
[15] Martin C. Rinard (1997): Locality Optimizations for Parallel Computing Using Data Access Information.

International Journal of High Speed Computing 9(2), pp. 161–179, doi:10.1142/S0129053397000118.
[16] Martin C. Rinard, Daniel J. Scales & Monica S. Lam (1993): Jade: A High-Level, Machine-Independent

Language for Parallel Programming. IEEE Computer 26, doi:10.1109/2.214440.
[17] Vijay A. Saraswat, Vivek Sarkar & Christoph von Praun (2007): X10: Concurrent Programming for Modern

Architectures. In: PPoPP ’07, ACM, pp. 271–271, doi:10.1145/1229428.1229483.
[18] R.E. Strom & S. Yemini (1986): Typestate: A programming language concept for enhancing software relia-

bility. IEEE Transactions on Software Engineering, pp. 157–171, doi:10.1109/TSE.1986.6312929.

A Identifier Conventions and Semantics

Identifier conventions.

n ∈N C ∈ ClassId m ∈MethId f ∈ FieldId L ∈ LocId p ∈ OwnershipId x, i ∈ varId

B Auxiliary definitions, shorthands and lookup functions

Definition 5 (Well-formed program and class).

` P≡ ∀([active] class C〈...〉... ∈ P) : P `C P `C ≡


O(C) = {p1, ..., pn} ∧
∀m : M(C,m) = (T,x : T ′,e,b) ∧
(this 7→C〈p1, ..., pn〉,x 7→ T ′) ` e.T,b′

=⇒ b = filter(b′)

Given that the effects returned during type checking do not exclude reads and writes happening in
the same node, we apply a function filter(b) in order to exclude such annotations. The function is define
as follows.

filter(ε) = ε filter([b1,b2]) = [filter(b1),filter(b2)]

filter(π.b) = (if source(π) = dest(π) then ε else π).filter(b)
filter({b1 or b2}.b3) = (if filter(b1) = ε ∧ filter(b2) = ε then ε else {filter(b1) or filter(b2)}).filter(b3)

filter(Loop(n : b).b′) = (if filter(b) = ε then ε else Loop(n : filter(b))).filter(b′)

Note that if the expressiosns nested in for-loops or conditional expressions have behaviour ε , then the the loop or
choice types are not annotated.
Definition 6 (Value agreement).

[WFTRUE]

h ` true : bool

[WFFALSE]

h ` false : bool

[WFNULL]
T = nil ∨ isValid(T)

h ` null : T

[WFOBJ]
h(α) = (C,(κ),(fi 7→ vi)i∈I ,•)
∀i ∈ I : h ` vi : F(C, fi)[κ]

h ` α : C〈κ〉
[WFAOBJ]

For I some index set h(α) = (C,(κ),(fi 7→ vi)i∈I ,m1(v1) :: ... :: mn(vn) :: /0)
∀i ∈ I : h ` vi : F(C, fi)[κ] h,α · (this 7→ α,x 7→ vi) ` vi .M(C,mi)↓2 [κ],b

h ` α : C〈κ〉

https://software.intel.com/en-us/articles/optimizing-applications-for-numa
https://software.intel.com/en-us/articles/optimizing-applications-for-numa
http://dx.doi.org/10.1109/LICS.1993.287570
http://dx.doi.org/10.1142/S0129053397000118
http://dx.doi.org/10.1109/2.214440
http://dx.doi.org/10.1145/1229428.1229483
http://dx.doi.org/10.1109/TSE.1986.6312929

Franco & Drossopoulou 119

Lookup functions Considering P, the globally accessible program, and the class declaration

class C〈p+〉{Fd Md} ∈ P

we define:

O(C) = {p+}
F(C, f) = T iff f : T ∈ Fd

Fs(C) = {Fd}
M(C,m) = (T,T ′,e,b) iff def m(x : T ′) : T in b {e} ∈Md

F(C, f)[l1, ..., ln] = F(C, f)[l1/p1, . . . , ln/pn] where O(C) = {p1, . . . , pn}

Operations on the heap

h[α 7→ o] = h′ where h′(α) = o ∧ ∀αi ∈ dom(h)\{α} : h(αi) = h′(αi)

h[α, f 7→ v] = h′ where h′(α) = h(α)[f 7→ v] ∧ ∀αi ∈ dom(h)\{α} : h(αi) = h′(αi)

h[α :: m(v)] = h′ where h(α) = o ∧ o↓4 6= • ∧ h′ = h[α 7→ (o↓1,o↓2,o↓3,m(v) :: o↓4)]

∧ ∀αi ∈ dom(h)\{α} : h(αi) = h′(αi)

owners(h,α) =C〈κ〉 where h(α)↓1=C ∧ h(α)↓2= κ

h1∪h2 = h where ∀α ∈ dom(h) : h1(α) = h(α) ∨ h2(α) = h(α)

Operations on objects

o(f)≡ o↓3 (f)

o[f 7→ v]≡ (o↓1,o↓2,(f 7→ v, fi 7→ vi),o↓4) where o↓3= f 7→ , fi 7→ vi

initObj(C〈L1, ...,Lm〉)≡

{
(C,κ1, ...,κm,(fi 7→ init(Ti))i∈1..n, /0) isActive(C)

(C,κ1, ...,κm,(fi 7→ init(Ti))i∈1..n,•) otherwise

where Fs(C) = { f1 : T1, . . . , fn : Tn} and ∀ j ∈ {1..m} : κ j = L(L j)

Operations on types

init(T)≡ if T = bool then false else null `(Γ) = l iff Γ = .Γ ∧ Γ(this) =C〈l, 〉

Other definitions

e[C,κ1, . . . ,κn] = e[κ1/p1, . . . ,κn/pn] where O(C) = {p1, . . . , pn}
heaps(N1, . . . ,Nn) = h1∪·· ·∪hn iff ∀i ∈ {1..n} : Ni↓2= hi

h,σ ` e.T,b iff buildContext(h,σ) ` e.T,b

typeOf(h,v)≡ if v = true ∨ v = false then bool else owners(h,v)

buildContext(h,ϕ1) = Γn
. . .

buildContext(h,ϕn) = Γ1

buildContext(h,α ·ϕ1 . . .ϕn)

Tthis = typeOf(h,α)
T1 = typeOf(h,v1) . . . Tn = typeOf(h,vn)

Γ = (this 7→ Tthis,x1 7→ T1, . . . ,xn 7→ Tn)

buildContext(h, this 7→ α,x1 7→ v1, . . . ,xn 7→ vn) = Γ

120 Behavioural types for NUMA

C Topology Example
Consider the following code with three class declarations: an active class C, a passive D and the class Main. An
active object, instance of C, has three fields pointing to three objects in different locations of type D. The class
main creates three abstract (or symbolic) locations L1, L2, L3 and the body of the main method.

act i ve c l a s s C〈p1 , p2 , p3 〉
d1 : D〈 p1 〉
d2 : D〈 p2 〉
d3 : D〈 p3 〉

c l a s s D〈p 〉

c l a s s Main 〈L1 , L2 , L3 〉
def main () : n i l

as b w r i t e (L1 , L2) . w r i t e (L1 , L3) {
l e t x = new C 〈L1 , L2 , L3 〉 i n
l e t y = (x . d1 = new D〈L1 〉) i n
l e t z = (x . d2 = new D〈L2 〉) i n

x . d3 = new D〈L3 〉
}

The topology after execution of the main method is depicted in the following figure. In the abstract location

Figure 8: The ownership topology after the execution of the expression in the method main.

L1 there is an instance of class C and an instance of class D. Abstract locations L2 and L3 have both an instance
of class D. Although the programmer define 3 abstract locations, the machine might have a different number of
nodes. For instance, in a system with two different nodes, we could have the mapping (L1 7→ κ1,L2 7→ κ2,L3 7→ κ2)
between abstract locations and node identifiers, which means that the objects in L1 are in the node κ1, and objects
from L2 and L3 are in the same node, as depicted in Figure 9.

Figure 9: NUMA system with two different nodes

	1 Introduction
	2 Syntax
	3 Semantics
	4 Type Checking
	5 The global behaviour
	6 Final Remarks
	A Identifier Conventions and Semantics
	B Auxiliary definitions, shorthands and lookup functions
	C Topology Example

