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In distributed systems, where multi-party communication is essential, two communication paradigms
are ever present: (1) one-to-many, commonly denoted as broadcast; and (2) many-to-one denoted as
aggregation or collection.

In this paper we present the BBC process calculus, which inherently models the broadcast and
aggregation communication modes. We then apply this process calculus to reason on hierarchical
network structure and provide examples on its expressive power.

1 Introduction

In the setting of distributed systems, interprocess communication will often be in the form of multi-party
communication. Here there are two dual paradigms: that of one-to-many communication, commonly
denoted as broadcast, and that of many-to-one, denoted as aggregation or collection.

Many-to-one communication is a commonly occurring phenomenon and often occurs in settings with
intricate network topologies. As an example consider the case of a smart grid with thousands of meters
(such as electricity, water, heating, etc . . . ) that report their current measurements. A central server
somewhere will collect these data; however, the server will usually not be directly reachable from the
meters – there will be several intermediate hops, each one facilitated by a relay. If the underlying protocol
of the network is correct, we would expect this complicated network to be semantically equivalent to a
simple planar network, where each node is at one-hop distance from the server.

There has already been considerable interest in understanding the semantic foundations of one-to-
many communication in the process calculus community, starting with the work by Prasad [7] on a
broadcast version of CCS. Later, Ene and Muntean extended the notion to a broadcast version of the
π-calculus [1] and proved that this notion is strictly more expressive than standard π-calculus synchro-
nization.

Other process calculi with a notion of broadcast arise in the search for behavioural models of proto-
cols for wireless networks. Singh et al. describe a process calculus with localities [10], and Kouzapas
and Philippou [4] introduce another process calculus with a notion of localities, whose configuration can
evolve dynamically.

In this paper we introduce a process calculus BBC that has both forms of communication. For both
many-to-one and one-to-many communication, it is often a natural assumption that communication is
bounded; this reflects two distinct aspects of the limitations of a medium. In the case of broadcast, the
bound limits the number of possible recipients of a message. In the case of collection, the bound limits
the number of messages that can be received. For this reason, BBC uses a notion of bounded broadcast
and collection. Moreover, the syntax of the calculus introduces an explicit notion of connectivity that
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M ::= x | S | (M1, . . . ,Mk) | g(E) | f (M)

P ::= a(λ~xM )P1 | a [λ~xM.S ]P1 | a〈M〉.P1 | (νx : βx)P1 | [M1 = M2]P1 | [M1 6= M2]P1 | (P1 | P2)

| (P1 +P2) | 0 | A
(
~M
)

E ::= {M1, . . . ,Mk} | S

N ::= l[P] | (N1 | N2) | (νx : b)N | l .m

Table 1: Formation rules for BBC

makes it possible to represent a communication topology directly. By using a proof technique introduced
by Palamidessi [6] we show that even a version of BBC that only uses collection is more expressive than
the π-calculus.

The remainder of our paper is organized as follows. In Section 2 we introduce the syntax of BBC,
while Section 3 gives a reduction semantics. In Section 4 we introduce a notion of barbed bisimilarity,
and in Section 5 we use this notion to prove the correctness of a protocol that uses both broadcast and
collection. In Section 6 we outline a simple type system for BBC in which channels can be distinguished
as being used for broadcast or for collection. Finally, in Section 7 we show that even a version of BBC
that only uses collection is more expressive than the π-calculus.

2 The syntax of BBC

2.1 The syntactic categories

A central notion in BBC is that of names. As in the distributed π-calculus [8], processes reside at named
sites, called locations, and use named channels for communication. We assume that names are taken
from a countably infinite set Names. In general, we denote names of channels by a,b,c . . ., names of
locations by l,m,n . . . and if nothing is assumed about the usage of the name we denote them by x,y,z . . ..

We let M ∈Msg range over the set of messages, let P range over the set of processes and let N range
over the set of networks. Since a collecting input (defined below) can receive a multiset of messages,
each coming from a distinct sender, we also consider multiset expressions E and multiset variables S that
can be instantiated to multiset expressions. The formation rules defining the syntactic categories of BBC
are given below.

2.2 Messages and patterns

For ordinary expressions we assume a collection of term constructors ranged over by f , that build mes-
sages out of other messages. Moreover, we assume the existence of a collection of multiset selectors
ranged over by g; these can be used to build messages out of multisets.

If a channel is to be chosen among a collection of candidate channels, we can use a multiset selector
to describe this.
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Example 1. An example of a multiset selector is the function find-a that intuitively returns the name a if
this name occurs as the first component in a multiset of pairs of names and the name k 6= a and is defined
by find-a(S) = a if (a,x) ∈ S for some x and k otherwise.

Practical examples of interest are the election of a common channel in a ad-hoc network; selection
of a channel for cooperative sensing or for communication within an ad-hoc cluster.

An important notion is that of an input pattern which is of the form (λ~xM), where the variable names
in ~x are distinct and occur free in M. A message O matches this pattern, if it can be obtained from it
through substitution.

More formally, a term substitution is a finite function θ : Names→Msg. The substitution can also
be written as a list of bindings θ = [x1 7→M1, . . . ,xk 7→Mk]. The action of θ on an arbitrary message or
multiset expression is defined in the expected way. M′ is said to match (λ~xM) with θ if for a substitution
θ with dom(θ) =~x M′ = Mθ is true.

2.3 Processes

In a collecting communication setting, the receiver can make no assumption about the number of mes-
sages that will be received, nor on the order in which they are received. Moreover, we cannot assume that
a message that has arrived will only occur once among the messages received during a single collecting
communication. We shall therefore think of a collecting input as receiving a multiset of messages.

There are two kinds of input prefixes in BBC:

• The broadcast input a(λ~xM )P1 in which a single term matching the pattern (λ~xM) is received on
the channel a. The pattern variables in~x are bound in P1 and get instantiated with the appropriate
subterms that correspond to the pattern.

• The collection input a [λ~xM.S ]P1 in which a non-empty multiset of terms {M1, . . . ,MK} each of
which matches the pattern [λ~xM] is received on the channel a. Note that in this case the scope
of the pattern variables in ~x does not extend to P1. Following the input, the multiset variable S is
instantiated to the multiset {M1, . . . ,MK}.

In a restriction (νx : βx)P1 the notion of bounded communication is made explicit: we declare the
name x to be private within P1 and to have bound βx, where βx : Names→ N is a function such that for
any location name m we have that βx(m) = k, if it is the case that for a process located at m there are at
most k senders that are able to send a message to it using the channel x.

The remaining process constructs are standard. The output process a〈M〉.P1 sends out the message M
on the channel named a and then continues as P1. Match [M1 =M2]P1 and mismatch [M1 6=M2]P1 proceed
as P1 if M1 and M2 are equal, respectively distinct. Parallel composition P1 | P2 runs the components P1
and P2 in parallel. Nondeterministic choice P1 +P2 can proceed as either P1 or P2; inaction 0, has no
behaviour.

Finally, we allow agent identifiers A(~M) parameterized by a sequence of messages; an identifier must

be defined using an equation of the form A(~x) def
= P. The only names free in P must be the parameters

found in ~x, that is fn(P) ⊆~x. Definitions of this form can be recursive, with occurrences of A(~x) (with
names in~x instantiated by concrete messages) occurring within P.

Restriction and broadcast input are name binders; for a process P, the sets of free names fn(P) and
bound names bn(P) of P are defined as expected. For collection input we define

bn(a [λ~xM S ]P1) = bn(P1)
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Replication, denoted as ! P, is a derived construct in BBC; a replicated process ! P is expressed by
the agent identifier AP whose defining equation is AP = P | AP and should therefore be thought of as an
unbounded supply of parallel copies of P.

2.4 Networks

As in the distributed π-calculus [8] a parallel composition of located processes is called a network.
According to the formation rules, a network N can be a process P running at location l, which is denoted
as l[P]. We also allow parallel composition P1 | P2 and restriction (νx)N at network level. Moreover,
the neighbourhood predicate l . k denotes that location l is close to k. For the neighbourhood predicate,
parallel composition is thought of as logical conjunction. So, if l and k are close to each other, then l ./ m
can be written instead of l .m|m. l.

For any term M, the set of free names fn(M) is defined in the standard way.
The usual notions of α-conversion also apply here. We write P1 ≡α P2 if P1 can be obtained from

P2 by renaming bound names in P2, and likewise we write N1 ≡α N2 if N1 can be obtained from N2 by
renaming bound names in N2.

3 The semantics of BBC

We now describe a reduction semantics of BBC.

3.1 Evaluation of message terms

In our semantics, we rely on an evaluation relation  defined for both message terms and multiset
expressions.

Example 2. Assume that our set of function symbols contains the projection function which extracts the
first coordinate of a pair of names and that this is the only function symbol that can lead to evaluation.
The evaluation relation can then be defined by the axiom

first(x,y) x

and the rules

M M′

{|M, . . . |} {|M′, . . . |}
M M′

f (M) f (M′)
E E ′

g(E) g(E ′)

A message term M is normal if M 6 M1 for any M1.

3.2 Structural congruence and normal form

Structural congruence ≡ is defined for both processes and networks; two processes (or networks) are
related, if they are identical up to simple structural modifications such as the ordering of parallel com-
ponents. The relation is defined as the least equivalence relation satisfying the proof rules and axioms of
Tables 2 and 3. In the rules defining structural congruence, the parallel composition is commutative and
associative both at the level of processes (rules (P-COM) and (P-AS)) and of networks (rules (N-COM)
and (N-AS)). This justifies the use of iterated parallel composition ∏i∈I Pi introduced earlier.
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(P-OUT)
M M′

a〈M〉.P≡ a〈M′〉.P
(P-COM) P1 | P2 ≡ P2 | P1

(P-AS) (P1 | P2) | P3 ≡ P1 | (P2 | P3) (P-COM-PLUS) P1 +P2 ≡ P2 +P1

(P-AS-PLUS) (P1 +P2)+P3 ≡ P1 +(P2 +P3) (P-NIL) P | 0≡ P

(P-EXT) (νx)(P1 | P2)≡ (νx)P1 | P2 if x 6∈ fn(P2) (P-NEW) (νx)(νy)P≡ (νy)(νx)P

(P-EQ-1) [M = M]P≡ P (P-EQ-2) [M 6= N]P≡ P

(P-EQ-3)
M M′

[M 6= N]P≡ [M′ = N]P
(P-EQ-4)

M M′

[M = N]P≡ [M′ = N]P

(P-EQ-5) [M 6= N]P≡ [N 6= M]P (P-EQ-6) [M = N]P≡ [N = M]P

(P-ALPHA)
P1 ≡α P2

P1 ≡ P2
(P-AG)

A(~x) def
= P

A(~M)≡ Pθ

(P-PAR)
P1 ≡ P2

P1 | Q≡ P2 | Q (P-RES)
P1 ≡ P2

(νx)P1 ≡ (νx)P2

Table 2: Structural congruence for processes

The restriction axioms describe the scope rules of name restrictions. The scope extension axioms
(P-EXT) and (N-EXT) express that the scope of an extension can be safely extended to cover another
parallel component if the restricted name does not appear free in this component. The exchange axioms
(P-NEW) and (N-NEW) allow us to exchange the order of restrictions.

The agent axiom (P-AG) tells us that an instantiated agent identifier A(~n) should be seen as the same
as the right-hand side of its defining equation A(~x) = P instantiated by the substitution θ that maps the
names in~x component-wise to those of~n.

Finally, the rules (P-PAR) and (P-RES) express that structural congruence is indeed a congruence
relation for parallel composition and restriction.

By using the laws of structural congruence, any network can be rewritten to normal form. Informally,
a network is in normal form if it consists of the total neighbourhood information as one parallel com-
ponent and the location information as the other. In the following, the notation ∏i∈I Pi is used to denote
iterated parallel composition, i.e. the parallel composition of P1, . . . ,Pk, where I = {1, . . . ,k}.

Definition 1. A network N is on normal form if N = (ν~m)(C |∏k∈K lk[Pk]) where C = ∏i∈I ∏ j∈I\{i} li .
m j.

We write l .m∈C if C ≡ l .m |C ′ for some C ′. It is easy do see that any network N can be rewritten
into normal form.

Theorem 1. For any network N, there exists a network N1 such that N1 ≡ N and N1 is on normal form.

Proof. Induction in the structure of N. The proof is similar to that for the π-calculus [9]; the idea is
to use the scope extension axioms to push out restrictions while α-converting bound names whenever
needed.
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(N-CONG)
P1 ≡ P2

l[P1]≡ l[P2]
(N-COM) N1 | N2 ≡ N2 | N1

(N-AS) (N1 | N2) | N3 ≡ N1 | (N2 | N3) (N-NIL) N | 0≡ N

(N-EXT) (νx)(N1 | N2)≡ (νx)N1 | N2 if x 6∈ fn(P2) (N-NEW) (νx)(νy)N ≡ (νy)(νx)N

(N-LOC) l[P | Q]≡ l[P] | l[Q] (N-EQ) (νn)l[P]≡ l[(νn)P] if l 6= n

(N-ALPHA)
N1 ≡α N2

P1 ≡ N2
(N-PAR)

N1 ≡ N2

P1 | N3 ≡ N2 ≡ N3

(N-RES)
N1 ≡ N2

(νx)N1 ≡ (νx)N2

Table 3: Structural congruence for networks

3.3 The reduction relation

In our reduction rules, we assume that network terms are on normal form, as defined above. The rules
are given in Table 4.

We call a location that contains an available input a receiving location for channel a and a location
which contains an availabke output a sending location. For broadcast, we require that if the number of
receiving locations for a channel a exceeds the bound b(a, l) for a (or βa(m), if a is a bound name), then
at most b(a, l) receiving locations can receive the message. All other receiving locations do not receive
anything and will still be waiting for an input. Each of the receiving locations must be connected to the
sending location l. This is captured by the rule (R-BROADCAST).

For collection, the number of locations that can simultaneously send messages on a channel a cannot
exceeds the bound b(a, l) for a (or βa(m), if a is a bound name). Moreover, each sending location must be
connected to the receiving location m. This is captured by the rule (R-COLLECT). Finally, the reduction
rule (R-LOCAL) describes local communication within the confines of a single location.

Example 3. Consider the network

N = l1 . l3 | l2 | l3 | l1[a〈(a,b)〉]
| l2[a〈(c,b)〉] | l3[a [λx(x,b).S] .d〈find-a(S)〉]

Assume that b(a) = 2. This network consists of three locations. Location l1 offers an output on
the a-channel of the pair (a,b), and location l2 offers an output on the a-channel of the pair (c,b). At
location l3 we have a process that on the channel a will receive a set of messages, all of which are of the
form (x,b) for some x, and subsequently output a if one of the pairs received contained a.

We have N→ l1 . l3 | l2 | l3 | l1[0] | l2[0] | l3[d〈a〉].
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(BROAD)
(ν~n : ~β )(C | l[a〈M〉.Pk] |∏k

i=1 mi[a(λ~xM′i)Qi] | N1)
−→
(ν~n : ~β )(C | l[Pk] |∏k

i=k′+1 mi[a(λ~xM′i)Qi] |∏k′
i=1 m`[Qiθi] | N1)

where l .mi ∈ C for all 1≤ i≤ m and either
(1) a 6∈~n, k′ = |{m` | lk .m` ∈ C }| ≤ b(a, l) for all ` ∈ L, or
(2) a ∈~n, k′ ≤ |{m` | lk .m` ∈ C }| ≤ βa(l) for all ` ∈ L,

and for all 1≤ i≤ m′ we have M = M′i θi for some θi,

(LOCAL)
(ν~n : ~β )(C |D | l[a〈M〉.P | a(λ~xM′)Q | P′] | N1)
−→
(ν~n : ~β )(C1 |D1 | lk[P | Qθ | P′] | N1)

where M = M′θ for some θ

(COLL)
(ν~n : ~β )(C |∏k∈K lk[a〈Mk〉.Pk | P′k] | m[a [λ~xM.S ]Q`] | N1)
−→
(ν~n : ~β )(C |∏k∈K lk[Pk | P′k] | m[Q`[S 7→ {|M1, . . . ,M|K| |}] | N1)

where l j .m ∈ C for all j ∈ K and either
a 6∈~n, and 1≤ |K| ≤ b(a,m) or
a ∈~n and 1≤ |K| ≤ βa(m)

and for all j ∈ K we have M j = Mθ` for some θ`

Table 4: Reduction rules for communication in BBC networks on normal form, assuming connectivity
b(a,m)

4 Bisimilarity in BBC

4.1 Barbs

In our treatment of bisimilarity, we define an observability predicate (aka barbs) We write P ↓a,B if
P admits a broadcast observation on channel a, and ` P ↓a,C if P admits a collection observation on
channel a. We can define a similar predicate for networks. We write N ↓a,d @l if N allows a barb ↓a,d at
location l. Table 5 contains the most interesting rules.

Definition 2. A weak barbed bisimulation R is a symmetric binary relation on networks which satisfies
that whenever N1RN2 we have

1. If N1→ N′1 then for some N′2 we have N2→∗ N′2 where N′1RN′2

2. For every location l, if N1 ↓a,d @l then also N2 ↓a,d @l

We write N1
·≈ N2 if N1RN2 for some weak barbed bisimulation R.

Theorem 2. Weak barbed bisimilarity is an equivalence.

As in other process calculi, the notion of barbed bisimilarity is unfortunately not a congruence, as it
is not preserved under parallel composition.

Two networks are weak barbed congruent if they are barbed bisimilar in every parallel context, i.e.
no surrounding network can tell them apart.

Definition 3. We write N1 ≈ N2 if for all networks N we have that N1 | N
·
≈ N2 | N
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(INP-B) a(λ~xM )P1 ↓a,B (INP-C) a [λ~xM.S ]P1 ↓a,C

(OUTP) a〈M〉.P ↓a,d (PAR)
P1 ↓a,d

P1 | P2 ↓a,d

(NEW)
P1 ↓a,d

(νx : βn)P1 ↓a,d
x 6= a (LOCATE)

P ↓a,d

l[P] ↓a,d @`

(CONG)
N1 ↓a,d @l N1 ≡ N

N ↓a,d @l

Table 5: Selected rules for barbs

5 A hierarchical protocol

In this section we outline how one can reason about a distributed protocol that involves both collection
and broadcast. The protocol itself is generic but representative of the current trend in distributed com-
munication systems with a large number of devices and very few controlling/central entities. In essence,
this protocol is composed by traffic collection in the upstream direction, i.e. from the leaves to the central
entity, and traffic broadcast in the downstream direction, i.e. from the central entity to the leaf nodes.

Figure 1 shows the multi-level network topology assumed for this protocol; the topology is that of a
tree. Each level of the network is connected to the one above through a local collection and broadcast
node, which we simply denote as local central node. This node is then a leaf node of the above level, e.g.
the nodes denoted as C1 are leaf nodes of the level l0, while being the local central nodes at each of the
locations of li

1, which for ease of notation we denote solely as l1. We assume that there can be at most β

nodes connected to every central node, meaning that the bound of every channel should be β .
The goal of the distributed protocol is to collect information from all leaf nodes in the network; and

then communicate it to a central entity, denoted as C0. The central entity C0, then reaches a global
decision, which is then communicated to the leaf nodes. For simplicity, we assume that this decision
only depends on the data collected from the leaves.

5.1 The n-level protocol in BBC

In what follows, we define the components of the network and protocol inductively. We assume the
network to have n levels or depth n, where level 0 corresponds to the central entity, while level n denotes
the level where all the leaf nodes are.

One of the sub-networks of the n-level protocol at level k , as depicted in Figure 1, is composed by m
nodes and a local central node Ck. We denote this sub-network by the agent identifier Dk,n

(
a′k,a

′′
k ,b
′
k,b
′′
k ,L , `k−1

)
where L is a set of locations and `k−1 is the local central location at k−1 level. The other name param-
eters are

• a′k,a
′′
k - names of the channels used for communications at location lk, i.e. between the leaf nodes

and the local central entity; the names transmitted are collected by the central node at level k+1.

• b′k,b
′′
k - names of the channels that the local central entity uses to communicate to the local central

entity for which it is a lead, i.e. the channel over which the local central entity Ck communicates
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C0

C1 C1 C1

C2 C2 C2 C2 C2 C2 C2

Figure 1: A multi-level network.

with the local central entity Ck−1. The names transmitted are broadcast to the child nodes of the
local central (at level k−1).

• L is the set of nodes at this level.

At the leaf level, k = 0 we have,

D0,n(a′0,a
′′
0,b
′
0,b
′′
0L , `0)

def
= ∏

`i∈L
`i[Pi(a′0,a

′′
0)] | ∏

`i∈L
`i . `1 | `0[C0(a′0,a

′′
0,b
′
0,b
′′
0)]

The subprocess Pi where `i ∈L is defined by

Pi(a′0,a
′′
0)

def
= (νωi)a′0〈ωi〉.a′′0(z).(Qi(z) | Pi(a′0,a

′′
0))

where Qi(z) depicts the computation that occurs at the leaf `i; we shall not describe this here and ωi is
the local name that is the contribution made by the process.

The local central node is defined by

C0,n(a′,a′′,b′,b′′) def
= a′(S).b′〈 f (S)〉.b′′(z).a′′〈z〉.C0,n(a′,a′′,b′,b′′)

This process will receive names that are collected to the set S and then pass the processed information
f (S) upwards on the b channel. After this, the local central node waits for a response to the information
sent and passes on the received name to its children.

The selection function f : P(N )→N processes the messages received from the leaf nodes and
selects a name; this could be e.g. a channel estimate. We require that selection is idempotent in the sense
that for any family of multisets S1, . . . ,Sk we have

f ({ f (S1), . . . , f (Sk)}) = f (∪k
i=1Si)

If we think of names as natural numbers, the function f (S) = minx∈S x is an example of an idempotent
selection function.
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For intermediate levels, 0 < k < n, Dk (ak,bk, `k, `k−1) is defined as follows,

Dk+1,n(a′k+1,a
′′
k+1,b

′
k+1,b

′′
k+1,L , `k+1)

def
= (ν~̀,a′k : β ,a′′k : β ,b′k : β ,b′′k : β )(

∏
Li∈Locs(L ,k)

Dk,n(a′k,a
′′
k ,b
′
k,b
′′
k ,Li, `i) |

m

∏
i=1

`i . `k | `k+1[Ck+1(a′k,a
′′
k ,b
′
k,b
′′
k )]

)

where the set of locations Locs(L ,k) can be partitioned as Locs(L ,k) =
⋃

i i ∈ ILi where I is some
index set and Li∩L j = /0 for all i 6= j, i, j ∈ I. m′i is the number of neighbours in the i’th sub-network
found at level k+1 and `i ∈ ~̀.

The definition of local central nodes is (for k < n)

Ck,n((ak,bk)
def
= ak(S).bk〈 f (S)〉.bk(z).ak〈z〉.(Qc(z) |Ck(ak,bk))

Finally, at level n the information collected from all the leaf nodes reaches the central entity, where
the final processing of the received information is performed. The description of the entire network Dn

is Dn,n
m (a0, `c), defined as

Dn,n(a′n,a
′′
n,b
′
n,b
′′
n, `n)

def
= (ν~̀,a′n−1 : β ,a′′n−1 : β ,b′n−1 : β ,b′′n−1 : β )(
∏

Li∈Locs(L ,n)
D1,n

m′i
(a′n−1,a

′′
n−1,b

′
n−1,b

′′
n−1,Li, `n) |

m

∏
i=1

`i . `0 | `0[Cn(a′n,a
′′
n,b
′
n,b
′′
n)]

)

Here the central entity will collect the estimates from its children and then broadcast back the value of
the selection.

Cn,n(a′n,a
′′
n,b
′
n,b
′′
n)

def
= a′n(S).b′n〈 f (S)〉.Cn,n(a′n,a

′′
n,b
′
n,b
′′
n)) (1)

5.2 Correctness

We would like the multi-level network that serves K leaf nodes to be equivalent to a single-level network
containing the same K leaf nodes but now connected to a single central entity.

To this end we define the flattened version of a hierarchical network N, denoted flat(N, `). This is
precisely a network in which all nodes are connected to the same central node at location `.

This operation is defined inductively as follows.

flat(D0,n(a′0,a
′′
0,b
′
0,b
′′
0,L , `0), `)

def
= D0,n(a′0,a

′′
0,b
′
0,b
′′
0,L , `0)

flat(Dk+1,n(a′k+1,a
′′
k+1,b

′
k+1,b

′′
k+1,L , `k+1), `)

def
=

(ν~̀,a′k,a
′′
k ,b
′
k,b
′′
k )

(
m

∏
Li∈Locs(L ,k)

flat(Dk,n(a′k,a
′′
k ,b
′
k,b
′′
k ,Li, `i)) |

m

∏
i=1

`i . `

)
where 0 < k < n

Theorem 3. For every n ≥ 0, for every set of distinct names {a′0,a′′0,b′0,b′′0} and set of locations L we
have

D0,n(a′0,a
′′
0.b
′
0,b
′′
0,L , `)

·
≈ flat(D0,n(a′0,a

′′
0,b
′
0,b
′′
0,L , `), `)
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6 A type system

We can formulate a type discipline that distinguishes between broadcast and collection and assigns
bounds to these.

Types are given by the formation rules

T ::= ChC(T ) | ChB(T ) | T k | T1×T2 · · ·×Tk | T1→ T2 | Loc

We now explain the intent behind these formation rules.

• The type ChC(T ) is the type of a channel than can collect messages of type T , and the type ChB(T )
is the type of a channel that can broadcast a message of type T .

• A multiset with k elements of type T will have type T k.

• A tuple with k components of types T1, . . . ,Tk, respectively, will have type T1×·· ·×Tk

• A constructor f will have type T1 → T2, and a multiset g will have type T k → T . If g has type
T k→ T , g produces an element of type T from a multiset of k terms, each having type T .

• Locations have type Loc.

A type environment Γ is a finite function Γ : Names∪Sels∪Cons→ Types that assigns types to all
names, term constructors and multiset selectors.

Type judgments are relative to a type environment and a set of agent variables Θ and are of the form

Γ `M : T for terms

Γ `Θ P for processes

Γ `Θ N for networks

When the set is the same in all the judgements of a type rule, we omit it throughout the rule.

(VAR) Γ ` x : T if Γ(x) = T (SETVAR) Γ ` S : T k if Γ(S) = T k

(MULTISET)
Γ `Mi : T 1≤ i≤ k
Γ ` {M1, . . . ,Mk} : T k (SELECT) E : T k Γ(g) = T k→ T

Γ ` g(E) : T

(CONS)
Γ `M : T1 Γ( f ) = T1→ T2

Γ ` f (M) : T2

Table 6: Type rules for message terms

The following result, which guarantees that a well-typed network stays well-typed under reductions,
is easily established.

Theorem 4. If Γ ` N and N→ N′ then Γ ` N′

Proof. Induction in the reduction rules. A crucial lemma needed in the proof is that whenever N1 ≡ N2,
then Γ ` N1 if and only if Γ ` N2.
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(B-INP) Γ,~x : ~T `M : T1 Γ(a) = ChB(T1) Γ,~x : ~T ` P1

Γ ` a(λ~xM )P1

(C-INP) Γ,~x : ~T `M : T1 Γ(a) = ChC(T1) Γ,~x : ~T ` P1

Γ ` a [λ~xM.S ]P1

(OUTP)
Γ(a) = Chd(T ) d ∈ {B,C} Γ `M : T1

Γ ` a〈M〉.P1

(NIL) Γ ` 0 (PAR)
Γ ` P1 Γ ` P2

Γ ` P1 | P2

(SUM)
Γ ` P1 Γ ` P2

Γ ` P1 +P2
(MATCH)

Γ `M1 : T Γ `M2 : T Γ ` P1

Γ ` [M1 = M2]P1

(MISMATCH)
Γ `M1 : T Γ `M2 : T Γ ` P1

Γ ` [M1 6= M2]P1
(NEW)

Γ,x : T ` P1

Γ ` (νx : βn)P1

(AGENT)
Γ `Mi : Ti 1≤ i≤ |~M| A ∈Θ

Γ `Θ A(~M)

(CALL) Γ,~x : ~T `Θ∪{A}` P Γ `Mi : Ti 1≤ i≤ |~M| A(~x) def
= P

Γ `Θ A(M)

Table 7: Type rules for processes

7 The expressive power of BBC

There is no compositional encoding of BBC into the π-calculus. In the presence of broadcast this follows
from the negative result due to Ene and Muntean [1]. However, the result also holds if we only consider
collection. The following criteria for compositionality are due to Palamidessi [6] and Ene and Muntean
[1].

Definition 4. An encoding [[ ]] is compositional if

1. [[N1 | N2]] = [[N1]] | [[N2]].

2. For any substitution σ we have [[Nσ ]] = [[N]]σ

3. If N→∗ N′ then [[N]]→∗ [[N′]].
4. If [[N]]→∗ M then [[N]]→∗ M→∗ [[N′]] for some N′.

A central notion in the study of process calculi is that of an electoral system. This is a network in
which the participants perform a computation that elects a unique leader. Following [6, 1], our definition
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(PAR-N)
Γ ` N1 Γ ` N2

Γ ` N1 | N2

(NEW)
Γ,x : T ` N1

Γ ` (νx : βn)N1

(LOC)
Γ ` P Γ(`) = Loc

Γ ` l[P]

(NEAR) Γ(l) = Loc Γ(m) = Loc

Γ ` l .m

(NOT-NEAR)
Γ(l) = Loc Γ(m) = Loc

Γ ` l 6 .m

Table 8: Type rules for networks

assumes a network in which the names used are the ‘natural names’ that represent the identity of the n
processes in the network.
Definition 5 (Electoral system). A network N =P1 | · · · |Pn is an electoral system if for every computation
C, there exists an extension C′ of C, and an index k ∈ {1, . . . ,n} such that for every i ∈ {1, . . . ,n} the
projection C′i contains exactly one output action of the form k and any trace of a Pi may contain at most
one action of the form l with l ∈ {1, . . . ,n}.

We now describe such a system in BBC. The system uses a common channel a whose bound is n,
where n is the number of principals. The idea is to collect names until n sets of names have been collected.
The first to do so sends out a success announcement to everyone in the form of a name chosen(m); the
collection function g(S) is defined to select the name with the minimal index among the names of S
unless S contains one or more occurrences of a name of the form chosen(m′) for some m. Thus, the first
component to receive sufficiently many names from all other components chooses the leader.

Our network is of the form

N =
n

∏
i=1

l[li]Pi |
n

∏
i=1

m

∏
j=1, j 6=i

li . l j

We define the n components as follows:

Pi
def
=a〈i〉.a [λx.S1 ] . . .a [λx.Sk ]a〈chosen(g({{g(S1), . . .g(Sk)}}))〉.P

The selection function is defined by

g(S) =

{
minx∈S x if S⊆ {1, . . . ,n}
chosen(n) if chosen(n) ∈ S

As there is no such electoral system for the π-calculus [6], we can use the same proof as that given by
Ene and Muntean to conclude that there can be no compositional encoding of BBC in the π-calculus.
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8 Directions for further work

In this paper we have presented the BBC calculus, which is a distributed process calculus that generalizes
the π-calculus with notions of channels with bounded forms of broadcast and collection and an explicit
notion of connectivity.

The present work only considers barbed bisimulation; it is well-known that this relation is not pre-
served by parallel composition and that the notion of barbed congruence does not lend itself well to
coinductive proof techniques. Further work includes finding a labelled characterization of barbed con-
gruence; this requires a labelled transition semantics in the spirit of [1].

At present, we informally distinguish between channels for broadcast and collection. However, if
we think of channels as radio frequencies, one would sometimes like the same frequency to be used for
both broadcast and collection. An interesting direction of work is therefore to develop a type system that
will allow the same channel to be used non-uniformly in both modes and according to a protocol. This
is a variant of binary session types [2] that has been adapted to a setting with broadcast communication
by [5]. A further step in this direction is to study multiparty session types [3] and how the projection to
local session types can be defined in the setting of BBC.
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