
Alastair F. Donaldson, Vasco Vasconcelos (Eds.): Proceedings
of the 7th Workshop on Programming Language Approaches
to Concurrency and Communication-cEntric Software (PLACES 2014)
EPTCS 155, 2014, pp. 61–71, doi:10.4204/EPTCS.155.9

Session Type Isomorphisms

Mariangiola Dezani-Ciancaglini
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There has been a considerable amount of work on retrieving functions in function libraries using
their type as search key. The availability of rich componentspecifications, in the form of behavioral
types, enables similar queries where one can search a component library using the behavioral type
of a component as the search key. Just like for function libraries, however, component libraries will
contain components whose type differs from the searched onein the order of messages or in the
position of the branching points. Thus, it makes sense to also look for those components whose type
is different from, but isomorphic to, the searched one.

In this article we give semantic and axiomatic characterizations of isomorphic session types. The
theory of session type isomorphisms turns out to be subtle. In part this is due to the fact that it relies
on a non-standard notion of equivalence between processes.In addition, we do not know whether
the axiomatization is complete. It is known that the isomorphisms for arrow, product and sum types
are not finitely axiomatisable, but it is not clear yet whether this negative results holds also for the
family of types we consider in this work.

1 Introduction

We have all experienced, possibly during a travel abroad, using an ATM that behaves differently from
the ones we are familiar with. Although the information requested for accomplishing a transaction is
essentially always the same – the PIN, the amount of money we want to withdraw, whether or not we
want a receipt – we may be prompted to enter such information in an unexpected order, or we may be
asked to dismiss sudden popup windows containing informative messages – “charges may apply” – or
commercials. Subconsciously, weadapt our behavior so that it matches the one of the ATM we are
operating, and we can usually complete the transaction provided that the expected and actual behaviors
aresufficiently similar. An analogous problem arises during software development or execution, when
we need a component that exhibits some desired behavior while the components we have at hand exhibit
similar, but not exactly equal, behaviors which could nonetheless be adapted to the one we want. In
this article, we explore one particular way of realizing such adaptation in the context of binary sessions,
where the behavior of components is specified as session types.

There are two key notions to be made precise in the previous paragraph: first of all, we must clarify
what it means for two behaviors to be “similar” to the point that one can be adapted into the other; second,
as for the “subconscious” nature of adaptation, we translate this into the ability to synthesize the adapter
automatically –i.e. without human intervention – just by looking at the differences between the required
and actual behaviors of the component. Clearly we have to finda trade-off: the coarser the similarity
notion is the better, for this means widening the range of components we can use; at the same time, it is
reasonable to expect that the more two components differ, the harder it gets to automatically synthesize a
sensible adapter between them. The methodology we propose in this work is based on the theory oftype
isomorphisms[10]. Intuitively, two typesT andSare isomorphic if there exist two adaptersA : T → S
andB : S→ T such thatA transforms a component of type (or, that behaves like)T into one of typeS,
andB does just the opposite. It is required that these transformations must notlose any information. This
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can be expressed saying that if we composeA andB in any order they annihilate each other, that is we
obtain adaptersA⌋⌈B : T → T andB⌋⌈A : S→ Sthat are equivalent to the “identity” trasformations onT
andSrespectively.

In the following we formalize these concepts: we define syntax and semantics of processes as well as
a notion of process equivalence (Section 2). Next, we introduce a type system for processes, the notion of
session type isomorphism, and show off samples of the transformations we can capture in this framework
(Section 3). We conclude with a quick survery of related works and open problems (Section 4).

2 Processes

We letm, n, . . . range over integer numbers; we letc range over the set{l,r} of channelsandℓ range
over the set{inl,inr} of selectors. We define an involution· over channels such thatl= r. We assume
a set ofbasic valuesv, . . . andbasic types t, s, . . . that include the unitary value() of typeunit, the
booleanstrue andfalse of typebool, and the integer numbers of typeint. We writev ∈ t meaning
that v has typet. We use a countable set ofvariables x, y, . . . ; expressionse, . . . are either variables
or values or the equalitye1 = e2 between two expressions. Additional expression forms can be added
without substantial issues.Processesare defined by the grammar

P ::= 0 | c?(x : t).P | c!〈e〉.P | c⊳ ℓ.P | c⊲{P,Q} | if e then P else Q | P⌋⌈Q

which includes the terminated process0, input c?(x : t).P and outputc!〈e〉.P processes, as well as
labeled-driven selectionc ⊳ ℓ.P and branchingc ⊲{P,Q}, the conditional processif e then P else Q,
and parallel compositionP⌋⌈Q. The peculiarity of the calculus is that communication occurs only be-
tween adjacent processes. Such communication model is exemplified by the diagram below which de-
picts the compositionP⌋⌈Q. Each process sends and receives messages through the channels l andr.

P Q⌋⌈

l r l r

Messages sent byP on r are received byQ from l,
and messages sent byQ on l are received byP from
r. Therefore, unlike more conventional parallel com-
position operators,⌋⌈ is associative but not symmetric
in general. Intuitively,P⌋⌈Q models a binary session
whereP andQ are the processes accessing the two end-
points of the session. By compositionality, we can also represent more complex scenarios likeP⌋⌈A⌋⌈Q
where the interaction of the same two processesP andQ is mediated by an adapterA that filters and/or
transforms the messages exchanged betweenP andQ. In turn, A may be the parallel composition of
several simpler adapters.

The operational semantics of processes is formalized as a reduction relation closed by reduction
contexts and a structural congruence relation.Reduction contextsC are defined by the grammar

C ::= [ ] | C ⌋⌈P | P⌋⌈C

and, as usual, we writeC [P] for the process obtained by replacing the hole inC with P.
Structural congruenceis the least congruence defined by the rules

0⌋⌈0≡ 0 P⌋⌈ (Q⌋⌈R)≡ (P⌋⌈Q) ⌋⌈R

while reduction is the least relation−→ defined by the rules in Table 1. The rules are familiar and
therefore unremarkable. We assume a deterministicevaluation relatione ↓ v expressing the fact thatv
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Table 1: Reduction relation.
[R-COMM 1]

e ↓ v v ∈ t

r!〈e〉.P⌋⌈l?(x : t).Q−→ P⌋⌈Q{v/x}

[R-COMM 2]
e ↓ v v ∈ t

r?(x : t).P⌋⌈l!〈e〉.Q−→ P{v/x}⌋⌈Q

[R-CHOICE 1]
r⊳ ℓ.P⌋⌈l⊲{Qinl,Qinr} −→ P⌋⌈Qℓ

[R-CHOICE 2]
r⊲{Pinl,Pinr}⌋⌈l⊳ ℓ.Q−→ Pℓ ⌋⌈Q

[R-COND]
e ↓ v v ∈ bool

if e then Ptrue else Pfalse −→ Pv

[R-CONTEXT]
P−→ Q

C [P]−→ C [Q]

[R-STRUCT]
P≡ P′ P′ −→ Q′ Q′ ≡ Q

P−→ Q

is the value ofe. We write−→∗ for the reflexive, transitive closure of−→ andP X−→ if there is noQ
such thatP−→ Q. With these notions we can characterize the set of correct processes, namely those that
complete every interaction and eventually reduce to0:

Definition 1 (correct process). We say that a processP is correct if P−→∗ Q X−→ impliesQ≡ 0.

A key ingredient of our development is a notion of process equivalence that relates two processesP
andQ whenever they can be completed by the same contextsC to form a correct process. Formally:

Definition 2 (equivalence). We say that two processesP andQ areequivalent, notationP≈Q, whenever
for everyC we have thatC [P] is correct if and only ifC [Q] is correct.

Note that the relation≈ differs from more conventional equivalences between processes. In particu-
lar, ≈ is insensitive to the exact time when visible actions are made available on the two interfaces of a
process. For example, we have

l?(x : int).r!〈true〉.l?(y : unit)≈ l?(x : int).l?(y : unit).r!〈true〉 (1)

despite the fact that the two processes perform visible actions in different orders. Note that the processes
in (1) are not (weakly) bisimilar.

3 Type System and Isomorphisms

Sessiontypes T, S, . . . are defined by the grammar

T ::= end | ?t.T | !t.T | T +S | T ⊕S

and are fairly standard, except for branchingT +Sand selectionT ⊕Swhich are binary instead ofn-ary
operators, consistently with the process language. As usual, we denote byT thedual of T, namely the
session type obtained by swapping inputs with outputs and selections with branches inT.

We letΓ range overenvironmentswhich are finite maps from variables to types of the form

x1 : t1, . . . ,xn : tn.

The typing rules are given in Table 2. Judgments have the form:

• Γ ⊢ e : t stating thate is well typed and has typet in the environmentΓ and
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Table 2: Typing rules for expressions and processes.

[T-VAR ]
Γ,x : t ⊢ x : t

[T-VALUE ]
v ∈ t

Γ ⊢ v : t

[T-EQ]
Γ ⊢ e1 : t Γ ⊢ e2 : t

Γ ⊢ e1 = e2 : bool

[T- INPUT]
Γ,x : t ⊢ P◮ {c : T,c : S}

Γ ⊢ c?(x : t).P◮ {c : ?t.T,c : S}

[T-OUTPUT]
Γ ⊢ e : t Γ ⊢ P◮ {c : T,c : S}

Γ ⊢ c!〈e〉.P◮ {c : !t.T,c : S}

[T-BRANCH]

Γ ⊢ Pi ◮ {c : Ti ,c : S} (i=1,2)

Γ ⊢ c⊲{P1,P2}◮ {c : T1+T2,c : S}

[T-SELECT LEFT]
Γ ⊢ P◮ {c : T1,c : S}

Γ ⊢ c⊳inl.P◮ {c : T1⊕T2,c : S}

[T-SELECT RIGHT]
Γ ⊢ P◮ {c : T2,c : S}

Γ ⊢ c⊳inr.P◮ {c : T1⊕T2,c : S}

[T- IDLE ]
Γ ⊢ 0◮ {l : end,r : end}

[T-CONDITIONAL ]

Γ ⊢ e : bool Γ ⊢ Pi ◮ {l : T,r : S} (i=1,2)

Γ ⊢ if e then P1 else P2◮ {l : T,r : S}

[T-PARALLEL ]

Γ ⊢ P◮ {l : T,r : T ′} Γ ⊢ Q◮ {l : T
′
,r : S}

Γ ⊢ P⌋⌈Q◮ {l : T,r : S}

• Γ ⊢P◮ {c : T,c : S} stating thatP is well typed in the environmentΓ and uses channelc according
to T andc according toS.

Theorem 1. If ⊢ P◮ {l : end,r : end}, thenP is correct.

Proof. Looking at the typing rules it is clear thatP can only be0, or a conditional or a parallel com-
position. The first two case are immediate. In the third case let P be P1 ⌋⌈ . . . ⌋⌈Pi ⌋⌈ . . . ⌋⌈Pn, where
P1, . . . ,Pi, . . . ,Pn are single-threaded. Then rule[T-PARALLEL] requires

⊢ P1◮ {l : end,r : T1},⊢ Pi ◮ {l : Ti−1,r : Ti} for 2≤ i ≤ n−1 and⊢ Pn◮ {l : Tn−1,r : end}

for some typesT1, . . . ,Tn−1. The proof is by induction onT1, . . . ,Tn−1. The first step coincides with
the first case. For the induction step we can assume thatP1, . . . ,Pi, . . . ,Pn are not conditionals, since
otherwise at least one of them could be reduced by rule[R-COND]. Notice thatr is the only channel
in P1 andl is the only channel inPn. Then there must be at least one indexj (1 ≤ j ≤ n− 1) such
that Pj starts with a communication/selection/branching on channel r andPj+1 starts with a communi-
cation/selection/branching on channell. We only consider the caseTj = Tinl⊕Tinr, the proofs for the
other cases being similar. Rules[T-SELECT LEFT], [T-SELECT RIGHT] and[T-BRANCH] requirePj ≡ r⊳ℓ.Q
and Pj+1 ≡ l ⊲ {Qinl,Qinr}. ThereforeP −→ P1 ⌋⌈ . . . ⌋⌈Q⌋⌈Qℓ ⌋⌈ . . . ⌋⌈Pn by rules [R-CHOICE 1] and
[R-CONTEXT]. This concludes the proof, since⊢ Q◮ {l : Tj−1,r : Tℓ}, ⊢ Qℓ ◮ {l : Tℓ,r : Tj+1}.

To have an isomorphism between two session typesT and S, we need a processA that behaves
according toT on its left interface and according toS on its right interface. In this way, the process
“transforms”T into S. Symmetrically, there must be a processB that performs the inverse transformation.
Not all of these transformations are isomorphisms, becausewe also require that these transformations
must not entail anyloss of information. Given a session typeT, the simplest process with this property
is theidentity processidT defined below:

idend = 0
id!t.T = l?(x : t).r!〈x〉.idT

id?t.T = r?(x : t).l!〈x〉.idT

idT⊕S= l⊲{r⊳inl.idT ,r⊳inr.idS}
idT+S= r⊲{l⊳inl.idT ,l⊳inr.idS}
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Notice that⊢ idT ◮ {l : T,r : T}. We can now formalize the notion of session type isomorphism:

Definition 3 (isomorphism). We say that the session typesT andS are isomorphic, notationT ∼= S, if
there exist two processesA andB such that⊢ A◮ {l : T,r : S} and⊢ B◮ {l : S,r : T} andA⌋⌈B≈ idT

andB⌋⌈A≈ idS.

Example 1. Let T
def
= !int.!bool.end andS

def
= !bool.!int.end and observe thatT andSdiffer in the

order in which messages are sent. Then we haveT ∼= S. Indeed, if we take

A
def
= l?(x : int).l?(y : bool).r!〈y〉.r!〈x〉.0 and B

def
= l?(x : bool).l?(y : int).r!〈y〉.r!〈x〉.0

we derive⊢ A◮ {l : T,r : S} and⊢ B◮ {l : S,r : T} and moreoverA⌋⌈B≈ idT andB⌋⌈A≈ idS. �

Example 2. Showing that two session types arenot isomorphic is more challenging since we must prove
that there is no pair of processesA andB that turns one into the other without losing information. We
do so reasoning by contradiction. Suppose for example that!int.end andend are isomorphic. Then,
there must exist⊢ A◮ {l : ?int.end,r : end} and⊢ B◮ {l : end,r : !int.end}. The adapterB is
suspicious, since it must send a message of typeint on channelr without ever receiving such a message
from channell. Then, it must be the case thatB “makes up” such a message, say it isn (observe that our
calculus is deterministic, soB will always output the same integern). We can now unmaskB showing a
context that distinguishesid!int.end from A⌋⌈B. Consider

C
def
= r!〈n+1〉.0⌋⌈ [ ] ⌋⌈l?(x : int).if x= n+1 then 0 else r!〈false〉.0

and observe thatC [id!int.end] is correct whereasC [A⌋⌈B] is not because

C [A⌋⌈B]−→∗ 0⌋⌈if n= n+1 then 0 else r!〈false〉.0−→ 0⌋⌈r!〈false〉.0 X−→

This means thatA⌋⌈B 6≈ id!int.end, contradicting the hypothesis thatA andB were the witnesses of the
isomorphism!int.end∼= end. �

Example 3. Another interesting pair of non-isomorphic types is given by T
def
= ?int.!bool.end and

S
def
= !bool.?int.end. A lossless transformation fromS to T can be realized by the process

B
def
= l?(x : bool).r?(y : int).r!〈x〉.l!〈y〉.0,

which reads one message from each interface and forwards it to the opposite one. The inverse transfor-
mation fromT to S is unachieavable without loss of information. Such processnecessarily sends at least
one message (of typeint or of typebool) on one interfacebeforeit receives the message of the same
type from the opposite interface. Therefore, just like in Example 2, such process must guess the message
to send, and in most cases such message does not coincide withthe one the process was supposed to
forward. �

Table 3 gathers the session type isomorphisms that we have identified. There is a perfect duality
between the odd-indexed axioms (about outputs/selections, on the left) and the even-indexed axioms
(about inputs/branchings, on the right), so we briefly discuss the odd-indexed axioms only. Axiom[A1]
is a generalization of the isomorphism discussed in Example1 and is proved by a similar adapter. Ax-
iom [A3] distributes thesameoutput on a selection. Basically, this means that the momentof selection
is irrelevant with respect to other adjacent output operations. Axiom[A5] shows that sending the unitary
value provides no information and therefore is a superfluousoperation. Axiom[A7] shows that sending a
boolean value is equivalent to making a selection, providedthat the continuation does not depend on the
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Table 3: Session type isomorphisms.

[A1] !t.!s.T ∼= !s.!t.T [A2] ?t.?s.T ∼= ?s.?t.T
[A3] !t.(T ⊕S) ∼= !t.T ⊕!t.S [A4] ?t.(T +S) ∼= ?t.T +?t.S
[A5] !unit.T ∼= T [A6] ?unit.T ∼= T
[A7] !bool.T ∼= T ⊕T [A8] ?bool.T ∼= T +T
[A9] T ⊕S∼= S⊕T [A10] T +S∼= S+T

[A11] (T1⊕T2)⊕T3
∼= T1⊕ (T2⊕T3) [A12] (T1+T2)+T3

∼= T1+(T2+T3)

Table 4: Adapters for type isomorphism.

A1 = l?(x : t).l?(y : s).r!〈y〉.r!〈x〉.idT B1 = l?(x : s).l?(y : t).r!〈y〉.r!〈x〉.idT

A2 = r?(x : t).r?(y : s).l!〈y〉.l!〈x〉.idT B2 = r?(x : s).r?(y : t).l!〈y〉.l!〈x〉.idT

A3 = l?(x : t).l ⊲{r⊳inl.r!〈x〉.idT ,r⊳inr.r!〈x〉.idS}
B3 = l⊲{l?(x : t).r!〈x〉.r ⊳inl.idT ,l?(x : t).r!〈x〉.r ⊳inr.idS}
A4 = r⊲{r?(x : t).l!〈x〉.l ⊳inl.idT ,r?(x : t).l!〈x〉.l ⊳inr.idS}
B4 = r?(x : t).r ⊲{l⊳inl.l!〈x〉.idT ,l⊳inr.l!〈x〉.idS}
A5 = l?(x : unit).idT B5 = r!〈()〉.idT

A6 = l!〈()〉.idT B6 = r?(x : unit).idT

A7 = l?(x : bool).if x then r⊳inl.idT else r⊳inr.idT B7 = l⊲{r!〈true〉.idT ,r!〈false〉.idT}
A8 = r⊲{l!〈true〉.idT ,l!〈false〉.idT} B8 = r?(x : bool).if x then l⊳inl.idT else l⊳inr.idT

A9 = l⊲{r⊳inr.idT ,r⊳inl.idS} B9 = l⊲{r⊳inr.idS,r⊳inl.idT}
A10 = r⊲{l⊳inr.idS,l⊳inl.idT} B10 = r⊲{l⊳inr.idT ,l⊳inl.idS}
A11 = l⊲{l⊲{r⊳inl.idT1,r⊳inr.r⊳inl.idT2},r⊳inr.r⊳inr.idT3}
B11 = l⊲{r⊳inl.r⊳inl.idT1,l⊲{r⊳inl.r⊳inr.idT2,r⊳inr.idT3}}
A12 = r⊲{l⊳inl.l⊳inl.idT1,r⊲{l⊳inl.l⊳inr.idT2,l⊳inr.idT3}}
B12 = r⊲{r⊲{l⊳inl.idT1,l⊳inr.l⊳inl.idT2},l⊳inr.l⊳inr.idT3}

particular boolean value that is sent. In general, any data type with finitely many values can be encoded
as possibly nested choices. Axiom[A9], corresponding to the commutativity of⊕ wrt ∼=, shows that
the actual label used for making a selection is irrelevant, only the continuation matters. Axiom[A11],
corresponding to the associativity for⊕ wrt ∼=, generalizes the irrelevance of labels seen in[A9] to nested
selections. Since∼= is a congruence, the axioms in Table 3 can also be closed by transitivity and arbitrary
session type contexts.

Table 4 gives all the adapters of the axioms in Table 3. Then the soundness of the axioms in Table 3
amounts to prove:

⊢ Ai ◮ {l : Ti ,r : Si} ⊢ Bi ◮ {l : Si ,r : Ti} (2)

Ai ⌋⌈Bi ≈ idTi Bi ⌋⌈Ai ≈ idSi (3)

whereTi is the l.h.s. andSi is the r.h.s. of the axiom[A i] for 1≤ i ≤ 12.

Point 2 can be easily shown by cases on the definitions ofAi andBi taking into account that

⊢ idT ◮ {l : T,r : T}
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Table 5: Symbolic reduction relation.

[SR-UP 1] l?(x : t).P⌋⌈Q l?(x : t).(P⌋⌈Q) [SR-UP 2] P⌋⌈r?(x : t).Q r?(x : t).(P⌋⌈Q)

[SR-UP 3] l!〈x〉.P⌋⌈Q l!〈x〉.(P⌋⌈Q) [SR-UP 4] P⌋⌈r!〈x〉.Q r!〈x〉.(P⌋⌈Q)

[SR-UP 5] l⊲{Pinl,Pinr}⌋⌈Q l⊲{Pinl ⌋⌈Q,Pinr ⌋⌈Q} [SR-UP 7] l⊳ ℓ.P⌋⌈Q l⊳ ℓ.(P⌋⌈Q)

[SR-UP 6] P⌋⌈r⊲{Qinl,Qinr} r⊲{P⌋⌈Qinl,P⌋⌈Qinr} [SR-UP 8] P⌋⌈r⊳ ℓ.Q r⊳ ℓ.(P⌋⌈Q)

[SR-UP 9] (if x then P1 else P2) ⌋⌈Q if x then (P1 ⌋⌈Q) else (P2⌋⌈Q)

[SR-UP 10] P⌋⌈ (if x then Q1 else Q2) if x then (P⌋⌈Q1) else (P⌋⌈Q2)

[SR-SWAP 1] c?(x : t).c?(y : s).P c?(y : s).c?(x : t).P [SR-SWAP 2] c!〈x〉.c!〈y〉.P c!〈y〉.c!〈x〉.P
[SR-SWAP 3] c?(x : t).c!〈y〉.P! c!〈y〉.c?(x : t).P x 6= y
[SR-SWAP 4] c?(x : t).c⊳ ℓ.P! c⊳ ℓ.c?(x : t).P
[SR-SWAP 5] c!〈x〉.c ⊳ ℓ.P! c⊳ ℓ.c!〈x〉.P
[SR-SWAP 6] c?(x : t).c⊲{P,Q}! c⊲{c?(x : t).P,c?(x : t).Q}

[SR-SWAP 7] c!〈x〉.c ⊲{P,Q}! c ⊲{c!〈x〉.P,c!〈x〉.Q}

[SR-SWAP 8] c⊲{c ⊳ ℓ.P,c⊳ ℓ.Q}! c⊳ ℓ.c⊲{P,Q}

[SR-SWAP 9] c⊳ ℓ.c⊳ ℓ′.P! c⊳ ℓ′.c⊳ ℓ.P
[SR-SWAP 10] c⊲{c⊲{P1,Q1},c⊲{P2,Q2}}! c⊲{c⊲{P1,P2},c⊲{Q1,Q2}}

[SR-COND] if x then c!〈true〉.P else c!〈false〉.P c!〈x〉.P
[SR-COMM 1] r!〈y〉.P⌋⌈l?(x : t).Q P⌋⌈Q{y/x} [SR-COMM 2] r?(x : t).P⌋⌈l!〈y〉.Q P{y/x}⌋⌈Q
[SR-CHOICE 1] r⊳ ℓ.P⌋⌈l⊲{Qinl,Qinr} P⌋⌈Qℓ [SR-CHOICE 2] r⊲{Pinl,Pinr}⌋⌈l⊳ ℓ.Q Pℓ ⌋⌈Q

[SR-ID] idT ⌋⌈ idT  idT

[SR-CONTEXTS]
P Q

E [P] E [Q]

for all typesT.

For Point 3 we define asymbolic reduction relationwhich preserves equivalence of closed and typed
processes (Theorem 2). This is enough since we will show thatall the parallel compositions of the
adapters symbolically reduce to the corresponding identities (Theorem 3). The rules of this relation are
given in Table 5, where! stands for reduction in both directions andsymbolic reduction contextsE are
defined by:

E ::= [ ] | c?(x : t).E | c!〈e〉.E | c⊳ ℓ.E | c⊲{E ,Q} | c⊲{P,E }

| if e then P else E | if e then E else Q

We call this a symbolic reduction relation because it also reduces processes with free variables. We
notice that this reduction applied to two parallel processes:

1. moves up the communications/selections/branchings on the left channel of the left process and the
communications/selections/branchings on the right channel of the right process and the condition-
als,

2. executes the communications/selections/branchings between the right channel of the left process
and the left channel of the right process when possible,

3. eliminates superfluous identities,
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4. swaps communications/selections/branchings on different channels when this is not forbidden by
bound variables.

The more interesting rule is[SR-COND], that transforms a conditional in an output.
Theorem 2. If P is a closed and typed process andP ∗ Q, thenP≈ Q.

Proof. The proof is by induction on the reduction of Table 5 and by cases on the last applied rule. Notice
that the proof for the swap rules is immediate, since these rules can be always reversed. We consider
some interesting cases, in which we assumeR1 ⌋⌈E ⌋⌈R2 −→

∗ R′
1 ⌋⌈ [ ] ⌋⌈R′

2 (by extending reduction to
contexts in the obvious way) and that{~v/~y} are the substitutions made on the hole in this reduction.

[SR-UP 1] If R1⌋⌈E [l?(x : t).P⌋⌈Q]⌋⌈R2 is correct, then each reduction fromR1⌋⌈E [l?(x : t).P⌋⌈Q]⌋⌈R2

to 0 must be of the shape

R1 ⌋⌈E [l?(x : t).P⌋⌈Q] ⌋⌈R2 −→
∗ R′

1⌋⌈ (l?(x : t).P⌋⌈Q){~v/~y}⌋⌈R′
2 −→

∗

r!〈e〉.R⌋⌈l?(x : t).P{~v/~y}⌋⌈Q′ −→∗ R⌋⌈P{~v/~y}{v/x}⌋⌈Q′ −→∗ 0

whereR′
1 −→

∗ r!〈e〉.R with e ↓ v, v ∈ t, andQ{~v/~y}⌋⌈R′
2 −→

∗ Q′. We get

R1 ⌋⌈E [l?(x : t).(P⌋⌈Q)] ⌋⌈R2 −→
∗ R′

1 ⌋⌈l?(x : t).(P⌋⌈Q){~v/~y}⌋⌈R′
2 −→

∗

r!〈e〉.R⌋⌈l?(x : t).(P⌋⌈Q){~v/~y}⌋⌈R′
2 −→ R⌋⌈P{~v/~y}{v/x}⌋⌈Q{~v/~y}⌋⌈R′

2 −→
∗

R⌋⌈P{~v/~y}{v/x}⌋⌈Q′ −→∗ 0

Vice versa ifR1⌋⌈E [l?(x : t).(P⌋⌈Q)]⌋⌈R2 is correct, then each reduction fromR1⌋⌈E [l?(x : t).(P⌋⌈Q)] ⌋⌈R2

to 0 must be of the shape shown above, and the proof concludes similarly.

[SR-UP 7] If R1⌋⌈E [l⊳inl.P⌋⌈Q]⌋⌈R2 is correct, then each reduction fromR1⌋⌈E [l⊳inl.P⌋⌈Q]⌋⌈R2 to
0 must be of the shape

R1⌋⌈E [l⊳inl.P⌋⌈Q] ⌋⌈R2 −→
∗ R′

1 ⌋⌈ (l⊳inl.P⌋⌈Q){~v/~y}⌋⌈R′
2 −→

∗

r⊲{Pinl,Pinr}⌋⌈l⊳inl.P{~v/~y}⌋⌈Q′ −→∗ Pinl ⌋⌈P{~v/~y}⌋⌈Q′ −→∗ 0

whereR′
1 −→

∗ r⊲{Pinl,Pinr} andQ{~v/~y}⌋⌈R′
2 −→

∗ Q′. We get

R1⌋⌈E [l⊳inl.(P⌋⌈Q)] ⌋⌈R2 −→
∗ R′

1 ⌋⌈l⊳inl.(P⌋⌈Q){~v/~y}⌋⌈R′
2 −→

∗

r⊲{Pinl,Pinr}⌋⌈l⊳inl.(P⌋⌈Q){~v/~y}⌋⌈R′
2 −→ Pinl ⌋⌈P{~v/~y}⌋⌈Q{~v/~y}⌋⌈R′

2 −→
∗

Pinl ⌋⌈P{~v/~y}⌋⌈Q′ −→∗ 0

Vice versa ifR1⌋⌈E [l⊳inl.(P⌋⌈Q)]⌋⌈R2 is correct, then each reduction fromR1⌋⌈E [l⊳inl.(P⌋⌈Q)] ⌋⌈R2

to 0 must be of the shape shown above, and the proof concludes similarly.

[SR-COND] If R1⌋⌈E [if x then r!〈true〉.P else r!〈false〉.P]⌋⌈R2 is correct, then each reduction from
R1 ⌋⌈E [if x then r!〈true〉.P else r!〈false〉.P] ⌋⌈R2 to 0 must be of the shape

R1 ⌋⌈E [if x then r!〈true〉.P else r!〈false〉.P] ⌋⌈R2 −→
∗

R′
1 ⌋⌈if v then r!〈true〉.P{~v/~y}{v/x} else r!〈false〉.P{~v/~y}{v/x}⌋⌈R′

2 −→
∗

R′
1 ⌋⌈r!〈v〉.P{~v/~y}{v/x}⌋⌈R′

2 −→
∗ R′

1 ⌋⌈r!〈v〉.P{~v/~y}{v/x}⌋⌈l?(z : bool).R−→∗

R′
1 ⌋⌈P{~v/~y}{v/x}⌋⌈R{v/z} −→∗ 0

wherev ∈ bool since we start from a typed process andR′
2 −→

∗ l?(z : bool).R. We get

R1⌋⌈E [r!〈x〉.P] ⌋⌈R2 −→
∗ R′

1 ⌋⌈r!〈v〉.P{~v/~y}{v/x}⌋⌈R′
2 −→

∗

R′
1⌋⌈r!〈v〉.P{~v/~y}{v/x}⌋⌈l?(z : bool).R−→ R′

1 ⌋⌈P{~v/~y}{v/x}⌋⌈R{v/z} −→∗ 0.

Vice versa, ifR1 ⌋⌈E [r!〈x〉.P] ⌋⌈R2 is correct, then each reduction fromR1 ⌋⌈E [r!〈x〉.P] ⌋⌈R2 to 0 must
be of the shape shown above withv ∈ bool, and the proof is similar.
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Theorem 3. Ai ⌋⌈Bi  
∗
idTi andBi ⌋⌈Ai  

∗
idSi for 1≤ i ≤ 12.

Proof. The proof is by cases oni. For example
A1⌋⌈B1  ∗ l?(x : t).l?(y : s).(r!〈y〉.r!〈x〉.idT ⌋⌈B1)

 ∗ l?(x : t).l?(y : s).(idT ⌋⌈r!〈x〉.r!〈y〉.idT)
 ∗ l?(x : t).l?(y : s).r!〈x〉.r!〈y〉.(idT ⌋⌈ idT) 

∗
id!t.!s.T

A2⌋⌈B2  ∗ r?(x : t).r?(y : s).
(

A2 ⌋⌈l!〈y〉.l!〈x〉.idT)
 ∗ r?(x : t).r?(y : s).

(

l!〈x〉.l!〈y〉.idT ⌋⌈ idT)
 ∗ r?(x : t).r?(y : s).l!〈x〉.l!〈y〉.(idT ⌋⌈ idT) 

∗
id?t.?s.T

A3⌋⌈B3  ∗ l?(x : t).l ⊲{r⊳inl.r!〈x〉.idT ⌋⌈B3,r⊳inr.r!〈x〉.idS⌋⌈B3}
 ∗ l?(x : t).l⊲{r!〈x〉.idT ⌋⌈l?(x : t).r!〈x〉.r ⊳inl.idT ,

r!〈x〉.idS⌋⌈l?(x : t).r!〈x〉.r ⊳inr.idS}
 ∗ l?(x : t).r!〈x〉.l ⊲{r⊳inl.idT ,r⊳inr.idS}= id!t.(T⊕S)

A4⌋⌈B4  ∗ r?(x : t).(A4 ⌋⌈r⊲{l⊳inl.l!〈x〉.idT ,l⊳inr.l!〈x〉.idS})
 ∗ r?(x : t).r⊲{r?(x : t).l!〈x〉.l ⊳inl.idT ⌋⌈l!〈x〉.idT ,

r?(x : t).l!〈x〉.l ⊳inr.idS⌋⌈l!〈x〉.idS}
 ∗ r?(x : t).r ⊲{l!〈x〉.l ⊳inl.idT ⌋⌈ idT ,l!〈x〉.l ⊳inr.idS⌋⌈ idS}
 ∗ r?(x : t).l!〈x〉.r ⊲{l⊳inl.idT ⌋⌈ idT ,l⊳inr.idS⌋⌈ idS}
 ∗ r?(x : t).l!〈x〉.r ⊲{l⊳inl.(idT ⌋⌈ idT),l⊳inr.(idS⌋⌈ idS})
 ∗

id?t.(T+S)

A5⌋⌈B5  ∗ l?(x : unit).r!〈()〉.(idT ⌋⌈ idT) 
∗
id!unit.T

A6⌋⌈B6  ∗ r?(x : unit).l!〈()〉.(idT ⌋⌈ idT) 
∗
id?unit.T

A7⌋⌈B7  ∗ l?(x : bool).if x then (r⊳inl.idT ⌋⌈B7) else (r⊳inr.idT ⌋⌈B7)
 ∗ l?(x : bool).if x then (idT ⌋⌈r!〈true〉.idT) else (idT ⌋⌈r!〈false〉.idT)
 ∗ l?(x : bool).if x then r!〈true〉.idT else r!〈false〉.idT

 l?(x : bool).r!〈x〉.idT = id!bool.T

A8⌋⌈B8  ∗ r?(x : bool).
(

A8 ⌋⌈if x then l⊳inl.idT else l⊳inr.idT
)

 ∗ r?(x : bool).
(

if x then (A8⌋⌈l⊳inl.idT) else (A8 ⌋⌈l⊳inr.idT)
)

 ∗ r?(x : bool).
(

if x then l!〈true〉.idT else l!〈false〉.idT
)

 ∗ r?(x : bool).l!〈x〉.idT = id?bool.T

A9⌋⌈B9  ∗ l⊲{r⊳inr.idT ⌋⌈B9,r⊳inl.idS⌋⌈B9}
 ∗ l⊲{idT ⌋⌈r⊳inl.idT , idS⌋⌈r⊳inr.idS}
 ∗ l⊲{r⊳inl.(idT ⌋⌈ idT),r⊳inr.(idS⌋⌈ idS)} 

∗
idT⊕S

A10⌋⌈B10  
∗ r⊲{A10⌋⌈l⊳inr.idT ,A10⌋⌈l⊳inl.idS}

 ∗ r⊲{l⊳inl.(idT ⌋⌈ idT),l⊳inr.(idS⌋⌈ idS)} 
∗
idT+S

Point 3 is a straightforward consequence of Theorems 2 and 3.

4 Concluding remarks

Type isomorphisms have been mainly studied for variousλ -calculi [10]. Pérez et al. [14] interpret
intuitionistic linear logic propositions as session typesfor concurrent processes, which communicate
only channels. So both their types and their processes differ from ours. In this scenario they explain how
type isomorphisms resulting from linear logic equivalences are realized by coercions between interface
types of session-based concurrent systems.
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The notion of isomorphism for session types investigated inthis paper can be used for automati-
cally adapting behaviors, when their differences do not entail any loss of information. Adaptation in
general [3] is much more permissive than in our approach, where we require adapters to be invertible.
Moreover we only adapt processes as in [2, 11], while other works like [1, 8, 7] deal with adaptation of
whole choreographies. Our approach shares many similarities with [5, 13] wherecontracts(as opposed
to session types) describe the behavior of clients and Web services and filters/orchestrators mediate their
interaction. The theory of orchestrators in [13] allows notonly permutations of subsequent inputs and
subsequent outputs, but also permutations between inputs and outputs if these have no causal dependen-
cies. The induced morphism is therefore coarser than our isomorphism, but it may entail some loss of
information.

There are some open problems left for future research. The obvious ones are whether and how our
theory extends to recursive and higher-order session types. Also, we do not know yet whether the set of
axioms in Table 3 iscomplete. The point is that in the case of arrow, product and sum types or of arrow,
intersection, union types, it is known that the set of isomorphisms is not finitely axiomatizable [12, 9, 6].
Despite the fact that session types incorporate constructsthat closely resemble product and sum types,
it may be the case that the particular structure of the type language allows for a finite axiomatization.
A natural question is to what extend our results are a consequence of the presence of just two channels
in the process language, or whether they would carry over to calculi with arbitrary channel names. A
more interesting research direction is to consider this notion of session type isomorphism in relation to
the work on session types and linear logic [4, 15].
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