
S. J. Gay and P. H. Kelly (Eds.): Programming Language Approaches to
Concurrency- and Communication-cEntric Software (PLACES 2012)
EPTCS 109, 2013, pp. 1–6, doi:10.4204/EPTCS.109.1

© Yu David Liu

Variant-Frequency Semantics for Green Futures

Yu David Liu

SUNY Binghamton
Binghamton, NY 13902, USA

davidL@cs.binghamton.edu

This paper describes an operational semantics for futures, with the primary target on energy effi-
ciency. The work in progress is built around an insight that different threads can coordinate by
running at different “paces,” so that the time for synchronization and the resulting wasteful energy
consumption can be reduced. We exploit several inherent characteristics of futures to determine how
the paces of involving threads can be coordinated. The semantics is inspired by recent advances
in computer architectures, where the frequencies of CPU cores can be adjusted dynamically. The
work is a first-step toward a direction where variant frequencies are directly modeled as an essential
semantic feature in concurrent programming languages.

1 Introduction

For software developers, adopting multi-core architectures is widely known to be a trade-off. On the
benefit side, a programmable task – if written as a multi-threaded program and deployed on multi-core
platforms – may potentially yield higher performance compared with a single-threaded implementation.
On the cost side however, correct and efficient multi-threaded programming is a complex matter. The
vast majority of today’s research on multi-core programming and compilation can be viewed as efforts
to tip this cost-benefit analysis favorably, improving quality of multi-core software:

multi-core software quality =
performance

pain and horror of software development and use
Examples include designing new programming models to ease programming efforts and enforce invari-
ants, new program analyses to find concurrency bugs, or new optimization techniques to further improve
performance.

Multi-Core Software Energy Efficiency An additional form of cost – obvious but so far largely under
the radar of multi-core programming and compilation research – is the energy consumption of multi-
core architectures: the energy consumption of CPUs multiplies when platforms evolve from single-core
architectures to multi-core ones due to the inherent nature of digital circuits. In this paper, we call for
more research efforts to tip a new flavor of cost-benefit analysis favorably, improving energy efficiency
of multi-core software:

multi-core software energy efficiency =
performance

energy consumption

To come up with a software-centered solution for energy efficiency, it is important to identify energy
inefficiencies as introduced by software. Indeed, when we deploy a multi-threaded program on a 20-
core machine, we would have tolerated a 20x increase of energy consumption if our program yields 20x
speed-up. The culprit that prevents this – according to the now famous Amdahl’s law [1] – is really

http://dx.doi.org/10.4204/EPTCS.109.1

2 Variant-Frequency Semantics for Green Futures

the program (algorithm) itself! The law tells us linear speed-up is impossible on multi-core executions
for algorithms with any serial components (which by the way, apply to virtually all practical programs).
Performance degrades the most when a parallel execution is stalled due to the need for executing the
program’s serial components. To improve energy efficiency, it is thus the most profitable if we focus on
minimizing energy consumption for these parallelism-stalling oprations.

On the programming language level, such operations are often realized through synchronization
primitives. When two threads synchronize, the first thread arriving at the synchronization point needs
to wait for the arrival of the second. Operationally, the intuitive notion of “wait” translates to either
spinning or blocking [6] of the first thread. Unfortunately, neither spinning nor blocking is energy-
efficient. Spinning – also known as busy waiting – consumes energy with no execution throughput
directly related to program code. Blocking – the strategy that context-switches the first thread so that
the CPU core can be occupied by other threads – increases overall CPU utilization but comes with the
cost of context switch. This especially takes a toll on energy consumption: context switch usually leads
to significant reduction on cache locality; the resulting cache misses are known to be one of the most
expensive operations in terms of energy consumption.

Energy-Efficient Futures This paper puts the spotlight on one particular form of synchronization
mechanism, futures [5], and argues that several of their distinct traits – if exploited – can potentially
improve energy efficiency of multi-core program execution. Our key insight is that, to avoid the use-
less energy consumption of spinning or blocking, different threads can execute at different “paces,” so
that the thread likely to arrive early “saunters” to the synchronization point whereas the one likely to
arrive late “sprints” to the synchronization point. To achieve the effect of sauntering and sprinting is not
hard: modern CPUs are almost invariably equipped with abilities to dynamically adjust frequencies and
voltages, a strategy widely known as Dynamic Voltage and Frequency Scaling (DVFS) [2]. The main
challenge here is to determine which thread should saunter, and which thread should sprint, a question
that will be answered in the next section.

2 Green Futures: The General Approach

Futures have long known to be appealing for implicit thread management [5] and program optimization
[3]. The idea was popularized in a functional setting (such as MultiLisp and Scheme), and later success-
fully adopted to object-oriented languages, both as research prototypes [8, 9] and mainstream language
extensions (Java and C#). For example, the following pseudo-code demonstrates the use of futures in a
Java-like method:

1 void p r o c R e q u e s t (S ock e t s) {
2 B u f f e r i n = f u t u r e r eadBuf (s) ;
3 . . .
4 i n t s i z e = i n . p o s i t i o n () ;
5 . . .
6 }

Here, keyword future signifies that the invocation to readBuf at L. 2 is an asynchronous thread
creation (called a future creation); the method body of readBuf will be executed in a separate future
thread, and the program counter in the thread executing procRequest (the parent thread) immediately
moves on to the next statement. From this moment on, the two threads will run in parallel, with the

Yu David Liu 3

future thread serving as a “producer” which eventually fulfills the return value of readBuf – called
future realization (or fulfillment) – and the parent thread serving as a “consumer” when the return value
of readBuf is needed – in.position() invocation here at L. 4 – called future claim (or touch).
With the method body of readBuf and the omitted statements at L. 3 running in parallel, futures offer
an appealingly simple and incremental way to speed up previously serial code (i.e. the one when the
keyword future is removed).

To improve energy efficiency, we design a variant-frequency execution strategy for the two threads
involved in futures. Specifically, we adopt the following general strategy:

Main Strategy: we set the parent thread executing at a lower frequency level than the future
thread.

This strategy is designed thanks to two distinctive traits of futures. First, futures shapes up a funda-
mentally asymmetric relationship between two threads: one is a producer, and the other is a consumer;
Second, the future thread terminates upon future realization. Let us now demonstrate why the Main
Strategy is a sensible one. Not to lose generality, observe that there can only be two cases for a future-
involved execution:

parent
thread

future
thread

parent
thread

future
thread

future
claim

future
realizationthread future

creation

Case I Case II

thread
wait

data
dependency

In Case I, despite having the parent thread executing at a lower frequency, it still reaches the future
claim point before the future is realized. In this case, the parent thread does need to spin or block,
but observe that the duration of spinning or blocking – hence useless energy consumption – is reduced
compared with the scenario where the parent had chosen to run faster and reached the claim point even
earlier. In Case II, as a result of the “faster” execution, the future thread successfully fulfills the future
before the parent thread claims it. In this case, the future thread has accomplished its mission of being,
and can be terminated. No spinning or blocking is needed. When the parent thread finally reaches the
claim point, the value (such as in in the example) is ready. No spinning or blocking is needed for the
parent thread either.

It should be noted that what really matters is the relative pace of the parent thread and the future
thread, not the absolute one. For instance, instead of slowing down the parent thread, the reasoning
above still stands if an implementation chooses to speed up the future thread, or slowing down the parent
thread and speeding up the future thread at the same time. All variations are likely to improve on overall
energy efficiency – in that the likelihood and duration of wasteful wait is reduced – but they might
have different effects on performance and overall energy consumption. For instance, if one chooses to
(absolutely) slow down the parent thread, Case II above has the potential to lead to performance penalties
because the program may run longer as a result of the slower execution of the critical path (the parent
thread). On the other hand, if one chooses to (absolutely) speed up the future thread, Case II will not

4 Variant-Frequency Semantics for Green Futures

have the aforementioned negative impact on performance. Overall, what this suggests is the same Main
Strategy above may lead to different implementation choices in DVFS. In Sec. 3, we provide a more
precise account of this approach.

According to our preliminary experiments, the overhead of DVFS – usually within tens of micro-
seconds in existing architectures – can be ignored. Indeed, threads usually execute at a duration magni-
tudes longer, otherwise the cost of thread management would have invalidated their raison d’ête.

3 Operational Semantics

In this short presentation, we illustrate our ideas through a mini-language, a multi-threaded addition
calculator:

e ::= e+ e | future e | v expressions
v ::= i | fv values
c ::= cl(fq,e)fv ‖ c configurations

Values are either integers or future values (fv). A new thread can be created via the future e ex-
pression, and future claim may happen for the + expression when either of its arguments is a a future
value. A parallel configuration is formed by concatenating single-threaded computations together, via
commutative ‖. Each single-threaded computation takes the form of cl(fq,e)fv, denoting expression e
is currently evaluated on a CPU with frequency fq, for realizing a future value fv. In addition, let us
define the frequencies supported by each CPU core as a finite well-ordered set W = {fq1, . . . , fqn} where
fq1 < fq2 · · · < fqn (as in hertz). Since this set is fixed given a hardware environment, the rest of the
definitions are implicitly parameterized by W .

The small-step operational semantics is defined by the transitive reduction relation =⇒ over config-
urations. The reduction rules are defined as follows:

(R-Create) cl(fq,E[future e])fv′ =⇒ cl(↑ fq,e)fv ‖ cl(↓ fq,E[fv])fv′ if fv fresh
(R-Claim) cl(fq,C[fv])fv′ ‖ cl(fq′,v)fv =⇒ cl(⇑ fq,C[v])fv′

(R-Add) cl(fq,E[i+ i′])fv =⇒ cl(fq,E[i′′])fv if i′′ sum of i, i′

(R-Cxt) c ‖ c′′ =⇒ c′ ‖ c′′ if c =⇒ c′

E ::= • | E+ e | v+E evaluation context
C ::= • | C+ v | i+C claim context

The main novelty here is that the frequency of each thread execution can be explicitly adjusted,
through unary operators for upscaling (↑ and ⇑) and downscaling (↓). How these operators are defined
concretely is the standard problem of scaling factor selection in DVFS. Some design choices, including
the difference between ↑ and ⇑, will be discussed shortly. (R-Create) and (R-Claim) correspond to future
creation and future claim, respectively. At future creation time, the frequency for the “future” thread is
scaled up, whereas the ‘parent” thread is scaled down. This design choice reflects our main principle
of frequency adjustment: the “future” thread should hurry up to realize the future values, whereas the
“parent” thread should leisurely proceed. (R-Claim) shows that future claims are fundamentally an

Yu David Liu 5

operation of synchronization. Here, the blocking semantics is used, whenever a future value needs to
be claimed, the reduction cannot progress until the future is realized. After future claim, the frequency
of the “parent” thread needs to scale up – intuitively, the reason for the “parent” thread to saunter no
longer exists. In addition to the standard evaluation context E, a separate claim context C is defined, for
execution configurations where a future must be realized. Note that the definition here is able to support
“futures of futures”: it is possible that a future thread realizes its future with another future value – in
which case the v metavariable in (R-Claim) is a future value in its own.

For example, if a (somewhat contrived) program 3+ future future (3+ 4) starts its execution at
frequency fqinit, the following reduction sequence is possible, where fvinit is a trivial future value for
the initial configuration, and fv1, fv2 are fresh:

cl(fqinit,2+ future (future (3+4)))fvinit (R-Create)
=⇒ cl(↑ fqinit, future (3+4))fv1 ‖ cl(↓ fqinit,2+ fv1)

fvinit (R-Create),(R-Cxt)
=⇒ cl(↑ (↑ fqinit),3+4)fv2 ‖ cl(↓ (↑ fqinit), fv2)

fv1 ‖ cl(↓ fqinit,2+ fv1)
fvinit (R-Add),(R-Cxt)

=⇒ cl(↑ (↑ fqinit),7)
fv2 ‖ cl(↓ (↑ fqinit), fv2)

fv1 ‖ cl(↓ fqinit,2+ fv1)
fvinit (R-Claim),(R-Cxt)

=⇒ cl(⇑ (↓ (↑ fqinit)),7)
fv1 ‖ cl(↓ fqinit,2+ fv1)

fvinit (R-Claim),(R-Cxt)
=⇒ cl(⇑ (↓ fqinit),2+7)fvinit (R-Add)
=⇒ cl(⇑ (↓ fqinit),9)

fvinit

Scaling Factor Selection One possible way of defining the upscaling/downscaling operators is to apply
the standard functions of computing successive and preceding elements over W = [fq1, . . . , fqn]:

↑ fqk
def
= ⇑ fqk

def
= fqk+1 1≤ k ≤ n−1

↑ fqn
def
= ⇑ fqn

def
= fqn

↓ fqk
def
= fqk−1 2≤ k ≤ n

↓ fq1
def
= fq1

Here, the future thread is literally scaled up and the parent is scaled down. If a parent thread is going
to create two future threads, the second future thread is going to execute at a lower frequency than the
first (because the parent thread itself has been scaled down after the first future creation). Assuming
all futures created by the parent thread will be claimed, the parent thread eventually will return to the
original frequency. As another strategy, we can adjust the frequency of the parent thread only:

↑ fqk
def
= fqk 1≤ k ≤ n

⇑ fqk
def
= fqk+1 1≤ k ≤ n−1

⇑ fqn
def
= fqn

↓ fqk
def
= fqk−1 2≤ k ≤ n

↓ fq1
def
= fq1

4 Future Work

This paper describes a work in progress, focusing on the ideas. A full-fledged semantics is under devel-
opment. In particular, it remains to be seen how future safety [9] interacts with the proposed ideas in
an imperative setting. The fact that multiple scaling factor selection strategies exist clearly demonstrates
the importance of experimental methods in this project. For each selection strategy, we are interested
in exploring its impact on both performance – including both the spinning/blocking time and the overall

6 Variant-Frequency Semantics for Green Futures

execution time of the program – and energy consumption, and measuring it in a more rigorous setting
e.g. through Energy-Delay Product [4] and Energy-Delay Squared Product [7].

This paper demonstrates that a compiler decision on DVFS can be made to improve the energy effi-
ciency of multi-threaded programs without the knowledge of their logical/execution details. Like most
optimization problems, the more knowledge one has on the optimization space, the more effective/op-
timal the solution will be. An interesting direction is to see how the general principle discussed in this
paper can be further combined with static/dynamic information of programs to contribute to additional
energy efficiency. For example, instead of viewing the described algorithm here as one where all scaling
points and scaling factors are entirely fixed at compile time and oblivious of the run-time behaviors, an
adaptive algorithm can be designed where the concrete definitions of ↑, ⇑, and ↓ can be adjusted at run
time based on run-time environment information and program profiling data.

Acknowledgment We thank the anonymous reviewers for their useful suggestions. This work is being
supported by NSF CAREER Award CCF-1054515 and a Google Faculty Award.

References
[1] Gene M. Amdahl (1967): Validity of the single processor approach to achieving large scale computing capa-

bilities. In: Proceedings of the April 18-20, 1967, spring joint computer conference, AFIPS ’67 (Spring), pp.
483–485, doi:10.1145/1465482.1465560.

[2] Thomas D. Burd & Robert W. Brodersen (2000): Design issues for dynamic voltage scaling. In: ISLPED
’00: Proceedings of the 2000 international symposium on Low power electronics and design, pp. 9–14,
doi:10.1145/344166.344181.

[3] Cormac Flanagan & Matthias Felleisen (1995): The semantics of future and its use in program optimization.
In: POPL ’95, pp. 209–220, doi:10.1145/199448.199484.

[4] R. Gonzalez & M. Horowitz (1996): Energy Dissipation in General Purpose Microprocessors. IEEE Journal
of Solid-State Circuits 31(9), pp. 1277–84, doi:10.1109/4.535411.

[5] Robert H. Halstead, Jr. (1985): MULTILISP: a language for concurrent symbolic computation. ACM Trans.
Program. Lang. Syst. 7, pp. 501–538, doi:10.1145/4472.4478.

[6] Maurice Herlihy & Nir Shavit (2008): The Art of Multiprocessor Programming. Morgan Kaufmann.
[7] Alain J. Martin, Mika Nyström & Paul I. Pénzes (2002): ET2: a metric for time and energy efficiency of

computation, pp. 293–315. Kluwer Academic Publishers, Norwell, MA, USA.
[8] Polyvios Pratikakis, Jaime Spacco & Michael Hicks (2004): Transparent proxies for java futures. In: OOP-

SLA ’04, pp. 206–223, doi:10.1145/1028976.1028994.
[9] Adam Welc, Suresh Jagannathan & Antony Hosking (2005): Safe futures for Java. In: OOPSLA ’05, pp.

439–453, doi:10.1145/4472.4478.

http://dx.doi.org/10.1145/1465482.1465560
http://dx.doi.org/10.1145/344166.344181
http://dx.doi.org/10.1145/199448.199484
http://dx.doi.org/10.1109/4.535411
http://dx.doi.org/10.1145/4472.4478
http://dx.doi.org/10.1145/1028976.1028994
http://dx.doi.org/10.1145/4472.4478

	1 Introduction
	2 Green Futures: The General Approach
	3 Operational Semantics
	4 Future Work

