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Realist, no-collapse interpretations of quantum mechanics, such as Everett’s, face the probability
problem: how to justify the norm-squared (Born) rule from the wavefunction alone. While any
basis-independent measure can only be norm-squared (due to the Gleason-Busch Theorem) this fact
conflicts with various popular, non-wavefunction-based phenomenological measures—such as ob-
server, outcome or world counting—that are frequently demanded of Everettians. These alternatives
conflict, however, with the wavefunction realism upon which Everett’s approach rests, which seems
to call for an objective, basis-independent measure based only on wavefunction amplitudes. The abil-
ity of quantum probabilities to destructively interfere with each other, however, makes it difficult to
see how probabilities can be derived solely from amplitudes in an intuitively appealing way. I argue
that the use of algorithmic probability can solve this problem, since the objective, single-case prob-
ability measure that wavefunction realism demands is exactly what algorithmic information theory
was designed to provide. The result is an intuitive account of complex-valued amplitudes, as coef-
ficients in an optimal lossy data compression, such that changes in algorithmic information content
(entropy deltas) are associated with phenomenal transitions.

1 Introduction

Approaches to quantum foundations based on Everett’s no-collapse and/or wavefunction realism pos-
tulates [6] inevitably hit the probability problem [1, 5, 7, 11–14, 16, 25–27]: how to justify the norm-
amplitude squared (Born) rule [2] from the wavefunction alone. While any probability based on an ob-
jective, basis-independent measure can only be norm-squared, due to the Gleason-Busch Theorem [4,8],
this is often seen as being in conflict with various intuitive and popular ideas and conceptions of prob-
ability. Most particularly, it is felt that some kind of phenomenological counting measure, rather than a
wavefunction-based measure, ought to be employed, such as observer, outcome or world counting [6,11].
While little rigorous argument has been presented for this feeling, it appears to be quite strong, to
the extent that such a non-wavefunction-based measure is widely cited as a requirement for any pure
wavefunction-based (no-collapse) interpretation of quantum probability.

This would seem, on the face of it, a somewhat contradictory demand: since wavefunction realism is
the hall-mark of no-collapse interpretations, why are we requiring anything but a purely wavefunction-
based measure of them? The answer may lie in the lack of an intuitive explanation for any pure wave-
function measure—how can wavefunction amplitudes actually “count” towards a probability measure, in
the way marbles count when we pick one at random from a bag? Instead of something straightforward,
we have counterintuitive puzzles like complex counts and negative probabilities. What is needed, then,
is not a Born rule proof, which we already have (actually we have lots of them!). What is needed is
an intuitive story to tell about why complex-valued counts can make sense, connecting the ontological
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wavefunction to the phenomena without appealing to any reality beyond the wavefunction and without
making phenomenal entities the basis of the probability counts.

I will explore the feasibility of an algorithmic probability measure, by making the minimal assump-
tions about such a measure as are consistent with (1) wavefunction realism and (2) the assumption that
quantum probability should be algorithmic and information-theoretic in nature. The result is a derivation
of the Born rule that provides an intuitive rationale for complex counts, conceiving them as changes in
algorithmic information content (entropy deltas) associated with phenomenal transitions. It remains true
to the realist, objectivist intent of no-collapse interpretations, and gives an intuitive story for the role of
probability interference under such interpretations. Although only the impact on the Born rule is dis-
cussed here, this is intended as a first step towards a complete and consistent algorithmic interpretation
of quantum mechanics (see also [19]).

2 The Probability Objection

We assume with Everett the doctrine of wavefunction realism [6]:

“A wave function that obeys a linear wave equation everywhere and at all times supplies a
complete mathematical model for every isolated physical system without exception.”

It might seem that this makes probabilities meaningless since all possible outcomes are realized. How-
ever, one can model observers within the wavefunction as machines or robots, with sensors to collect
information, circuitry to process that information, and memory to store the information so that it may
affect future behaviour. We then seek to calculate, given a phenomenon being experienced by one of
these observers, what the transition probabilities are for all subsequent possible “continuer” experiences
for that observer, as described by the unitary evolution of the wavefunction.

Unfortunately, it is not at all obvious how one is supposed to go about performing such a calculation.
One problem is that the very idea of multiple different mutually incompatible experiences is alien to our
common experience. We do not wake up one morning to find five other copies of ourselves running
around the house. However, a well-known and purely classical thought experiment can yield just this
scenario without requiring any quantum mechanics. Imagine an ingenious replicator machine that can
make a complete (or complete-enough) scan of the physical state of a human being (including the brain)
and then build any number of perfect working replicas or copies of that human being. Assume for con-
venience that the original body and brain are destroyed in the scanning process, so there is no temptation
to confer a privileged status on any one resulting copy.

Imagine you are about to be so copied. You are told that the scanner produces two identical copies,
each of which exits through a separate exit door. Each door goes to a small room with a closed box on
the floor. The rooms are identical, except that in one room, the closed box has a live cat inside, while in
the other room, it contains a dead cat. You are told that when your copies exit the machine, they will be
asked to open the box that appears in front of them. What, you are asked, is the probability, from your
perspective, of finding a live cat in the box? Obviously, the answer is 1/2, since there are two copies or
continuers made, and you could find yourself equally well as either continuer after replication.

Probability objectors to Everett reason that wavefunction probabilities should work the same way. In
the original cat experiment [20], the wavefunction computed two and only two continuers, and hence an
a priori probability of 1/2 for each. Or, more generally, for n continuers/copies, we have

p(mi | m) =
1
n
, (1)
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Figure 1: Replicator copies: two copies yields two counts of equal measure.

resulting in a simple, flat probability distribution across all the Everettian “branches” (or “worlds” or
“copies” or “continuers”). Of course, we know this is not the actual probability rule, which is instead
Born’s norm-amplitude-squared rule.

To avoid the reification of subsystems, which goes against wavefunction realism, we will express the
wavefunction in Everettian terms, by decomposing the entire wavefunction of the universe according to
an observation basis that is defined relative to an observer experience m and its corresponding continuers:

|ψ〉= a1 |ψ1〉+ · · ·+an |ψn〉 , (2)

so that, according to the Born rule,

p(mi | m) = p(ψi | ψ) ∝ |〈ψi | ψ〉|2 = |ai|2 . (3)

This formulation makes a couple of assumptions:

1. It is possible to treat each continuer as an independent, orthogonal basis element.

2. It is possible to treat the wavefunction |ψ〉 as a linear combination of these continuers.

Neither of these assumptions is ultimately problematic, however. If we suspend assumption 1, it means
there are at least two continuers that are not linearly independent, and so would have to be included as
multiple copies within one Everettian branch. Since we, in fact, do not generally experience multiple con-
tinuers within our branch or “world”—since nothing like replicator machines seem to exist—assumption
1 does not present a serious problem. We could easily suspend it, by using the Born rule to assign a
probability to each |ψi〉, and then split |ψi〉’s measure equally amongst its internal continuers or copies.

We could also suspend assumption 2. If the linearly-independent continuers of m cannot be linearly
combined to reproduce |ψ〉, then we simply add a unit-norm remainder state |ψD〉, in which no internal
continuer of m can be found, but which allows the expansion in terms of continuers to add up to the
wavefunction:

|ψ〉= a1 |ψ1〉+ · · ·+an |ψn〉+aD |ψD〉 , (4)

so that |ψD〉 might be called the “dead branch”, since it is the world(s) or branch(es) without any

continuer (the original observer having apparently “died” in that branch).
In most laboratory applications of Born’s rule, however, both assumptions 1 and 2 clearly hold, so

we will continue to talk in terms of these two assumptions, without loss of generality.
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Experiment upholds the Born rule, which calculates probabilities based on amplitudes, so that equal
amplitude means equal probability, higher amplitudes mean higher probability, and lower amplitudes
mean lower probability. In fact, Everett [6] proves that so long as one assumes “amplitude dependence”—
that the measure of an outcome is a function solely of amplitude—then the Born rules follows.

The point of the objectors to Everett is that there is no a priori justification for amplitude-dependence
under the assumptions of wavefunction realism. A lower-amplitude branch is not somehow “less com-
puted” by the wavefunction than the high-amplitude branches. So how do we justify giving it a lower
measure, in the way we justified counting copies in the replicator experiment? Thus far, it seems that
the world or outcome counters have the upper hand, since counting outcomes (or worlds or continuers)
would seem to be the equivalent of counting replicator copies. However, as we will soon see, the situation
is not as simple as that.

3 Response to the Probability Objection

The most mathematically straightforward, and most formalistic, response to this objection (although
not one very commonly used) is simply to point to the Gleason-Busch theorem [4, 8], which tells us that
Born’s rule is mathematically the only possible probability rule, under an assumption of additivity for the
probabilities (demanded by the nature of probabilities) along with the assumption of “noncontextuality”
or “basis-independence”, which states simply that the measure used to compute probability is indepen-
dent of the basis used to expand |ψ〉. Thus any basis {. . . , |ψi〉 , . . .} that contains continuer state |ψi〉,
regardless of whether the other basis elements correspond to continuers, can use the same probability
rule to calculate the same probability for mi.

In Everettian terms, noncontextuality is often thought of in terms of branch-dependence, since this is
a consequence of noncontextuality, and one that can be intuitively applied to branches. Mathematically,
branch-dependence states that there exists a function f such that

p(mi | m) ∝ f (|ψi〉) , (5)

so that the measure of a particular continuer is a function only of that continuer’s branch of the wave-
function (other than for normalization). From this, one can prove amplitude-dependence, and from there
the Born rule, via either Everett’s proof [6] or (for dimensions greater than two) via certain versions of
Gleason’s original proof [15].

But is this assumption at all intuitive, within wavefunction realism? The probability objectors say
no, since the wavefunction computes all the continuers, and probability is something that can only be
calculated from the perspective of the observer. Hence, we have no reason to assume that the measure we
use must be noncontextual, since it is intended to yield only the probability from the perspective of this
observer (m). This is arguably a subjectivist conception of the probability measure: all that matters is
how many subjectively indistinguishable states there are. If there are n such states, then the probability—
from the perspective of m—of finding oneself in one of those n continuer states or copies must be 1/n. Or
so goes the reasoning.

There is, unfortunately, little in the way of rigorous argumentation for this “world-counting” or
“observer-counting” assumption. When it is used, it is usually simply assumed. Note that in many very
straightforward applications of probability theory, the categories used are subjective indistinguishables,
while the countables are still assumed to represent actually existing, objective entities. For instance, if
I pick a marble at random from a bag with 7 blue and 3 red marbles, there is a 30% chance of picking
“red”. Now “red” is a subjective category, true. But the actual objective entities being picked are just
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marbles. I could distinguish them differently if I chose. I choose “red” versus “blue” because that makes
sense for me. However, the objects counted are still the actual marbles, with the objective count of things
falling within my subjective category placed in the numerator, and the total objective count of things in
the denominator. In neither case am I “counting” subjective indistinguishables, but rather objectively
existing things. So we still call this an “objective” probability rule, not a subjective one (so long as we
consider the marbles themselves to objectively exist).

It might seem that counting distinct observers is like counting copies in the replicator experiment,
but a little reflection reveals otherwise. Imagine that, instead of two copies, there are now three copies,
three exit doors and three rooms with closed boxes. One room has a box with a dead cat, while the other
two have a box with a live cat. What now are the probabilities of seeing a live cat, given the method of
counting copies? It would seem now that the probability of seeing a live cat is clearly 2/3, given that there
are three copies and two of them see a living cat.

But are there really two live-cat copies, in other words two distinct observers that see a live cat?
Probably in a realistic scenario, the answer is clearly yes, since there will be at least subtle but real
differences in the two rooms with the live cats. However, if we really can make the rooms absolutely
identical in every respect, other than the cat inside the box, then it is arguable that there is really only one
observer that sees a live cat, since there is no formal difference between the two observers, and under
wavefunction realism, observers are considered to be merely emergent phenomenon arising from a purely
formal computational system. If the experiences of the two live-cat copies are absolutely identical, then
surely—from the perspective of this observer—there is only one indistinguishable experiential continuer-
state, and thus these two live-cat rooms actually constitute a single observer.

And clearly, the probability of seeing a live cat remains 2/3, in either case, for if we did the same
experiment on someone repeatedly, they would measure a 2:1 ratio of live:dead outcomes, regardless of
how precisely (or imprecisely) we made the two live-cat rooms match.

In other words, there is one continuer/observer present while there are two physical copies/rooms.
Thus, we are not, after all, counting observers. One of the two observers actually consists of two copies,
and this is what we count. The number of copies, then, is comparable to wavefunction amplitude, while
the observer-count (or world-count) is itself more or less irrelevant to the measure.

Of course, this by no means proves that amplitudes are the appropriate countable for wavefunctions.
However, if amplitudes could be counted in a classical manner to produce probabilities, then there would
be a much stronger argument for equating copy-counts to amplitudes. But amplitudes are complex-
valued, which means they can exhibit destructive interference. This makes the comparison with the
replicator rooms obscure. What would it mean to send someone through a replicator machine, that
does everything required to produce both live-cat copies, but somehow, because these two copies have
opposite phase, they cancel each other out, and now we have no one observing a live cat? How can
copies cancel each other out, or interfere with each other?

We can perhaps make things less obscure by replacing the replicator copies with multiple copies
simulated in a computer, in a virtual reality. For here we have a situation (a computer program) whose
functioning we can more easily consider purely on its formal properties, as a Turing machine, since the
“observers” and “rooms” are simulated and not really constituted from actual physical objects. This is
actually a benefit within the Everettian context, since we are supposed to be calculating probabilities, in
the first place, from the formal structure of the wavefunction alone.

In this scenario, the program is actually computing the live-cat observer twice. So twice the com-
puting cycles, computer memory and other computing resources are being used to simulate the two
observers. Perhaps, then, they should count as “two copies”, even though they are subjectively indistin-
guishable as observers. However, once again, the fact that the amplitudes can interfere call this inter-
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Figure 2: Replicator copies: two observers, three copies yields three objective counts of equal measure
in two subjective categories.

pretation into question. For the resources dedicated to the calculation of the wavefunction are, it would
seem, the same whether the amplitude is high or low. And two interfering high amplitudes can result in
no amplitude for a particular outcome. Yet, it is not clear that “no resources” went into the computation
of that outcome. In a sense, it is obvious that no resources went into its computation, since the wave-
function does not even compute that outcome at all! Yet, if we change the phases just slightly so that
there is a tiny remaining amplitude for that outcome, then it is suddenly again very unclear how we could
argue that there is somehow “very little” computing resources dedicated to that outcome, just because the
amplitude is low. The fact that the amplitude is low does not, surely, mean that it takes less resources to
compute it, provided that it is in fact computed. So, while a straight simulation of the replicator example
as a computer simulation would seem to strengthen the copy-count/amplitude analogy, any incorporation
of probability interference seems to call the analogy into question.

4 The Algorithmic Assumption

In order to find anything to count within a “purely formal” system like a pure wavefunction, we have to
have some idea just what a pure formalism is. While there are competing conceptions of formality, the
idea of computation as the core of all formal systems carries a great deal of weight. Gödel [9] claimed,
for instance, that Turing’s machines provided “a precise and unquestionably adequate definition of the
general concept of formal system” and that “the term ‘formal system’ or ‘formalism’ should never be
used for anything but this notion.”

I will therefore adopt the minimal algorithmic assumption needed to justify the application of algo-
rithmic probabilities to emergent observers:

We can, if we wish, model an observer’s experience as a set of finitistic algorithms (Turing
machines) each of which corresponds to an abstract computer program that sufficiently and
uniquely describes that observer experience.

I will refer to any such sufficient and unique algorithmic description as “outputting” that observer/
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experience. Note that some convention must be adopted to interpret a program’s state in terms of “out-
put”, such that a program cannot be said to describe/output an experience unless it is distinguished from
any other experiences the same program might also incidentally describe.

This terminology is not meant to rule out the possibility that an experience may only be output “in
the limit” of an infinite number of computational steps of a nonhalting machine (see [3,10,17,18]). Note
that in spite of the finitistic nature of computational models, the continuum can be modelled in such
systems. Also, no assumption is made here that there is either a finite or infinite number of continuers
for any given experience.

Under algorithmic probability, two different continuers might both be computed, but one may still
have higher probability, since it is output by many more machines than the other—just as the replicator
might produce more physical copies that correspond to one continuer than another. But instead of count-
ing physical copies, as in the replicator example, in this purely formal ontology, we count programs.

To calculate a probability for a given experience m, we must find all the valid continuer experiences
{m1, . . . ,mn}, 0 ≤ n ≤ ∞. We then need to find a way of determining, from the given continued experi-
ence, m, what the probability p(mi | m) is for some particular valid continuer mi. In the quantum context,
the continued experience must be output by the pre-measurement wavefunction of the universe (under
some appropriate interpretation of “output”).

If we accept the view that formal systems are essentially Turing machines, or abstract computer
programs, then what are the “countables” of a purely formal system, in which observers are merely
computed emergent properties? If we take the wavefunction of the universe as the only existing thing,
and treat it as a purely formal system, then does this not mean that we have just exactly one thing to
count, namely the wavefunction of the universe considered as a program?

The answer to this seems to be no, since the wavefunction can, in fact, be computed by an infinite
number of distinct programs. If we consider each such program code to be a distinct encoding of the
wavefunction, then the wavefunction “counts” as far more than a single object—we must count every
distinct program code that generates the wavefunction. The distinct encodings are all different, but they
all encode the same algorithm for generating our wavefunction. In a sense, they are different machines
that perform the same calculation, just as I can add 2+2 on an abacus or a pocket calculator.

Solomonoff [21–23] initiated the field of algorithmic probability with the discovery of a well-defined
algorithmic measure of information. The “information” or “entropy” H (x) of a code or symbol sequence
x can be defined more or less as the size or length in bits of C (x), the “optimal compression” of x,
meaning the shortest self-delimiting program that generates x:

H (x) = |C (x)| . (6)

A program is “self-delimiting” if one can tell from the encoding itself where the end of the program
is. The probability of a randomly chosen Turing machine (or program) generating x is then simply

p(x) = 2−H(x). (7)

A program x is considered to be “algorithmically random” if and only if it is incompressible:

x = C (x) . (8)

So long as you can further compress x, it must contain some kind of pattern or symmetry, else you
would not have been able to shorten your description of it.

The strict expression of p(x) is more complicated than indicated above, and involves summing prob-
abilities over all the infinity of programs that generate x, rather than simply taking the shortest program.
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However Solomonoff [24] proved that summing over all programs (even an infinite number of them) was
almost the same thing as taking the shortest program, since the shorter programs contribute exponentially
more to the probability than the longer programs. The result is a semi-measure rather than a measure,
due to the fact that some encoding are nonhalting and produce no output, but Solomonoff converts this
to a proper measure by normalizing.

One potential problem with the algorithmic measure is the question of its objectivity. I have thus far
assumed that we have adopted a particular computational language in which to encode our programs,
yielding a particular bit-count for any program. However, choice of a different language will yield
different bit counts and hence a different probability measure. Nonetheless, Solomonoff’s invariance
theorem [24] proves that the measure is invariant between languages, up to an additive constant given by
the size of the translation manual between the languages. Thus, for simple languages, it does seem that
the measure should be very close to an objective measure.

I cannot prove that algorithmic probability is the correct a priori measure for continuers, of course,
since we cannot (at least not currently) completely formalize observers and their method of interfacing
with the rest of the wavefunction. Nonetheless, we will take the algorithmic information-theoretic per-
spective as a fundamental assumption of this paper. If we can show that such a measure is consistent
with the wavefunction and with the Born rule, with an intuitive a priori justification akin to our count
of replicator copies, then algorithmic probability will make for a very intuitive choice for an a priori
measure. At the very least, we can expect it to give world-counting a run for its money!

5 Transition Probabilities

How do we calculate an algorithmic probability for continuer mi given pre-measurement observer m?
What we cannot do is to pick m apart, in order to count the number of bits in some subsystem of m
associated with the observer’s experience, as this would reify subsystems, and we are looking for a
purely formal probability rule. This leaves us with m in its entirety for which to calculate an entropy.

Presumably, a continuer state mi and its continued state m may or may not share a lot of mutual
information. If they do, then mi can be described in very few bits once we already have a description of
m. Otherwise, mi will require many bits to describe, even given a description of m. Those continuers that
share very little information will have very low probability, since it will take a large number of bits to
describe them (we will call these “maverick continuers”). Continuers mi that have significant probability
will be those with high mutual information content with the continued state m.

Thus, the unshared residual information required to describe a continuer mi given m is the change in
entropy (or information) in transition from m to mi, meaning the size of the optimal compression of mi

given that we already have m:

4Hi = H(mi|m) = H(mi)−H(mi : m) = H(mi)−H(m), (9)

where H(x : y) is defined as the “mutual information” between x and y, or the optimal number of bits it
would take to generate x if already given y “for free”, so that H(x : y) = H(x)−H(x|y).

Thus, the probability of continuer mi is based on the (typically small) ∆Hi associated with the tran-
sition m→ mi. We will call ∆Hi the “alteration” bits for the transition, as it is the number of bits that
would have to be added to the optimal compression of m to generate the optimal compression of mi.

The Solomonoff probability p(mi | m) of the transition m−→ mi is:

p(mi|m) =
p(mi)

p(m)
∝ 2−4Hi = 2−(H(mi)−H(m)) =

2−H(mi)

∑
n
k=1 2−H(mk)

. (10)
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This probability rule has nothing to do with quantum mechanics, being a general rule for calculating
probabilities for multiple continuers in a formal system, using algorithmic probability. The rule is clearly
different from counting branches or observers to compute probabilities (which would set p(mi) =

1
n ),

since the entropies of the individual branches are not necessarily equal (4H1 6=4H2). Since there exists
a function f such that p(mi|m) ∝ f (mi), it follows that the unnormalized measure of a branch depends
only on the information content of that branch, as the content of the prior state (or of the other continuers)
serves only to normalize the measure. This is, of course, simply a form of branch-dependence, so if it
were possible to apply this framework to quantum mechanics, the Born rule would necessarily hold.

6 Quantum Transition Probabilities

To apply our algorithmic measure to continuer quantum states, we need to interpret such states as optimal
compressions. As it turns out, it is very natural to interpret a quantum state as an optimal compression.
Established real-world data compression algorithms intended for synthetic decompression (into some-
thing experienced by an observer), are typically highly lossy, and are usually some form of “transform”
compressor, using some variation on the discrete Fourier transform (or DFT):

F ({〈x | ψ〉 : x = 1 · · ·N} ,R) = {〈k | ψ〉 : k = 1 · · ·R} , (11)

quantizing the original N data points 〈x | ψ〉 into R frequency amplitudes 〈k | ψ〉, where R� N, so that
the inverse transform

F−1 ({〈k | ψ〉 : k = 1 · · ·R} ,N) = {〈x | ψ〉 : x = 1 · · ·N} (12)

decompresses back to the original data set at resolution (dimensionality) N, with{
|x〉=

[
ei 1

R xτ · · ·ei k
R xτ · · ·1

]
: x = 1 · · ·N

}
and

{
|k〉=

[
e−ik 1

N τ · · ·e−ik x
N τ · · ·1

]
: k = 1 · · ·R

}
(13)

being the orthonormal “spatial” and “frequency” bases, respectively, and where τ is angular unity, the cir-
cumference of the unit circle (more precisely, τ is some appropriate minimum-bit-length finite-precision
approximation to angular unity, since no actual data compression takes place on a machine with infi-
nite precision). Note that the Fourier transform is a unitary transformation and is the solved form of
Schrödinger’s equation.

We thus interpret |ψ〉, when expressed in a pure frequency basis of dimension R, to be the optimal
compression of pre-measurement observer state m, so that H (m) = bR, where b is the number of bits
used by the compression algorithm to represent a single complex amplitude.

The compressed amplitude list itself, being an optimal compression, is algorithmically random, con-
taining no further structure or symmetry. Once transformed to the spatial basis, where the dimensionality
N is larger, it is no longer an optimal compression, but nonetheless encodes the same wavefunction, and
so has the same entropy or information content. Since Fourier transforms are unitary, the unitary evo-
lution of the wavefunction is in the same category: it does not increase entropy. However, when an
observer splits (at least from that observer’s perspective) then bits have been added to the system, and
the optimal compression will be greater than R by an amount we may call4Hi.

Thus, the algorithmic transition rule from the previous section can be readily applied to the inner
product vector space of Fourier compressions. Note that the Solomonoff probability for mi is based on
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a different DFT than the one for m, with a higher dimensionality and entropy. The probability of mi is
based on ∆Hi, with the entropy of m serving only to normalize the measure (as in non-quantum version):

p(mi|m) =
p(mi)

p(m)
∝ 2−∆Hi = 2−(|F min(mi)|−|F min(m)|) =

2−|F min(mi)|

∑
n
k=1 2−|F min(mk)|

. (14)

Thus, as with the non-quantum version, there exists a function f such that p(mi|m) ∝ f (mi), so that the
measure of a continuer depends only on that continuer branch, not on the context of the other possi-
ble branches (other than for normalization). This is branch-dependence translated to a periodic (DFT)
context, and it rules out world-counting as the basis for a probability rule.

Thus, if we apply a measure on the discrete Fourier spectrum, it must, for each frequency, depend
only on the individual amplitude for that frequency (other than for normalization). This makes intuitive
sense, since the overall list of amplitudes is an optimal compression, and hence algorithmically random,
so there can be no structure or symmetry found within it, with which to extract anything further that
could be informative for our measure.

A corollary to branch-dependence is basis-independence (noncontextuality). If our measure depends
only on the given branch, then it cannot depend on the complement of the branch (the remainder of
the wavefunction) yielding “complement-independence”. And if the complement does not matter, then
it cannot matter what basis we consider |ψi〉 to be a part of. Given this noncontextuality, Gleason-
Busch [4, 8] assures us that all measures of projections onto subspaces of the vector space are norm-
squared measures, and the probability of observer state m in pre-measurement universe |ψ〉 becoming
continuer mi in post-measurement universe |ψi〉 follows the Born rule:

p(mi|m) ∝ |〈ψi|ψ〉|2 = |ai|2 . (15)

7 Discussion

We have seen that algorithmic probabilities based on wavefunction realism lead very naturally to the Born
measure. It might seem odd that norm-amplitude alone can tell us the measure of a continuer, when algo-
rithmically we are supposed to be using a bit-counting measure, not an “amplitude-counting” measure.
Since each amplitude occupies the same number of bits in a DFT, it might appear that amplitude-counting
cannot possibly be a form of bit-counting. But recall that it is the 4Hi alteration bits for continuer mi

that are counted, not bits within a DFT representation, which would violate wavefunction realism.
Imagine the extreme case of just two continuers, m1 and m2 (with no non-continuers) where C (m1) is

virtually identical to C (m), but for a few minor alterations, while C (m2) is radically different (perhaps a
maverick continuer). This could be the case even if the apparent difference between the two continuers,
to the observer, is only slight. The measures for m1 and m2 can be directly bit-counted by independently
compressing each continuer. But assuming we already have the observation-basis expansion |ψm〉 =
a1 |ψ1〉+a2 |ψ2〉, is there no way to compute the probabilities from this representation, simply in terms
of a1 |ψ1〉 and a2 |ψ2〉, without counting bits or performing optimal compressions? Considering that
C (m1) is already almost identical to C (m), clearly a1 must be very high. This follows straightforwardly
from the definition of the DFT. A low4Hi alteration-bit-count means a large amplitude in the preferred
expansion. By the same reasoning, a high alteration-bit-count corresponds to a small amplitude, and
since C (m2) contributes almost nothing to C (m), a2 will be tiny.

It thus makes sense for the alteration bits (or change in entropy) to be reflected in the observation-
basis expansion as norm-amplitudes. It also makes sense that the formula for a norm-amplitude-based
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measure will be norm-amplitude-squared, since this is a conserved measure across unitary transforma-
tions that obeys additivity—and due to Gleason-Busch, we know it is the only such measure. And under
this alternative view of probability, the idea of probability interference is no longer mysterious, as it is
an inherent and expected feature of the DFT frequency-based representation scheme.

Returning to the replicator example, simply replace the three replicator copies with three different
programs, and we end up with the same basic justification for our new algorithmic measure, just applied
to the domain of programs rather than physical subsystems.

Some readers may fear I have artificially chosen an optimal compression scheme that just happens
to be the discrete form of the solved Schrödinger equation. However, keep in mind that we are permitted
in this exercise to assume the wavefunction under wavefunction realism. I would, however, challenge
anyone concerned about the choice of the DFT to propose an alternative a priori guess for an optimal
compression scheme that they consider to be at least as good, and our discussion can proceed from there.
Considering that, in terms of real world practical technology, the DFT or something very like it, is at the
heart of nearly all practical synthetic (lossy) compression schemes, it seems a very plausible choice.

It is worth noting, in addition, that while real-world lossy compression algorithms can take more
specific forms than the relatively straightforward DFT compression used in this paper, the resulting
algorithms are still usually describable as “transform compression” or “modified DFT” algorithms, being
based on essentially the same scheme. Given that branch-dependence is a general property of algorithmic
continuers, independent of which compression algorithm is used, basis-independence should arise given
just about any transform-based compression algorithm, and the Born rule will still follow.
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