
A. Bove, E. Komendantskaya and M. Niqui (Eds.)
Partiality and Recursion in Interactive Theorem Provers.
EPTCS 43, 2010, pp. 29–48, doi:10.4204/EPTCS.43.3

c© Nils Anders Danielsson
This work is licensed under the
Creative Commons Attribution License.

Beating the Productivity Checker
Using Embedded Languages

Nils Anders Danielsson
University of Nottingham

Some total languages, like Agda and Coq, allow the use of guarded corecursion to construct infinite
values and proofs. Guarded corecursion is a form of recursion in which arbitrary recursive calls
are allowed, as long as they are guarded by a coinductive constructor. Guardedness ensures that
programs are productive, i.e. that every finite prefix of an infinite value can be computed in finite
time. However, many productive programs are not guarded, and it can be nontrivial to put them in
guarded form.

This paper gives a method for turning a productive program into a guarded program. The method
amounts to defining a problem-specific language as a data type, writing the program in the problem-
specific language, and writing a guarded interpreter for this language.

1 Introduction

When working with infinite values in a total setting it is common to require that every value is productive
(Sijtsma 1989): even though a value is conceptually infinite, it should always be possible to compute
the next unit of information in finite time. The primitive methods for defining infinite values in the
proof assistants Agda and Coq are based on guarded corecursion (Coquand 1994), which is a conserva-
tive approximation of productivity for coinductive types. The basic idea of guarded corecursion is that
“corecursive calls” may only take place under guarding constructors, thus ensuring that the next unit
of information—the next constructor—can always be computed. For instance, consider the following
definition of nats> n, the stream of successive natural numbers greater than or equal to n (:: is the cons
constructor for streams):

nats> : N→ Stream N
nats> n = n :: nats> (suc n)

This definition is guarded, and has the property that the next natural number can always be computed in
finite time. As another example, consider bad:

bad : Stream N
bad = tail (zero :: bad)

This “definition” is not guarded (due to the presence of tail), nor is it productive: bad is not well-defined.
Finally consider the following definition of the stream of natural numbers:

nats : Stream N
nats = zero :: map suc nats

This definition is productive, but unfortunately it is not guarded, because map is not a constructor. In
fact, many productive definitions are not guarded, and it can be nontrivial to find equivalent guarded
definitions.

http://dx.doi.org/10.4204/EPTCS.43.3
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

30 Beating the Productivity Checker Using Embedded Languages

The main contribution of this paper is a technique for translating a large class of productive but
unguarded definitions into guarded definitions. The basic observation of the technique is that many pro-
ductive definitions would be guarded if some functions were actually constructors. For instance, if map
were a constructor, then nats would be guarded. The technique then amounts to defining a problem-
specific language as a data type which includes a constructor for every function like map, implementing
the productive definitions in a guarded way using this language, and implementing a guarded interpreter
for the language. Optionally one can also prove that the resulting definitions satisfy their intended defin-
ing equations, and that these equations have unique solutions.

The technique relies on the use of data types defined using mixed induction and coinduction (see
Section 2), so it requires a programming language with support for such definitions. The examples in
the paper have been implemented using Agda (Norell 2007; Agda Team 2010), a dependently typed,
total1 functional programming language with good support for mixed induction and coinduction. The
supporting source code is available to download (Danielsson 2010a).

Before we continue it may be useful to state some things which are not addressed by the paper:
• The paper’s focus is on establishing productivity, not on representing non-productive definitions,

nor on making non-productive definitions total by restricting their types (Bertot 2005).

• No attempt is made to automate the technique: as it stands it provides a manual, somewhat ad hoc
method for getting productive definitions accepted by a system based on guarded corecursion.

The rest of the paper is structured as follows: Section 2 discusses induction and coinduction in
the context of Agda, Sections 3–8 (as well as Appendix A) introduce the language-based approach to
productivity through a number of examples, Section 9 discusses related work, and Section 10 concludes.

2 Mixed Induction and Coinduction

This section gives a quick introduction to Agda, in particular to its support for mixed induction and
coinduction. For more details, see Danielsson and Altenkirch (2010, Section 2).

In Agda the type of infinite streams can be defined as follows:

data Stream (A : Set) : Set where
:: : A→ ∞ (Stream A)→ Stream A

This definition states that Stream A is a Set (“type”) with a single (infix) constructor :: of type
A→ ∞ (Stream A)→ Stream A. The inclusion of ∞ in the type of :: makes Stream A coinductive;
without it the type would be empty. You should read ∞ (Stream A) as “delayed stream of As”—the
function ∞ : Set→ Set is analogous to the suspension type constructors which are sometimes used to in-
troduce non-strictness in strict languages (Wadler et al. 1998), and closely related to the domain-theoretic
notion of lifting. However, Agda programs are required to be total.

We can construct infinite values by guarded corecursion. For instance, we can define a function
which combines two streams in a pointwise manner as follows:2

zipWith : {A B C : Set}→ (A→ B→ C)→ Stream A→ Stream B→ Stream C
zipWith f (x :: xs) (y :: ys) = f x y ::] zipWith f ([xs) ([ys)

1Agda is an experimental system with neither a formalised meta-theory nor a verified type checker, so take words such as
“total” with a grain of salt.

2The notation {A B C : Set} → . . . means that zipWith takes three implicit arguments A, B and C, all of type Set. These
arguments do not need to be given explicitly if Agda can infer them.

Nils Anders Danielsson 31

This definition uses the coinductive delay constructor] (sharp)3 and the force function [(flat):

] : {A : Set}→ A→ ∞ A
[: {A : Set}→ ∞ A→ A

Agda views zipWith as guarded, because there is no non-constructor function between the left-hand side
and the corecursive call, and there is at least one use of the guarding coinductive constructor] . This
constructor has special status: it is treated as a constructor by Agda’s productivity checker, but may not
be used in patterns. Instead one can use the force function: [(] x) reduces to x.

As another example, consider the following definition of equality—bisimilarity—for streams (which
makes use of the fact that constructors can be overloaded):

data ≈ {A : Set} : Stream A→ Stream A→ Set where
:: : (x : A)→{xs ys : ∞ (Stream A)}→ ∞ ([xs ≈ [ys)→ x :: xs ≈ x :: ys

This definition states that two streams are equal if their heads are identical and their tails are equal
(coinductively). Note that the elements of this type are equality proofs. We can establish equalities by
constructing proofs using guarded corecursion. For instance, we can prove symmetry as follows:

sym : {A : Set}→ {xs ys : Stream A}→ xs ≈ ys→ ys ≈ xs
sym (x :: xs≈ys) = x ::] sym ([xs≈ys)

(Note that xs≈ys is an ordinary variable, albeit perhaps with an unusual name.)
Let us now consider a definition which uses both induction and coinduction. The type SP A B of

stream processors (Hancock et al. 2009)—representations of programs taking streams of As to streams
of Bs—can be defined as follows:

data SP (A B : Set) : Set where
put : B→ ∞ (SP A B)→ SP A B
get : (A→ SP A B) → SP A B

Here put b sp is intended to output b and continue with sp, while get f is intended to read an element a
and continue with f a. You can see the type as the nested fixpoint4 νX. µY. B× X + (A→ Y)—in fact,
all (non-mutual) data types in the paper can be seen as nested fixpoints of the form νX. µY. F X Y (and
mutually defined data types can be merged by adding an index). Note that the recursive argument of put
is delayed (coinductive), whereas the recursive argument of get is not. This means that we can have an
infinite number of consecutive put constructors, but only a finite number of consecutive gets; definitions
such as the following one are not guarded and not accepted:

sink : {A B : Set}→ SP A B
sink = get (λ → sink)

The definition of sink is not problematic in and of itself (assuming that it is not evaluated too eagerly).
However, by ruling out such definitions we make other definitions possible, for instance the following
one, which gives the semantics of a stream processor:

3The prefix operator] is the most tightly binding operator in this paper; ordinary function application binds tighter, though.
4Currently this is not quite correct in Agda (Altenkirch and Danielsson 2010), but for the purposes of this paper the differ-

ences are irrelevant.

32 Beating the Productivity Checker Using Embedded Languages

J K : {A B : Set}→ SP A B→ Stream A→ Stream B
J put b sp K as = b ::] (J [sp K as)
J get f K (a :: as) = J f a K ([as)

This function is accepted by Agda because it is defined using a lexicographic combination of guarded
corecursion and structural recursion. In this particular example the first component of the lexicographic
product is the “guardedness”, and the second component is the inductive structure of the stream proces-
sor:

• In the first clause the corecursive call is guarded. The stream processor is not structurally smaller,
due to the use of the force function ([), but this is irrelevant.

• In the second clause the corecursive call is not guarded, but there is no non-constructor function
between the left-hand side and the corecursive call, so we say that “guardedness is preserved”. On
the other hand, the stream processor argument is strictly structurally smaller (f x is smaller than
get f for any x).

Armed with the knowledge that there can only be a finite number of consecutive get constructors we
conclude that, when evaluating J sp K as, we must eventually reach the first clause. At this stage we can
immediately inspect the head element of the output stream, because the second clause does not introduce
any interfering destructors.

As a final example, consider filter, which is not accepted by Agda:

filter : {A : Set}→ (A→ Bool)→ Stream A→ Stream A
filter p (x :: xs) with p x
filter p (x :: xs) | true = x ::] filter p ([xs)
filter p (x :: xs) | false = filter p ([xs)

(Here the with construct is used to pattern match on p x.) The first corecursive call is guarded, but in the
last clause the call is not guarded, and nothing is structurally smaller, so this function is not accepted.

The explanations above should suffice to understand the definitions in this paper—in fact, most def-
initions use less complicated recursion principles than the one used by J K. For more information about
Agda’s criterion for accepting a function as total, see Danielsson and Altenkirch (2010, Section 2.5).

Before we continue note that, in order to reduce clutter, the declarations of implicit arguments have
been omitted in the remainder of the paper.

3 Making Programs Guarded

As noted in the introduction guardedness is sometimes an inconvenient restriction: there are productive
programs which are not syntactically guarded. This section introduces a language-based technique for
putting definitions in guarded form.

Consider the following definition of the stream of Fibonacci numbers:

fib : Stream N
fib = 0 ::] zipWith + fib (1 ::] fib)

While the definition of fib is productive, it is not guarded, because the function zipWith is not a construc-
tor. If zipWith were a constructor the definition would be guarded, though, and this presents a way out:

Nils Anders Danielsson 33

we can define a problem-specific language which includes zipWith as a constructor, and then define an
interpreter for the language by using guarded corecursion.

A simple language of stream programs can be defined as follows:5

data StreamP : Set→ Set1 where
:: : A→ ∞ (StreamP A)→ StreamP A

zipWith : (A→ B→ C)→ StreamP A→ StreamP B→ StreamP C

Note that the stream program argument of :: is coinductive, while the arguments of zipWith are induc-
tive; a stream program consisting of an infinitely deep application of zipWiths would not be productive.

Stream programs will be turned into streams in two steps. First a kind of weak head normal form
(WHNF) for stream programs is computed recursively, and then the resulting stream is computed core-
cursively. The WHNFs are defined in the following way:

data StreamW : Set→ Set1 where
:: : A→ StreamP A→ StreamW A

Note that the stream argument to :: is a (“suspended”) program, not a WHNF. The function whnf
which computes WHNFs can be defined by structural recursion:

whnf : StreamP A→ StreamW A
whnf (x :: xs) = x :: [xs
whnf (zipWith f xs ys) = zipWithW f (whnf xs) (whnf ys)

Here zipWithW is defined by simple case analysis:

zipWithW : (A→ B→ C)→ StreamW A→ StreamW B→ StreamW C
zipWithW f (x :: xs) (y :: ys) = f x y :: zipWith f xs ys

WHNFs can then be turned into streams corecursively:

mutual
J KW : StreamW A→ Stream A
J x :: xs KW = x ::] J xs KP

J KP : StreamP A→ Stream A
J xs KP = J whnf xs KW

Note that this definition is guarded. (Agda accepts definitions like this one even though it is split up over
two mutually defined functions; alternatively one could write J x :: xs KW = x ::] J whnf xs KW and define
J KP separately.)

Given the language above we can now define the stream of Fibonacci numbers using guarded core-
cursion:

fibP : StreamP N
fibP = 0 ::] zipWith + fibP (1 ::] fibP)

fib : Stream N
fib = J fibP KP

5Set1 is a type of large types; ∞ has type Seti→ Seti for any i.

34 Beating the Productivity Checker Using Embedded Languages

One can prove that this definition satisfies the original equation for fib by first proving corecursively
that J KP is homomorphic with respect to zipWith/zipWith:

zipWith-hom : (f : A→ B→ C)→ (xs : Stream A)→ (ys : Stream B)→
J zipWith f xs ys KP ≈ zipWith f J xs KP J ys KP

fib-correct : fib ≈ 0 ::] zipWith + fib (1 ::] fib)

For the omitted proofs, see Danielsson (2010a). One may also want to establish that the original equation
for fib defines the stream completely, i.e. that it has a unique solution. For an explanation of how this can
be done, see Section 5.

It can be instructive to see what would happen if we tried to use the method above to implement the
ill-defined stream bad from the introduction. Defining the language and giving a “definition” for bad is
straightforward:

data StreamP (A : Set) : Set where
:: : A→ ∞ (StreamP A)→ StreamP A

tail : StreamP A→ StreamP A

bad : StreamP N
bad = tail (zero ::] bad)

However, turning stream programs into streams becomes tricky. How would tailW be defined?

data StreamW (A : Set) : Set where
:: : A→ StreamP A→ StreamW A

tailW : StreamW A→ StreamW A
tailW (x :: xs) = ?

Note that, in the body of tailW, xs is a stream program, but we need to produce a WHNF.

4 Several Types at Once

The technique introduced in Section 3 is not limited to streams. In fact, it can be used with several types
at the same time. To illustrate how this can be done I will implement circular breadth-first labelling of
trees á la Jones and Gibbons (1993).

The following type of potentially infinite binary trees will be used:

data Tree (A : Set) : Set where
leaf : Tree A
node : ∞ (Tree A)→ A→ ∞ (Tree A)→ Tree A

Jones and Gibbons’ implementation can be described as follows. First a labelling function lab is defined.
This function takes a tree, along with a stream of streams of new labels. The labels in a prefix of the n-th
stream are used to label the n-th level of the tree, and the remaining labels are returned from lab:

lab : Tree A→ Stream (Stream B)→ Tree B× Stream (Stream B)
lab leaf bss = (leaf, bss)
lab (node l r) ((b :: bs) :: bss) = (node (] l′) b (] r′), [bs ::] bss′′)

where
(l′ ,bss′) = lab ([l) ([bss)
(r′,bss′′) = lab ([r) bss′

Nils Anders Danielsson 35

This code is not accepted by Agda, because the recursive calls are not guarded (their results are destruc-
ted, and furthermore lab, which is not a constructor, is applied to a part of one of the results).6 The next
step in Jones and Gibbons’ implementation is to construct the stream of streams of labels which is used
by lab, and use these streams to compute the relabelled tree. This is done using a circular construction:

label : Tree A→ Stream B→ Tree B
label t bs = t′

where (t′,bss) = lab t (bs ::] bss)

This code is not accepted by Agda, because lab is not a constructor, and furthermore the result of lab is
destructed.

To implement breadth-first labelling in the style of Jones and Gibbons the following universe of trees,
streams, products and arbitrary (small) types will be used:

data U : Set1 where
tree : U→ U
stream : U→ U
⊗ : U→ U→ U
d e : Set→ U

El : U→ Set
El (tree a) = Tree (El a)
El (stream a) = Stream (El a)
El (a⊗ b) = El a× El b
El d A e = A

The type U defines codes for elements of the universe, and El interprets these codes.
By indexing the program and WHNF types by codes from the universe U we can work with several

types at once:

mutual
data ElP : U→ Set1 where
↓ : ElW a→ ElP a
fst : ElP (a⊗ b)→ ElP a
snd : ElP (a⊗ b)→ ElP b
lab : Tree A→ ElP (stream d Stream B e)→ ElP (tree d B e ⊗ stream d Stream B e)

data ElW : U→ Set1 where
leaf : ElW (tree a)
node : ∞ (ElP (tree a))→ ElW a→ ∞ (ElP (tree a))→ ElW (tree a)

:: : ElW a→ ∞ (ElP (stream a))→ ElW (stream a)
, : ElW a→ ElW b→ ElW (a⊗ b)
d e : A→ ElW d A e

Note that only those constructor arguments which are delayed are represented as programs in the defini-
tion of ElW—the other arguments can be viewed as “strict”. Note also that, unlike in Section 3, the two
types are defined mutually: the WHNF type is included in the type of programs using the constructor ↓.
This makes the program type less usable (the term fst p :: xs is not well-typed, for instance), but avoids
some code duplication. An alternative would be to merge the definitions of ElP and ElW, and use an
additional index to specify which programs are in weak head normal form.

The type of lab may seem a bit strange: the inner and outer streams are represented differently. One
reason for this design choice can be seen in the definition of labW:

6Agda does not support pattern matching in where clauses as used here, but one can use projection functions instead.

36 Beating the Productivity Checker Using Embedded Languages

labW : Tree A→ ElW (stream d Stream B e)→ ElW (tree d B e ⊗ stream d Stream B e)
labW leaf bss = (leaf, bss)
labW (node l r) (d b :: bs e :: bss) = (node (] fst x) d b e (] fst y),d [bs e ::] snd y)

where
x = lab ([l) ([bss)
y = lab ([r) (snd x)

Consider the second clause. If labW had the type

Tree A→ ElW (stream (stream b))→ ElW (tree b⊗ stream (stream b)),

then the analogue of bs would be a program, but the head of the resulting stream of streams (d [bs e in
the definition above) must be a WHNF. The use of “raw” inner streams also means that the input to the
label function does not need to be converted.

Note that labW is non-recursive. The remainder of whnf is straightforward to implement using struc-
tural recursion:

fstW : ElW (a⊗ b)→ ElW a
fstW (x,y) = x

sndW : ElW (a⊗ b)→ ElW b
sndW (x,y) = y

whnf : ElP a→ ElW a
whnf (↓ w) = w
whnf (fst p) = fstW (whnf p)
whnf (snd p) = sndW (whnf p)
whnf (lab t bss) = labW t (whnf bss)

It is also easy to define J KW and J KP. These definitions use a lexicographic combination of guarded
corecursion and structural recursion (see Section 2):

mutual
J KW : ElW a→ El a
J leaf KW = leaf

J node l x r KW = node (] J [l KP) J x KW (] J [r KP)

J x :: xs KW = J x KW ::] J [xs KP
J (x,y) KW = (J x KW,J y KW)
J d x e KW = x

J KP : ElP a→ El a
J p KP = J whnf p KW

Finally we can define label:

label′ : Tree A→ Stream B→ ElP (tree d B e ⊗ stream d Stream B e)
label′ t bs = lab t (↓ (d bs e ::] snd (label′ t bs)))

label : Tree A→ Stream B→ Tree B
label t bs = J fst (label′ t bs) KP

Note that the helper function label′, which corresponds to the cyclic part of the original label, is defined
using guarded corecursion.

I have proved that the definition of label is correct: the resulting tree has the same shape as the
original one, and a breadth-first traversal of the resulting tree produces a potentially infinite list of labels

Nils Anders Danielsson 37

which is a prefix of the stream given to label. To state correctness I extended the universe with support
for potentially infinite lists, and added some programs to the ElP type. For details of the statement and
proof, see Danielsson (2010a).

5 Making Proofs Guarded

The language-based approach to guardedness introduced in Section 3 has some problems when applied
to programs:
• The interpretive overhead, compared to a direct implementation, can be substantial. For instance,

computing the n-th element of the stream fib defined in Section 3 requires a number of additions
which is exponential in n, whereas if fib = 0 ::] zipWith + fib (1 ::] fib) is implemented directly
in a language which uses call-by-need this computation only requires O(n) additions. The reason
for this discrepancy is that the interpreter J KP does not preserve sharing. One could perhaps work
around this problem by writing a more complicated interpreter, but this seems counterproductive:
why spend effort writing a new interpreter when one is already provided by the host programming
language (or the underlying hardware)?

• Proving properties about the interpreted definitions (for instance to establish that they are correct)
can be awkward, because this amounts to proving properties about the interpreter.

However, these problems are usually irrelevant for proofs: the run-time complexity of proofs is rarely
important, and any proof of a property is usually as good as any other. Hence the approach is likely to be
more useful for making proofs guarded, than for making programs guarded.

This section shows how the technique can be applied to proofs. Hinze (2008) advocates proving
stream identities using a uniqueness property. One example in his paper is the iterate fusion law:

fusion : (h : A→ B)→ (f1 : A→ A)→ (f2 : B→ B)→
((x : A)→ h (f1 x)≡ f2 (h x))→
(x : A)→ map h (iterate f1 x) ≈ iterate f2 (h x)

Here map and iterate are defined as follows:

map : (A→ B)→ Stream A→ Stream B
map f (x :: xs) = f x ::] map f ([xs)

iterate : (A→ A)→ A→ Stream A
iterate f x = x ::] iterate f (f x)

Hinze proves the iterate fusion law by establishing that the left and right hand sides both satisfy the
same guarded equation, f x ≈ h x ::] f (f1 x) (where f is the “unknown variable”):

map h (iterate f1 x) ≈〈 by definition 〉
h x ::] map h (iterate f1 (f1 x))

h x ::] iterate f2 (h (f1 x)) ≈〈 assumption 〉
h x ::] iterate f2 (f2 (h x)) ≈〈 by definition 〉
iterate f2 (h x)

The separately proved7 fact that the equation has a unique solution then implies that map h (iterate f1 x)
and iterate f2 (h x) are equal.

7Hinze proves this using a method described by Rutten (2003), which in fact is closely related to the method described here,
see Section 9.

38 Beating the Productivity Checker Using Embedded Languages

Note that the proof above is almost a proof by guarded coinduction: the two equational reasoning
blocks can be joined by an application of the coinductive hypothesis. However, the second block uses
transitivity, thus destroying guardedness. We can work around this problem by following the approach
introduced in Section 3. Let us define a language of equality proof “programs” as follows:

data ≈P : Stream A→ Stream A→ Set where
:: : (x : A)→ ∞ ([xs ≈P

[ys)→ x :: xs ≈P x :: ys
≈〈 〉 : (xs : Stream A)→ xs ≈P ys→ ys ≈P zs→ xs ≈P zs
� : (xs : Stream A)→ xs ≈P xs

The last two constructors represent transitivity and reflexivity, respectively. Note that the transitivity con-
structor is inductive; a coinductive transitivity constructor would make the relation trivial (see Danielsson
and Altenkirch (2010)). The somewhat odd names were chosen to make the proof of the iterate fusion
law more readable, following Norell (2007). Just remember that ≈〈 〉 and � are both weakly binding,
with ≈〈 〉 right associative and binding weaker than �:

fusion : (h : A→ B)→ (f1 : A→ A)→ (f2 : B→ B)→
((x : A)→ h (f1 x)≡ f2 (h x))→
(x : A)→ map h (iterate f1 x) ≈P iterate f2 (h x)

fusion h f1 f2 hyp x =
map h (iterate f1 x) ≈〈 by definition 〉
h x ::] map h (iterate f1 (f1 x)) ≈〈 h x ::] fusion h f1 f2 hyp (f1 x) 〉
h x ::] iterate f2 (h (f1 x)) ≈〈 h x ::] iterate-cong f2 (hyp x) 〉
h x ::] iterate f2 (f2 (h x)) ≈〈 by definition 〉
iterate f2 (h x) �

Note that the definition of fusion is guarded. The definition uses some simple lemmas (iterate-cong, by
and definition), which are omitted here.

In order to finish the proof of the iterate fusion law we have to show that ≈P is sound with respect
to ≈ . To do this one can first define a type of WHNFs:

data ≈W : Stream A→ Stream A→ Set where
:: : (x : A)→ [xs ≈P

[ys→ x :: xs ≈W x :: ys

It is easy to establish, by simple case analysis, that this relation is a preorder:

reflW : (xs : Stream A)→ xs ≈W xs
transW : xs ≈W ys→ ys ≈W zs→ xs ≈W zs

It follows by structural recursion that programs can be turned into WHNFs:

whnf : xs ≈P ys→ xs ≈W ys
whnf (x :: xs≈ys) = x :: [xs≈ys
whnf (xs ≈〈 xs≈ys 〉 ys≈zs) = transW (whnf xs≈ys) (whnf ys≈zs)
whnf (xs �) = reflW xs

Finally soundness can be proved using guarded corecursion:

Nils Anders Danielsson 39

mutual
soundW : xs ≈W ys→ xs ≈ ys
soundW (x :: xs≈ys) = x ::] soundP xs≈ys

soundP : xs ≈P ys→ xs ≈ ys
soundP xs≈ys = soundW (whnf xs≈ys)

Note that there is no need to prove that the application soundP (fusion h f1 f2 hyp x) satisfies its intended
defining equation, whatever that would be, or that this equation has a unique solution.

Using the language-based approach to guardedness I have formalised a number of examples from
Hinze’s paper, see Danielsson (2010a). Rephrasing the proofs using guarded coinduction turned out to
be unproblematic.

As a further example, let us show that the defining equation for fib (see Section 3) has a unique
solution. We can state the problem as follows:

fib-rhs : Stream N→ Stream N
fib-rhs ns = 0 ::] zipWith + ns (1 ::] ns)

fib-unique : (ms ns : Stream N)→ ms ≈ fib-rhs ms→ ns ≈ fib-rhs ns→ ms ≈P ns

The type ≈P used here is different from the one used above: the proof will make use of the congruence
of zipWith, and the coinductive hypothesis will be an argument to this congruence, so a constructor for
the congruence is included among the equality proof programs:

data ≈P : Stream A→ Stream A→ Set where
. . .
zipWith-cong : (f : A→ A→ A)→ xs1 ≈P ys1→ xs2 ≈P ys2→

zipWith f xs1 xs2 ≈P zipWith f ys1 ys2

It is easy to extend the definition of whnf to support zipWith-cong, using which we can define fib-unique
as follows:

fib-unique ms ns hyp1 hyp2 =
ms ≈〈 completeP hyp1 〉
fib-rhs ms ≈〈 0 ::] zipWith-cong + (fib-unique ms ns hyp1 hyp2)

(1 ::] fib-unique ms ns hyp1 hyp2) 〉
fib-rhs ns ≈〈 completeP (sym hyp2) 〉
ns �

Here sym is the proof of symmetry of ≈ from Section 2, and completeP shows that ≈P is complete
with respect to ≈ :

completeP : xs ≈ ys→ xs ≈P ys
completeP (x :: xs≈ys) = x ::] completeP ([xs≈ys)

6 Destructors

The following, alternative definition of the Fibonacci sequence is not directly supported by the framework
outlined in previous sections:

40 Beating the Productivity Checker Using Embedded Languages

fib : Stream N
fib = 0 ::] (1 ::] zipWith + fib (tail fib))

The problem is the use of the destructor tail. Unrestricted use of destructors can lead to non-productive
“definitions”, as demonstrated by bad (see Section 1). However, destructors can be incorporated by
extending the program type with an index which indicates when they can be used.

Consider the following type of stream programs:

data StreamP : Bool→ Set→ Set1 where
[] : ∞ (StreamP true A) → StreamP false A

:: : A→ StreamP false A→ StreamP true A
tail : StreamP true A→ StreamP false A
forget : StreamP true A→ StreamP false A
zipWith : (A→ B→ C)→ StreamP b A→ StreamP b B→ StreamP b C

The type StreamP b A stands for streams generated in chunks of size (at least) one, where the first chunk
is guaranteed to be non-empty if the index b is true. The constructor [] marks the end of a chunk.
Note how the indices ensure that a finished chunk is always non-empty, and that tail may only be used to
inspect the chunk currently being constructed. The constructor forget is used to “forget” that a chunk is
already finished; forget represents the identity function. This constructor is used in the implementation
of fibP (an alternative would be to give zipWith a more general type):

fibP : StreamP true N
fibP = 0 :: [] (1 :: zipWith + (forget fibP) (tail fibP))]

The implementation of J KP for this language is very similar to that for the language in Section 7, so
it is omitted here. For details of this implementation, the proof of correctness of fibP, and the proof of
uniqueness of solutions of the defining equation for fibP, see Danielsson (2010a).

7 Other Chunk Sizes

The language of the previous section can be generalised to support other chunk sizes (Danielsson 2010a).
Larger chunk sizes can provide interesting situations. Consider the following alternative definition of the
function map from Section 5:

map2 : (A→ B)→ Stream A→ Stream B
map2 f (x :: xs) with [xs
map2 f (x :: xs) | y :: ys = f x ::] (f y ::] map2 f ([ys))

One can show that map and map2 are extensionally equal:

map≈map2 : (f : A→ B)→ (xs : Stream A)→ map f xs ≈ map2 f xs

However, assuming that pattern matching is “strict”, they are not interchangeable. The following defini-
tion of the stream of natural numbers is productive, albeit not guarded:

nats : Stream N
nats = 0 ::] map suc nats

Nils Anders Danielsson 41

The definition that we get by replacing map by map2, on the other hand, is not productive:

nats2 : Stream N
nats2 = 0 ::] map2 suc nats2

The first element of nats2 is 0, but map2 needs to access the first two elements of its argument stream in
order to output anything.

We can perhaps get a better picture of the situation above using the following language:

data StreamP (m : N) : N→ Set→ Set1 where
[] : ∞ (StreamP m m A)→ StreamP m 0 A

:: : A→ StreamP m n A→ StreamP m (suc n) A
map : (A→ B)→ StreamP m n A→ StreamP m n B

StreamP m n A is a language of programs which generate streams of As in chunks of size m, where the
first chunk has size n. We can define WHNFs and the whnf function as follows:

data StreamW (m : N) : N→ Set→ Set1 where
[] : StreamP m m A→ StreamW m 0 A

:: : A→ StreamW m n A→ StreamW m (suc n) A

mapW : (A→ B)→ StreamW m n A→ StreamW m n B
mapW f [xs] = [map f xs]
mapW f (x :: xs) = f x :: mapW f xs

whnf : StreamP (suc m) n A→ StreamW (suc m) n A
whnf [xs] = [[xs]
whnf (x :: xs) = x :: whnf xs
whnf (map f xs) = mapW f (whnf xs)

Stream programs where all chunks are non-empty can then be turned into streams using guarded core-
cursion:

mutual
J KW : StreamW (suc m) (suc n) A→ Stream A
J x :: [xs] KW = x ::] J xs KP
J x :: (y :: xs) KW = x ::] J y :: xs KW

J KP : StreamP (suc m) (suc n) A→ Stream A
J xs KP = J whnf xs KW

Using this language we cannot define nats2. The following code is ill-typed:

nats2 : StreamP 2 1 N
nats2 = 0 :: [] map suc nats2]

On the other hand, the following definitions are accepted:

nats : StreamP 1 1 N
nats = 0 :: [] map suc nats]

nats′2 : StreamP 2 2 N
nats′2 = 0 :: 1 :: [] map suc nats′2]

42 Beating the Productivity Checker Using Embedded Languages

The language above uses constant chunk sizes (with the possible exception of the first chunk). If
more flexibility is needed, then one can index programs by chunk sizes:

data Chunks : Set where
next : Chunks→ Chunks
cons : ∞ Chunks→ Chunks

data StreamP : Chunks→ Set→ Set1 where
[] : ∞ (StreamP cs A)→ StreamP (next cs) A

:: : A→ StreamP ([cs) A→ StreamP (cons cs) A
. . .

Here Chunks represents the chunk sizes used in the production of a stream: next stands for the start
of a new chunk, and cons increases the size of the current chunk by one. Note that next is inductive and
cons coinductive; this ensures that there are no infinite sequences of empty chunks.

Endrullis et al. (2010) point out that some approaches to productivity based on restricted forms of
moduli of production—which are closely related to chunk sizes—cannot handle the following definition
of the Thue-Morse sequence:

thue-morse : Stream Bool
thue-morse = false ::] (map not (evens thue-morse)g tail thue-morse)

Here evens xs consists of every other element of xs, starting with the first, and g interleaves two
streams: (x :: xs)g ys = x ::] (ysg [xs). This definition of thue-morse can be handled using programs
indexed by Chunks; see Danielsson (2010a) for details.

8 Nested Applications

Before wrapping up, let us briefly consider nested applications of the function being defined, as in
ϕ (x :: xs) = x ::] ϕ (ϕ xs). Definitions with nested applications are common when programs are
written using continuation-passing style. To handle such applications one can include a constructor for
the function in the type of programs:

data StreamP (A : Set) : Set where
:: : A→ ∞ (StreamP A)→ StreamP A

ϕP : StreamP A→ StreamP A

data StreamW (A : Set) : Set where
:: : A→ StreamP A→ StreamW A

ϕW : StreamW A→ StreamW A
ϕW (x :: xs) = x :: ϕP (ϕP xs)

whnf : StreamP A→ StreamW A
whnf (x :: xs) = x :: [xs
whnf (ϕP xs) = ϕW (whnf xs)

(The definition of J KP is omitted above.) By turning streams into programs one can then define ϕ:

d e : Stream A→ StreamP A
d x :: xs e = x ::] d [xs e

ϕ : Stream A→ Stream A
ϕ xs = J ϕP d xs e KP

In order to prove that ϕ satisfies its intended defining equation it can be helpful to use an equality proof
language, as in Section 5, and to include a constructor for the congruence of ϕP in this language:

data ≈P : Stream A→ Stream A→ Set where
. . .
ϕP-cong : (xs ys : StreamP A)→ J xs KP ≈P J ys KP→ J ϕP xs KP ≈P J ϕP ys KP

Nils Anders Danielsson 43

For further details, see Danielsson (2010a), who also establishes that ϕ’s defining equation has a unique
solution.

9 Related Work

This section is mainly concerned with discussing methods for establishing productivity in systems based
on guarded corecursion. Other related work is discussed towards the end.

Rutten (2003) proves that certain operations on streams are well-defined by using a technique which
is very similar to the one described in this paper. He defines a language E of real number stream expres-
sions inductively (this language is similar to StreamP R), and defines a stream coalgebra c : E→ R× E
by recursion over the structure of E (this corresponds to whnf). The type of streams is a final coalgebra,
so from c one obtains a function of type E→ StreamR (corresponding to J KP), which can be used to turn
stream expressions into actual streams. Rutten then uses coinduction (expressed using bisimulations) to
prove that the defined operations satisfy their intended defining equations, and that these equations have
unique solutions.

There are some differences between Rutten’s proof and the technique described here, other than the
different settings (finality vs. guarded corecursion, bisimulations vs. guarded coinduction). One is that
Rutten defines the variant of fib from Section 6 via two mutually recursive streams (fib = 0 ::] fib′ and
fib′ = 1 ::] zipWith + fib fib′); he does not discuss anything resembling the counting approaches of
Sections 6 and 7. Another difference is that Rutten’s language E is inductive, whereas StreamP uses
mixed induction and coinduction. A simple consequence of this difference is that when Rutten defines
fib he includes it as a term in E; with the method described here one can get much further using a fixed
language. Danielsson and Altenkirch (2010) also take advantage of this difference when proving that
one subtyping relation is sound with respect to another. In this proof the program and WHNF types
are defined mutually, using mixed induction and coinduction, and the whnf function constructs its result
using a combination of structural recursion and guarded corecursion. For completeness a short variant
of this development is included in Appendix A.

Rutten’s proof is closely related to a technique due to Bartels (2003). Bartels formulates the technique
in a general categorical setting, and restricts the form of whnf , and in return proofs showing that the
definitions uniquely satisfy certain defining equations come for free. Furthermore Bartels manages to
define fib without including it as a term in the language.

Niqui (2009, 2010) implements one of Bartels’ corecursion schemes, λ -coiteration, in Coq. He states
that this scheme cannot handle van de Snepscheut’s corecursive definition of the Hamming numbers
(Dijkstra 1981), which can easily be handled using the method described in this paper.

Matthews (1999) and Di Gianantonio and Miculan (2003) describe general frameworks for defin-
ing values using a mixture of recursion and corecursion, based on functions which satisfy notions of
contractivity. The methods seem to be quite general, and have been implemented (in Isabelle and Coq,
respectively; note that guarded corecursion is not a primitive feature of Isabelle).

The implementations mentioned above (Matthews 1999; Di Gianantonio and Miculan 2003; Niqui
2009, 2010) provide you with unique solutions to equations, whereas when using the method described in
this paper you need to prove correctness and uniqueness manually if you are interested in these properties.
On the other hand, as pointed out in Section 5, there is rarely any need to pay this price when defining a
proof. I suspect that circumstances determine which method is cheapest to use.

Bertot (2005) implements a filter function for streams in Coq. An unrestricted filter function is not
productive, so Bertot restricts the function’s inputs using predicates of the form “always (eventually

44 Beating the Productivity Checker Using Embedded Languages

P)”. The always part is defined coinductively, and the eventually part inductively. As mentioned in the
introduction this work is orthogonal to the work presented here.

Conor McBride (personal communication) has developed a technique for establishing productivity,
based on the work of Hancock and Setzer (2000). The idea is to represent the right-hand sides of function
definitions using a type RHS g, where g indicates whether the context is guarding or not, and to only allow
corecursive calls in a guarding context.

Capretta (2005) defines the partiality monad, which can be used to represent partial (potentially non-
terminating) computations, roughly as follows:

data ν (A : Set) : Set where
return : A → A ν

step : ∞ (A ν)→ A ν

The constructor return returns a result, and step postpones a computation. It is easy to define bind for
this monad: >>= : A ν → (A→ B ν)→ B ν . Unfortunately it can be inconvenient to use this definition
of bind in systems based on guarded corecursion, because >>= is not a constructor. Megacz (2007)
suggests (more or less) the following alternative definition:

data ν (A : Set) : Set1 where
return : A→ A ν

>>= : ∞ (B ν)→ (B→ ∞ (A ν))→ A ν

One can note that this is very close to the first step of the technique presented in this paper. Megacz does
not translate from the second to the first type, though.

Bertot and Komendantskaya (2009) describe a method for replacing corecursion with recursion. They
map values of type Stream A to and from the isomorphic type N→ A, and values of this type can be
defined recursively. The authors state that the method is still very limited and that, as presented, it cannot
handle van de Snepscheut’s definition of the Hamming numbers.

McBride (2009) defines an applicative functor which captures the notion of “be[ing] ready a wee bit
later”. Using this structure he defines various corecursive programs, including the circular breadth-first
labelling function which is defined in Section 4. The technique is presented using the partial language
Haskell, but Robert Atkey (personal communication) has later implemented it in Agda. The technique
has not been developed very far yet: as far as I am aware no one has tried to prove any properties about
functions defined using it.

Instead of working around the limitations of guarded corecursion one can include language features
which make it easier to explain why programs are productive. One such feature is sized types (Hughes
et al. 1996; Barthe et al. 2004; Abel 2009), and the λ -calculi of Buchholz (2005) provide other examples.
Another approach is to use cleverer algorithms for establishing productivity. Endrullis et al. (2010,
2008) present algorithms which handle the definition of thue-morse from Section 7 automatically (except
that, as presented, they only support first-order term-rewriting systems). The algorithms are tailored to
streams; it seems to be hard to adapt them to, say, coinductive trees. Another algorithm is presented by
Telford and Turner (1997). This algorithm does not handle thue-morse (Endrullis et al. 2010), but has
the advantage of working for a large class of coinductive data types.

Morris et al. (2006) use the technique of replacing functions with constructors to show termination
rather than productivity (see Morris et al. (2007) for an explanation of the technique). They replace
a partially applied recursive call (which is not necessarily structural, because it could later be applied

Nils Anders Danielsson 45

to anything), nested inside another recursive call, with a constructor application. If this constructor
application is later encountered it is handled using structural recursion.

The technique presented here also shares some traits with Reynolds’ defunctionalisation (1972). De-
functionalisation is used to translate programs written in higher-order languages to first-order languages,
and it basically amounts to representing function spaces using application-specific data types, and im-
plementing interpreters for these data types.

10 Conclusions

I hope to have shown, through a number of examples, that the language-based approach to establishing
productivity is useful. I am currently turning to it whenever I have a problem with guardedness; see
Danielsson and Altenkirch (2010) and Danielsson (2010b) for some examples not included in this paper.

However, there are some problems with the method. As discussed in Section 5 it is not very useful if
efficiency is a concern. Furthermore it can be disruptive: if one decides to use the method after already
having developed a large number of functions in some project, and many of these functions have to
be reified as constructors in a program data type, then a lot of work may be necessary. In fact, this
problem—in one shape or another—is likely to apply to all approaches to making definitions guarded.
In the long term I believe that it would be useful to adopt a more modular approach to productivity than
guardedness.

Acknowledgements. I would like to thank Andreas Abel, Thorsten Altenkirch, Conor McBride, Nico-
las Oury and Anton Setzer for many discussions about coinduction, and Graham Hutton as well as several
anonymous reviewers for useful feedback. I would also like to thank EPSRC for financial support (grant
code: EP/E04350X/1).

A An Inductive Approximation of Stream Equality

Danielsson and Altenkirch (2010) prove that one subtyping relation is sound with respect to another
using the technique described in this paper. This appendix outlines the proof, but in a simplified (and
slightly different) setting: equality between streams.

Recall the definitions of Stream and stream equality, ≈ , from Section 2. One can define a sound ap-
proximation of stream equality inductively as follows (using an idea due to Brandt and Henglein (1998)):

data ` ≈ (H : List (Stream A× Stream A)) : Stream A→ Stream A→ Set where
:: : (x : A) → (x :: xs,x :: ys) :: H ` [xs ≈ [ys → H ` x :: xs ≈ x :: ys

hyp : (xs,ys) ∈ H → H ` xs ≈ ys
trans : H ` xs ≈ ys → H ` ys ≈ zs → H ` xs ≈ zs

The intention is that, if one can prove H ` xs ≈ ys, and all the assumptions in the list H are valid, then
xs and ys should be equal. The first constructor of ` ≈ states that, in order to prove that x :: xs and
x :: ys are equal, it suffices to show that [xs and [ys are equal, given the extra assumption that x :: xs
and x :: ys are equal. The second constructor makes it possible to use the hypotheses in the list H (∈
encodes list membership), and the third constructor encodes transitivity. As an example, we can prove
that the list repeat x ≈ x ::] repeat x is equal to itself as follows:

46 Beating the Productivity Checker Using Embedded Languages

repeat-refl : (x : A) → [] ` repeat x ≈ repeat x
repeat-refl x = x :: hyp here

(The constructor here proves that the head of a list is a member of the list. In this case it is used at the
type (repeat x,repeat x) ∈ (repeat x,repeat x) :: [].)

Soundness of ` ≈ will now be established. The goal is to prove that H ` xs ≈ ys implies
xs ≈ ys, given that All (Valid ≈) H, where All P xs means that P holds for all elements in the list xs,
and Valid is uncurry for stream predicates:

data All (P : A→ Set) : List A→ Set where
[] : All P []

:: : P x→ All P xs→ All P (x :: xs)

Valid : (Stream A→ Stream A→ Set) → Stream A× Stream A→ Set
Valid R (xs,ys) = xs R ys

We begin by defining the program and WHNF types mutually as follows:

mutual
data ≈P : Stream A→ Stream A→ Set where

sound : All (Valid ≈W) H → H ` xs ≈ ys → xs ≈P ys
trans : xs ≈P ys → ys ≈P zs → xs ≈P zs

data ≈W : Stream A→ Stream A→ Set where
:: : (x : A) → ∞ ([xs ≈P

[ys) → x :: xs ≈W x :: ys

Note that the first argument of the program sound refers to WHNFs. The function transW, whose type is
xs ≈W ys→ ys ≈W zs→ xs ≈W zs, can be defined using simple case analysis. The function soundW
is defined as follows, using structural recursion:

soundW : All (Valid ≈W) H → H ` xs ≈ ys → xs ≈W ys
soundW valid (hyp h) = lookup valid h
soundW valid (trans xs≈ys ys≈zs) = transW (soundW valid xs≈ys) (soundW valid ys≈zs)
soundW valid (x :: xs≈ys) = proof

where proof = x ::] sound (proof :: valid) xs≈ys

In the first clause lookup : All P xs→ x ∈ xs→ P x is used to fetch a proof from the “list” of valid
assumptions. In the third clause a circular proof is constructed using guarded corecursion; note that the
list of valid assumptions is extended with the proof currently being defined. Given transW and soundW
it is easy to define whnf using structural recursion:

whnf : xs ≈P ys→ xs ≈W ys
whnf (sound valid xs≈ys) = soundW valid xs≈ys
whnf (trans xs≈ys ys≈zs) = transW (whnf xs≈ys) (whnf ys≈zs)

The remaining pieces of the soundness proof are omitted (see Danielsson (2010a)).

References

Andreas Abel. Mixed inductive/coinductive types and strong normalization. In APLAS 2007, volume
4807 of LNCS, pages 286–301, 2009. doi:10.1007/978-3-540-76637-7 19.

http://dx.doi.org/10.1007/978-3-540-76637-7_19

Nils Anders Danielsson 47

The Agda Team. The Agda Wiki. Available at http://wiki.portal.chalmers.se/agda/, 2010.

Thorsten Altenkirch and Nils Anders Danielsson. Termination checking in the presence of nested in-
ductive and coinductive types. Note supporting presentation given at the Workshop on Partiality and
Recursion in Interactive Theorem Provers, Edinburgh, UK, 2010.

Falk Bartels. Generalised coinduction. Math. Struct. in Comp. Science, 13(2):321–348, 2003. doi:10.
1017/S0960129502003900.

G. Barthe, M. J. Frade, E. Giménez, L. Pinto, and T. Uustalu. Type-based termination of recursive
definitions. Math. Struct. in Comp. Science, 14(1):97–141, 2004. doi:10.1017/S0960129503004122.

Yves Bertot. Filters on coinductive streams, an application to Eratosthenes’ sieve. In TLCA 2005, volume
3461 of LNCS, pages 102–115, 2005. doi:10.1007/11417170 9.

Yves Bertot and Ekaterina Komendantskaya. Using structural recursion for corecursion. In TYPES 2008,
volume 5497 of LNCS, pages 220–236, 2009. doi:10.1007/978-3-642-02444-3 14.

Michael Brandt and Fritz Henglein. Coinductive axiomatization of recursive type equality and subtyping.
Fundamenta Informaticae, 33(4):309–338, 1998.

Wilfried Buchholz. A term calculus for (co-)recursive definitions on streamlike data structures. Annals
of Pure and Applied Logic, 136(1–2):75–90, 2005. doi:10.1016/j.apal.2005.05.006.

Venanzio Capretta. General recursion via coinductive types. Logical Methods in Computer Science, 1
(2):1–28, 2005. doi:10.2168/LMCS-1(2:1)2005.

Thierry Coquand. Infinite objects in type theory. In TYPES’93, volume 806 of LNCS, pages 62–78,
1994. doi:10.1007/3-540-58085-9 72.

Nils Anders Danielsson. Code accompanying the paper. Available from the paper’s official download
page, 2010a.

Nils Anders Danielsson. Total parser combinators. In ICFP’10, pages 285–296, 2010b. doi:10.1145/
1863543.1863585.

Nils Anders Danielsson and Thorsten Altenkirch. Subtyping, declaratively: An exercise in mixed in-
duction and coinduction. In MPC 2010, volume 6120 of LNCS, pages 100–118, 2010. doi:10.1007/
978-3-642-13321-3 8.

Pietro Di Gianantonio and Marino Miculan. A unifying approach to recursive and co-recursive defini-
tions. In TYPES 2002, volume 2646 of LNCS, pages 148–161, 2003. doi:10.1007/3-540-39185-1 9.

Edsger W. Dijkstra. Hamming’s exercise in SASL. EWD792 (privately circulated note), 1981.

Jörg Endrullis, Clemens Grabmayer, and Dimitri Hendriks. Data-oblivious stream productivity. In LPAR
2008, volume 5330 of LNCS, pages 79–96, 2008. doi:10.1007/978-3-540-89439-1 6.

Jörg Endrullis, Clemens Grabmayer, Dimitri Hendriks, Ariya Isihara, and Jan Willem Klop. Productivity
of stream definitions. Theoretical Computer Science, 411(4–5):765–782, 2010. doi:10.1016/j.tcs.
2009.10.014.

Peter Hancock and Anton Setzer. Interactive programs in dependent type theory. In CSL 2000, volume
1862 of LNCS, pages 317–331, 2000. doi:10.1007/3-540-44622-2 21.

Peter Hancock, Dirk Pattinson, and Neil Ghani. Representations of stream processors using nested fixed
points. Logical Methods in Computer Science, 5(3:9), 2009. doi:10.2168/LMCS-5(3:9)2009.

http://wiki.portal.chalmers.se/agda/
http://dx.doi.org/10.1017/S0960129502003900
http://dx.doi.org/10.1017/S0960129502003900
http://dx.doi.org/10.1017/S0960129503004122
http://dx.doi.org/10.1007/11417170_9
http://dx.doi.org/10.1007/978-3-642-02444-3_14
http://dx.doi.org/10.1016/j.apal.2005.05.006
http://dx.doi.org/10.2168/LMCS-1(2:1)2005
http://dx.doi.org/10.1007/3-540-58085-9_72
http://dx.doi.org/10.1145/1863543.1863585
http://dx.doi.org/10.1145/1863543.1863585
http://dx.doi.org/10.1007/978-3-642-13321-3_8
http://dx.doi.org/10.1007/978-3-642-13321-3_8
http://dx.doi.org/10.1007/3-540-39185-1_9
http://dx.doi.org/10.1007/978-3-540-89439-1_6
http://dx.doi.org/10.1016/j.tcs.2009.10.014
http://dx.doi.org/10.1016/j.tcs.2009.10.014
http://dx.doi.org/10.1007/3-540-44622-2_21
http://dx.doi.org/10.2168/LMCS-5(3:9)2009

48 Beating the Productivity Checker Using Embedded Languages

Ralf Hinze. Functional pearl: Streams and unique fixed points. In ICFP’08, pages 189–200, 2008.
doi:10.1145/1411204.1411232.

John Hughes, Lars Pareto, and Amr Sabry. Proving the correctness of reactive systems using sized types.
In POPL ’96, pages 410–423, 1996. doi:10.1145/237721.240882.

Geraint Jones and Jeremy Gibbons. Linear-time breadth-first tree algorithms: An exercise in the arith-
metic of folds and zips. Technical Report 071, Department of Computer Science, The University of
Auckland, 1993.

John Matthews. Recursive function definition over coinductive types. In TPHOLs ’99, volume 1690 of
LNCS, pages 73–90, 1999. doi:10.1007/3-540-48256-3 6.

Conor McBride. Time flies like an applicative functor. Available at http://www.e-pig.org/

epilogue/?p=186, 2009.

Adam Megacz. A coinductive monad for Prop-bounded recursion. In PLPV’07, pages 11–20, 2007.
doi:10.1145/1292597.1292601.

Peter Morris, Thorsten Altenkirch, and Conor McBride. Exploring the regular tree types. In TYPES
2004, volume 3839 of LNCS, pages 252–267, 2006. doi:10.1007/11617990 16.

Peter Morris, Thorsten Altenkirch, and Neil Ghani. Constructing strictly positive families. In Theory
of Computing 2007, Proceedings of the Thirteenth Computing: The Australasian Theory Symposium
(CATS2007), pages 111–121, 2007.

Milad Niqui. Coalgebraic reasoning in Coq: Bisimulation and the λ -coiteration scheme. In TYPES 2008,
volume 5497 of LNCS, pages 272–288, 2009. doi:10.1007/978-3-642-02444-3 17.

Milad Niqui. Coiterative morphisms: Interactive equational reasoning for bisimulation, using coalgebras.
Technical Report SEN-1003, Centrum Wiskunde & Informatica, 2010.

Ulf Norell. Towards a practical programming language based on dependent type theory. PhD thesis,
Chalmers University of Technology and Göteborg University, 2007.

John C. Reynolds. Definitional interpreters for higher-order programming languages. In ACM ’72,
volume 2, pages 717–740, 1972. doi:10.1145/800194.805852.

J.J.M.M. Rutten. Behavioural differential equations: a coinductive calculus of streams, automata, and
power series. Theoretical Computer Science, 308(1–3):1–53, 2003. doi:10.1016/S0304-3975(02)
00895-2.

Ben A. Sijtsma. On the productivity of recursive list definitions. TOPLAS, 11(4):633–649, 1989. doi:10.
1145/69558.69563.

Alastair Telford and David Turner. Ensuring streams flow. In AMAST’97, volume 1349 of LNCS, pages
509–523, 1997. doi:10.1007/BFb0000493.

Philip Wadler, Walid Taha, and David MacQueen. How to add laziness to a strict language, without even
being odd. In Proceedings of the 1998 ACM SIGPLAN Workshop on ML, 1998.

http://dx.doi.org/10.1145/1411204.1411232
http://dx.doi.org/10.1145/237721.240882
http://dx.doi.org/10.1007/3-540-48256-3_6
http://www.e-pig.org/epilogue/?p=186
http://www.e-pig.org/epilogue/?p=186
http://dx.doi.org/10.1145/1292597.1292601
http://dx.doi.org/10.1007/11617990_16
http://dx.doi.org/10.1007/978-3-642-02444-3_17
http://dx.doi.org/10.1145/800194.805852
http://dx.doi.org/10.1016/S0304-3975(02)00895-2
http://dx.doi.org/10.1016/S0304-3975(02)00895-2
http://dx.doi.org/10.1145/69558.69563
http://dx.doi.org/10.1145/69558.69563
http://dx.doi.org/10.1007/BFb0000493

	1 Introduction
	2 Mixed Induction and Coinduction
	3 Making Programs Guarded
	4 Several Types at Once
	5 Making Proofs Guarded
	6 Destructors
	7 Other Chunk Sizes
	8 Nested Applications
	9 Related Work
	10 Conclusions
	A An Inductive Approximation of Stream Equality

