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Abstract The coordination modelling language Paradigm addresses collaboration between compo-
nents in terms of dynamic constraints. Within a Paradigm model, component dynamics are con-
sistently specified at a detailed and a global level of abstraction. To enable automated verification
of Paradigm models, a translation of Paradigm into process algebra has been defined in previous
work. In this paper we investigate, guided by a client-server example, reduction of Paradigm mod-
els based on a notion of global inertness. Representation ofParadigm models as process algebraic
specifications helps to establish a property-preserving equivalence relation between the original and
the reduced Paradigm model. Experiments indicate that in this way larger Paradigm models can be
analyzed.
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1 Introduction

Within the current software architecture practice, architectures are mostly used for describing static as-
pects of software systems. Techniques that allow system architects to describe coordination among
components within an architecture and to reason about the dynamics of the system in its entirety, are not
commonly used. The coordination description language Paradigm helps the designer to merge different
dynamic aspects of a system. At the same time the language allows for the description of both detailed
and global behaviour of an individual component i.e. its ownspecific behaviour and separately its inter-
action with other components, and the language is particularly helpful in enforcing consistency in the
behaviour of large sets of interrelated components.

The coordination modeling language Paradigm [9, 10] specifies roles and interactions within col-
laborations between components. Interactions are in termsof temporary constraints on the dynamics
of components. To underpin Paradigm models with formal verification and automated analysis, the
Paradigm language has been linked with themCRL2 toolset [11] via its translation to the process algebra
ACP [6, 3] and with the probabilistic modelchecker Prism [15, 4] via a direct encoding scheme. Process
algebras (PA for short), such as CCS, CSP, LOTOS and ACP, provide a powerful framework for formal
modeling and reasoning about concurrent systems, which turns out to be very suitable for our needs in the
setting of coordination. The key concepts of compositionality and synchronization in process algebra are
mostly exploited in our translation. As detailed and globalaspects of component behaviour are specified
by separate PA specifications, the vertical constraints areencoded through synchronizations expressing
consistency of detailed and global component behaviour. Horizontal constraints at the protocol level are
naturally captured by parallel composition, synchronization and encapsulation.
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2 Towards reduction of Paradigm coordination models

While the translation to ACP andmCRL2 allows for formal verification of Paradigm models [3, 2, 4],
the omnipresent problem of state space explosion when analyzing large models occurs here as well. In
the present paper, we address the question of reducing Paradigm models of coordination. The reduction
method applies to a component’s behaviour, reducing the representation of the vertical constraints of
that component by abstracting away any information on the component behaviour irrelevant for these
constraints. To this end, the benefit of the translation of Paradigm language into ACP is twofold. On
the one hand, we borrow the abstraction concept from PA and apply it directly in Paradigm on detailed
behaviour. On the other hand, the translation provides us with a formal proof methodology to reason and
guarantee that the reduced Paradigm model has the same properties as the original model. As a matter of
fact, it has gradually become evident that separating detailed from global behaviour as supported by the
Paradigm language, allows us to reason about reduction by abstraction in a rather natural way. We shall
clarify this point after the Paradigm overview, at the end ofSection 2.

Our work on dynamic consistency in a horizontal and verticaldimension has been influenced by the
work of Küster [7, 14]. Related work includes the Wright language [1] based on CSP provides FDR
support to check both types of consistency properties. Other bridges from software architecture to auto-
mated verification include the pipeline from UML via Rebeca and Promela to the SPIN model-checker
and from UML via Object-Z and CSP to the FDR model-checker [19, 16]. Process algebra driven proto-
typing as coordination from CCS is proposed in [18]. The skeletons generated from CCS-specifications
overlap with Paradigm collaborations. In the TITAN framework [17], CCS is playing a unifying role in
a heterogeneous environment for aspect-oriented softwareengineering. Recently the coordination lan-
guage Reo has been equipped with a process algebraic interpretation [5, 12]. The encoding of Reo into
mCRL2 and subsequent analysis has been integrated in the ECT toolset for Reo [13].

We present our idea by means of an example. The system we consider consists ofn clients who
try to get service from one server exclusively, a critical section problem, where the server is supposed
to choose the next client in a non-deterministic manner. While the translation of the Paradigm model
into PA for the example is done manually, the toolsetmCRL2 is exploited to generate the complete state
spaces, on which further analysis can be done. Initial results show a substantial reduction in the size
of the state space. In Section 2 Paradigm is summarized on thebasis of the above example. Section 3
briefly introduces our process algebra translation for the example model. In Section 4 we present our
reduction techniques. Section 5 concludes the paper.

2 Paradigm and a critical section model

This section briefly describes the central notions of Paradigm: STD, phase, (connecting) trap, role and
consistency rule.

• An STD Z(state-transition diagram) is a tripleZ = 〈ST,AC,TR〉 with ST the set of states,AC the
set of actions andTR⊆ ST×AC×ST the set of transitions ofZ, notationx

a
→ x′.

• A phase Sof an STDZ = 〈ST,AC,TR〉 is an STDS= 〈st,ac,tr〉 such thatst⊆ ST, ac⊆ AC and
tr⊆ { (x,a,x′) ∈ TR | x,x′ ∈ st,a∈ ac}.

• A trap t of phaseS= 〈st,ac,tr〉 of STD Z is a non-empty set of statest ⊆ st such thatx ∈ t
andx

a
→ x′ ∈ tr imply x′ ∈ t. A trap t of phaseS of STD Z connectsphaseS to a phaseS′ =

〈st′,ac′,tr′〉 of Z if t ⊆ st′. Such trap-based connectivity between two phases ofZ is called a

phase transferand is denoted asS
t
→S′.
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• A partition π = { (Si ,Ti) | i ∈ I } of an STDZ = 〈ST,AC,TR〉, I a non-empty index set, is a set of
pairs(Si ,Ti) consisting of a phaseSi = 〈sti ,aci,tri〉 of Z and of a setTi of traps ofSi .

• A role at the level of a partitionπ = { (Si ,Ti) | i ∈ I } of an STDZ = 〈ST,AC,TR〉 is an STD

Z(π) = 〈ŜT, ÂC, T̂R〉 with ŜT⊆ {Si | i ∈ I }, ÂC⊆
⋃

i∈I Ti andT̂R⊆ {Si
t
→Sj | i, j ∈ I , t ∈ ÂC} a set

of phase transfers.Z is called thedetailedSTD underlyingglobal STDZ(π), being roleZ(π).

• A consistency ruleorprotocol stepfor an ensemble of STDsZ,Z1, . . . ,Zk and rolesZ1(π1), . . . ,Zk(πk)
is a nonempty set of phase transfers preceded by one extra transition.

• Let Z : x
a
→ x′ ∗Z1(π1) : S′

1
t
→S′′

1, . . . ,Zk(πk) : S′
k

t
→S′′

k be a consistency rule for a given ensemble;
Zi, . . . ,Zk areparticipantsof it, Z is conductor.

• A Paradigmmodelis an ensemble of STDs, roles thereof and consistency rules.

The above notions constitute Paradigm models. The semantics thereof are roughly as follows: a consis-
tency rule has synchronization of its phase transfers and its conductor transition, only if all connecting
traps mentioned have been entered. Detailed transitions are allowed in the current state of an STD,
only if the current phase (state) of each role of the STD contains the transition. In this way, phases are
constraints on underlying STD dynamics imposed by protocols (sets of protocol steps). In a mirrored
way, traps impose constraints on the behaviour at the protocol level, as traps are involved in the firing of
consistency rules.

Waiting

Without
leave

AtDoor

Out
enter

Waiting

AtDoor

Interrupt
leave

Out

notYet

request

Waiting

BusyAtDoor

With explain

thank
done

Without

Interrrupt

With

Waiting

Busy

triv

(a) (b)

(c)

done

triv notYet

request

Out

AtDoor

leave
thank

explain
enter

Figure 1: (a) detailed STD ofClient, (b) partition of three phases, (c) global STDClient(CS).

An STD is a step-wise description of the dynamics belonging to a component. It is visualized as a
directed graph: its nodes are states, its action-labeled edges are transitions. Initial states are graphically
indicated by a black dot-and-arrow. Figure 1a gives the so-called detailed STD of aClient in and around
a shop: starting in stateOut the client cycles through statesWaiting, Busy, AtDoor andOut again,
subsequently. The entire system we consider, containsn such clients, dynamically the same, plus one
different component, the server. For the complete system the overall requirement is that only one client
at a time, out of alln clients, is allowed to be in its stateBusy. So, being in stateBusy is a Critical
Section problem (abbreviatedCS). To solve it, ongoingClienti dynamics is constrained by the phase
prescribed currently. Figure 1b visualizes phasesWithout, Interrupt andWith. PhaseWithout excludes
being in stateBusy by prohibiting to take the actionsexplain andthank. Contrarily, phaseWith allows



4 Towards reduction of Paradigm coordination models

both, going to and leaving stateBusy. Finally, the intermediate phaseInterrupt is an interrupted form of
Without, as actionenter cannot be taken, but being in stateWaiting is allowed, though.

In view of a transfer from the current phase into a next phase to occur, enough progress within the
current phase must have been made: a connecting trap has to beentered first. Figure 1b pictures relevant
connecting traps for the above three phases, drawn as rectangles around the states the trap consists of. In
particular, we need traptriv to be connecting fromWithout to Interrupt, trapnotYet to be connecting
from Interrupt back toWithout, traprequest to be connecting fromInterrupt forward toWith and finally,
trapdone to be connecting fromWith back toWithout. In this manner, Figure 1b gives all ingredients
needed for the dynamics of aClienti STD at the level of partitionCS: see roleClienti(CS) in Figure 1c
and repeated in Figure 2a.

Interrupt[request]

Interrupt[notYet]

Interrupt[triv]

Without[triv]

With[done]

With[triv]

triv−use
done−use

done−register

request−use

request−register

notYet−use

notYet−register

With

Without

Interrrupt

done

request

notYet

triv

(b)(a)

Figure 2: (a) global processClient(CS) and (b) its refinement in view of translation.

Figure 2b presents a slightly refined diagram of the proper role STD in part (a). State names here,
additionally keep track of the trap most recently entered within a phase, as if it could be taken as a smaller
phase committed to within the larger one imposed. Action names still refer to a trap that is entered, but
they additionally discriminate between, first,registeringthe trap has been entered and, second, thereafter
usingthis for a phase transfer. This more refined view represents the starting point for the ACP encoding
of the global process, as discussed in the next section.

So far, we have discussed ‘sequential composition’ of constraints: imposed phases alternated with
traps committed to. Semantically, any current phase constrains the enabled transitions to those belonging
to the phase. So, at any moment a current detailed state belongs to the current phase too. From this
it follows, that the dynamics of the detailed STD and of the global STD are consistent, the current
global phase reflects the current local state. Paradigm’s consistency rules are to the essence of ‘parallel
composition’: they express coupling of role steps of arbitrarily manyparticipantsand a detailed step of
oneconductor. Any consistency rule specifies the simultaneous executionof the steps mentioned in the
rule, a transition of the conductor and phase transfers for the participants.

To continue the example ofn clients getting service, one at a time, we present a non-deterministic
coordination solution for then clients via a server. The non-deterministic server checks the clients in
arbitrary order. If a client, when checked, wants help, it gets help by being permitted to enter the critical
section. If not, permission to enter is refused to it. Only after a client’s leaving the critical section, the
server stops helping it by returning to the idle position, from which it arbitrarily selects a next client for
checking. In the example, the server provides a unique conductor step for each consistency rule. The
STDServer of the server is drawn in Figure 3. As conductor, detailed steps ofServer need to be coupled
to phase transfers of eachClienti, 1≤ i ≤ n.
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Figure 3: STD non-deterministic serverServer.

Server : Idle
checki−−−−→ NDCheckingi ∗ Clienti(CS) : Without

triv
−−→ Interrupt (1)

Server : NDCheckingi
refuse
−−−−→ Idle ∗ Clienti(CS) : Interrupt

notYet
−−−−→Without (2)

Server : NDCheckingi
permit
−−−−→ NDHelpingi ∗ Clienti(CS) : Interrupt

request
−−−−→With (3)

Server : NDHelpingi
continue
−−−−−→ Idle ∗ Clienti(CS) : With

done
−−−→Without (4)

Note that for this protocol, each conductor step of the server corresponds to a phase change of exactly
one client. E.g., the server moves from the stateIdle to NDCheckingi iff the global client processClienti(CS)
changes from the phaseWithout to the phaseInterrupt. The server then makes achecki transition. In
general, there is a precondition, however. Within the phaseWithout sufficient progress should have been
made, such that the particular trap has been reached. In thiscase, it is the trivial traptriv rendering
the requirement superfluous, as the trivial trap, containing all states of the phaseWithout, is trivially
reached. For the actual checking, the next two consistency rules, dependent on the trapnotYet andrequest,
respectively, decide the target of the conductor transition and the next participant phase, viz. stateIdle

and phaseWithout or stateNDHelpingi and phaseWith, respectively. The last consistency rule couples the
conductor’s returning from stateNDHelpingi to Idle with trapdone of phaseWith having been entered.

The consistency rules specifyhorizontal dynamic consistency, i.e. across components, here between
server and clients. Such specification is about coordination, i.e. what Paradigm actually models, step-
wise computation of next behavioural constraints. The constraining property imposed by a phase implies,
an underlyingClienti transition is allowed only if it belongs to the phase that corresponds to the current
state of the role ofClienti in theCS collaboration, i.e. the current state of the global STDClienti(CS). The
constraining propertyClienti commits to by entering a trap, allows for a phase transfer, i.e. a transition
of Clienti(CS), once the (connecting) trap is entered. These two constraining properties syntactically
guaranteevertical dynamic consistency, i.e. within a component between its underlying STD and its role.

As mentioned in Section 1, is has become evident to us that separating detailed from global be-
haviour as supported by the Paradigm language, allows one toreason about reduction by abstraction in
a rather natural way. The intuitive explanation for this is as follows: Global behaviour, actually defin-
ing phases a system needs to go through during a particular coordination solution, is built on top of the
detailed behaviour: each global phase represents a sub-behaviour of the underlying detailed behaviour.
Nevertheless, not every action at the detailed level affects the current global phase. Only some actions
may enable a next phase transfer and hence may affect the protocol execution. Thus, it is natural to try
to detect the detailed actions that do not matter for, i.e. that cannot be observed at, the protocol level.
By hiding them, a reduced detailed behaviour is obtained, just containing all relevant information and
actions needed for proper execution of the component role within the protocol. As we shall show for
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our running example, this information can be extracted fromthe hierarchical structure per component in
the Paradigm model, see Subsection 4.1. Note that all interaction between components (horizontal) and
all hierarchical structure within components (vertical),as specified in the Paradigm model in an explicit
manner, are flattened in the PA translation and hence their character being either horizontal or vertical,
gets lost. Thus, after the PA translation only a single communication pattern remains, from which it is
no longer straightforward to extract information needed for proper reduction of detailed behaviour.

Yet another aspect of the Paradigm model that can be justifiedand confirmed by the approach taken
here is discussed shortly in the paper, see Subsection 4.2. From the definition of Paradigm, although
provided with a formal operational semantics, it is not straightforward to see to what extent a compo-
nent’s detailed behaviour is not affected by some constraints or coordination rule. In particular, consis-
tency rules for some complex model may have an unforeseen effect on detailed component behaviour,
in particular a deadlock at the detailed level. The translation from Paradigm to ACP combined with the
abstraction techniques discussed in the next section supports formal verification of separate protocols
and of overall coordination.

3 Paradigm model as a process algebraic specification

In this section we show by means of the example introduced in Section 2, how a Paradigm model can be
translated into ACP. The general translation has been defined in [3] to which we refer for more detail.
Roughly, each STD will be represented by a recursive specification. Vertical consistency in Paradigm has
to be expressed explicitly. In particular, to represent theinteraction of a detailed STD and the global STD,
we use actionsok!(.) andok?(.) that take the labels ofdetailed stepsas their argument. The complementary
actions synchronize if the step of the detailed STD is allowed by the current phase of the global STD
as constraint. Thus, synchronization of actionsok!(·) andok?(·) between global STD and detailed STD
reflect the current permission for the detailed step to be taken.

In addition, we use the complementary actionsat!(.) andat?(.) that takedetailed statesas their argu-
ments. The complementary actions synchronize if the step tobe taken by the global STD is allowed by
the current trap of the detailed STD as constraint. Upon synchronization ofat!(·) andat?(·) the global
process will update its trap information, if applicable. For the communication within the protocol, here
between the server and its clients, actionscrule!(.) on the side of a conductor are meant to complement
crule?(.) actions on the side of the employees. Synchronization leadsto execution of the corresponding
consistency rule: a detailed transition of the conductor, phase changes for the employees involved.

For the concrete example the above amounts to the following.We adorn then processesClienti with
the actionsat!, conveying state information, and actionsok?, regarding transition eligibility.

Ĉlienti = Outi

Outi = at!(Outi) ·Outi +ok?(enteri) ·Waitingi

Waitingi = at!(Waitingi) ·Waitingi +ok?(explaini) ·Busyi

Busyi = ok?(thanki) ·AtDoori

AtDoori = at!(AtDoori) ·AtDoori +ok?(leavei) ·Outi

The LTS of Ĉlienti of Clienti is given in Figure 4a (with the subscripti suppressed). The definition of
procesŝClienti assures, the process really starts in close correspondenceto starting stateOut from Fig-
ure 1a. The definition of processOuti expresses: (1) upon being asked, it can exchange state information
while keeping the process as-is; (2) it can ask for permission to take the analogue of transitionenter from
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Figure 1a, in view of continuing with processWaitingi thereafter. Note, in the definition of processBusyi

the possibility for exchange of state information is not specified, as asking for it does never occur. Note,
in Figure 1b, stateBusy does not belong to trapdone.

With[done]
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Waiting
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Inter[triv]

With[triv]

Inter[notYet]
at?(Out)

at?(AtDoor)
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at?(Waiting)

Without[triv]
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ok?(leave)

at!(Out)

at!(AtDoor)
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at!(Waiting)
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(a) (b)

crule?(notYet)

crule?(triv)

crule?(request)

crule?(done)

Figure 4: Processes (a)̂Client and (b)Ĉlient(CS).

In a similar manner, then processesClienti(CS) are augmented with the actionsat? and ok!. Now,
at the global level, the relevant information is the pair of the current phase and the current trap. For
example, the recursion variableWithouti [triv] represents thatClienti is constrained to phaseWithout and
hasn’t reached a specific trap, whereasInterrupti [notYet] reflects thatClienti committed to phaseInterrupt
resides in trapnotYet. As these global processes play a participant role in the protocol, thecrule? actions
for engaging in a consistency rule have been put in place as well.

Ĉlienti(CS) = Withouti [triv]

Withouti [triv] = ok!(leavei) ·Withouti [triv]+ok!(enteri) ·Withouti [triv]+

crule?(trivi) · Interrupti [triv]

Interrupti [triv] = at?(AtDoori) · Interrupti [notYet]+at?(Outi) · Interrupti [notYet]+

at?(Waitingi) · Interrupti [request]+ok!(leavei) · Interrupti [triv]

Interrupti [notYet] = ok!(leavei) · Interrupti [notYet]+crule?(notYeti) ·Withouti [triv]

Interrupti [request] = crule?(requesti) ·Withi [triv]

Withi [triv] = at?(AtDoori) ·Withi [done]+ok!(explaini) ·Withi [triv]+

ok!(thanki) ·Withi [triv]

Withi [done] = crule?(donei) ·Withouti [triv]

The corresponding LTS of the specification̂Clienti(CS) of Clienti(CS) is given in Figure 4b.
As above, procesŝClienti(CS) is defined in close correspondence toWithouti [triv] being starting state

in Figure 2b. Theok!(.)-actions provide the permission answers to requests from̂Clienti to take a de-
tailed step. Theat?(.)-actions ask for state information relevant for deciding a next, smaller trap has
been entered. Thecrule?(.)-actions correspond to a phase change, so they synchronize with a particular
conductor step.

The final component of the Paradigm model that needs to be translated into ACP is the non-determinis-
tic serverServer. In fact, the STD of the server as given in Figure 3 exactly corresponds to its recursive
specification; we only rename each transition labelℓ from Figure 3 intocrule!(ℓ) to stay consistent with
the general translation as defined in [3], for instancepermiti is renamed intocrule!(permiti) in the PA
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specification. There is neither anyok(.) action nor anyat(.) action added here. This component plays the
conductor role in the protocol and as such it is represented only by its detailed behaviour (detailed STD).
Therefore, no vertical constraints are imposed on its detailed behaviour.

Ŝerver = Idle

Idle = crule!(check1) ·NDChecking1 + · · ·+ crule!(checkn) ·NDCheckingn

NDCheckingi = crule!(permiti) ·NDHelpingi +crule!(refusei) · Idle

NDHelpingi = crule!(continuei) · Idle

For the communication function ‘|’ we put at!(s) | at?(s) = τ for ‘states’ s = Outi ,Waitingi ,AtDoori , and
ok?(a) | ok!(a) = ok(a), for actionsa = enteri ,explaini ,thanki , leavei . Note, ACP allows to keep the result of
the synchronization ofok?(a) andok!(a) observable, here as the actionok(a), for suitablea. We exploit this
feature below to express system properties, since the synchronization actionsok(a) describe detailed steps
taken by clients. E.g., observingok(enteri) indicates a service request made byClienti. On the contrary,
synchronization ofat!() andat?() is only used to update the information of the current detailed state. The
resulting actions are internal to the component and not needed in any further analysis. Therefore, we
safely useτ for the synchronization ofat?() andat!().

Finally, we need to encode the coordination captured by the consistency rules. For example, consis-
tency rule (1) couples a detailedchecki step of theServer, being the conductor of theCS protocol, to the
globaltriv step ofClienti, being a participant in theCS protocol. The net result is a state transfer, i.e. a tran-
sition Idle

checki−−−−→NDCheckingi for the server, and a phase transfer, i.e. a transitionWithout
triv
−−→ Interrupt in the

global STD for thei-th client. Similar correspondences apply to the other consistency rules. Therefore,
we put

crule!(checki) |crule?(trivi) = checki

crule!(permiti) |crule?(requesti) = permiti

crule!(refusei) |crule?(notYeti) = refusei

crule!(continuei) |crule?(donei) = continuei

As usual, unmatched synchronization actions will be blocked to enforce communication. We collect
those in the setA= {crule!,crule?,at?,at!,ok?,ok! }. Finally, the process for the collaboration of the server
and then clients is given by

∂A( Ĉlient1 ‖ Ĉlient1(CS)‖ . . .‖ Ĉlientn‖ Ĉlientn(CS)‖ Ŝerver ) (5)

The next section is concerned with the intertwining of detailed and the global behavior, and possible ways
to reduce the component specification by abstracting away from specific detailed activities. The process
algebraic specification of our running client-server example will be used below to establish relations be-
tween Paradigm models before and after reduction. Therefore, it comes in handy to represent the overall
behaviour of theClient component as the parallel composition of its detailed and global behaviour. To
this end, we denote the set of states of the detailed processĈlient by StatesD = {Out,Waiting,Busy,AtDoor},
the set of labels of its transitions by of detailedLabelsD = {enter,explain,thank, leave} and we put

AT= {at!(s), at?(s) | s∈ StatesD } OK= {ok!(a), ok?(a) | a∈ LabelsD }

and defineH = AT∪OK. Then the process combining detailed behaviour of̂Client and global behaviour of
Ĉlient(CS) can be expressed aŝClient(DG), with DG referring to ‘detailed’ and ‘global’, given by

Ĉlient(DG) = ∂H(Ĉlient ‖ Ĉlient(CS))
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Figure 5: ProcesŝClient(DG)

Figure 5 shows the behavior of̂Client(DG) graphically. The process describes the way the detailed and
global behaviors occur and constrain each other.

On the one hand, steps taken at the detailed level influence the current phase at the global level,
and therefore allows and forbids certain phase transitionsat the global level. The global process and its
transitions, are ‘navigated’ by the activities executed atthe detailed level. For instance, the effect of the
detailed transitionok(enter) is described with the appearance of twotriv transitions. One of them captures
the scenario in which the client has not yet required any service, which means thatenter has not been
taken yet at the detailed level, although the server (conductor) may offer service. It can be observed that
this transition is followed by the phase transitionnotYet which brings the process back to the initial state.
We can also observe that as soon as the detailed transitionenter is taken, the enabledtriv transition differs
from the previous one.

On the other hand, from̂Client(DG) we can observe how each phase, i.e. a global state, constrains the
steps that can be taken locally. Moreover, it is specified exactly how a trap that is reached blocks any
detailed transitions, just as expected. For instance, we see that the actionok(leave) on top of Figure 5
cannot be executed before the phase is changed, i.e. a step from With[done] to Without[triv] via the global
transitioncrule?(done). Note that such details, which are explicit and easily observable from the ACP
specification of the composition̂Client(DG), cannot be directly detected in the Paradigm model.

Once systems are modeled algebraically, their behaviours can be compared. Comparison is typically
done by means of equivalence relations, chosen appropriately to preserve certain properties. Since we
aim at the mCRL2 toolset for tool support, we choose for branching bisimulation [8] as the equivalence
relation we apply. Indeed, branching bisimulation is the strongest in the spectrum of behavioural equiva-
lence relations, but yet weak enough to identify sufficiently many systems. Below we adapt the definition
from [8] (originally defined on labelled transition systems) to STDs with uniquely indicated initial states.
In fact, labelled transition systems (LTS), as a (visual) representation of process algebraic specifications,
can be seen also as STDs. Therefore, in the sequel we do not make explicit distinction between LTSs
and STDs.

Definition 1. For two STDs Z= 〈ST,AC,TS〉, Z′ = 〈ST′,AC′,TS′〉 a symmetric relation R⊆ ST× ST
′ is called a branching

bisimulation relation if for all s∈ ST and t∈ ST
′ such that R(s, t), the following condition is met: if s

a
−→ s′ in Z, for some

a∈ AC∪{τ}, then either a= τ and R(s′, t), or for some n≥ 0, there exist t1, . . . , tn and t′ in ST
′ such that t

τ
−→ t1

τ
−→ . . .

τ
−→ tn

a
−→ t ′

in Z′, R(s, t1), . . . ,R(s, tn) and R(s′, t ′).
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For two STDsZ andZ′, two statess∈ Z andt ∈ Z′ are called branching bisimilar, notations ↔ b t, if there
exists a branching bisimulation relationR for Z andZ′ such thatR(s, t). The STDsZ andZ′ are branching
bisimilar, notationZ ↔ b Z′ if their initial states are branching bisimilar.

4 Reduction of the client processes

In Section 3 we explained how ACP specifications are obtainedfrom the detailed and global client
STDs, and how ACP’s communication function captures synchronization of detailed and global steps,
guaranteeing consistent dynamics at both levels. Based on the complete client component we are able
to make several observations regarding the Paradigm approach to separate the detailed from the global
behaviour.

4.1 First-reduce then-compose

The global STD of a component is an abstract representation of its detailed STD. It represents the part
of the behaviour of the component that is essential for the interaction within a given collaboration. In
general, for the global behaviour not all local transitionsare relevant, most are not influencing the overall
coordination at all. Although not always easy to isolate, inactual full-fledged systems only a restricted
part of the whole system provides a specific functionality. In such a situation, from a modeling perspec-
tive it is clarifying to abstract away the irrelevant part and to concentrate on a reduced detailed behaviour
containing the relevant interaction. As a consequence, dealing with models that are purposely made
concise becomes simpler, more feasible and less error-prone.

In the previous sections, we have made a Paradigm model out ofthe components: detailed client
STDs, their global STDs and the server STD. Moreover, we havepresented their translations into process
algebraic specifications. The overall behaviour of the client-server system is obtained by putting the
components involved in parallel and make them interact. In this section we show that we can achieve the
same total behaviour of the client-server system byfirst reducingthe client components andthen composing

the reduced versions afterwards with other components of the system. Reduction is directly applied on
the original Paradigm client model, by abstracting away irrelevant states and local transitions.

It is intuitively clear that the global behaviour alone is not branching bisimilar to the overall client
behaviourĈlient(DG). This is because some local steps change the further global behaviour. As a con-
sequence, such local transitions can be detected at the global level. Extending terminology going back
to [8], we call these transitionsglobally non-inert. Similarly, a local transition is referred to asglobally inert

if it cannot be observed, explicitly or implicitly, at the global level. More specifically, it can be detected
whether local actionenter has been taken or not by observing whether the global transition notYet or
global transitionrequest follows after global steptriv. Putting it differently, the transition labeledenter
makes the difference for phaseInterrupt of residing in trapnotYet or in traprequest, as can be seen in Fig-
ure 1. Thus, the local transitionenter is not globally inert. In a similar manner, the local actionthank is not
globally inert as it enables –and so it can be detected– the execution of the global actiondone. In terms
of the partition, in phaseWith the actionthank enters the trapdone. On the other hand, again referring
to the phases ofClient(CS) in Figure 1b, we see that the actionleave is in each phase either within a trap
(phasesWithout andInterrupt) or not possible at all (phaseWith is missing the target stateOut). Likewise,
the actionexplain is not possible (phasesWithout and Interrupt are missing stateBusy) or doesn’t change
the trap information (in phaseWith the transition doesn’t enter the trapdone).

Definition 2. Let a Paradigm model be given. A detailed transition x
a
→ x′ of a participant of a protocol is calledglobally inert

with respect to its partitionπ = { (Si ,Ti) | i ∈ I } if for all traps t in Ti it holds that x∈ t ⇐⇒ x′ ∈ t whenever both x,x′ ∈ Si ,
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i ∈ I. An action a is called globally inert for a participant of a protocol with respect to a partition, if all a-labeled transitions
are.

Using the notion of detailed transitions being globally inert or non-inert, we can reduce the detailed
STD of the client. After renaming all globally inert transitions intoτ, we can identify branching bisimilar
states. The resulting quotient STD for the client carries the behaviour that is necessary and sufficient for
the global STD to interact with the other components, including the conductor of the collaboration. The
composition of the process algebraic specifications of the quotient STD and the global̂Client(CS) behaves
exactly (up to branching bisimulation) as the behaviour of the composition of the original detailed and
global STDs together as represented bŷClient(DG). By congruence, composition of either of these systems
with the other clients and the server leads, modulo branching bisimulation equivalence, to the same
behaviour. This is summarized by the next result, whereτI , for a set of labelsI , represents the hiding of
the actions inI from P by renaming them intoτ, and∂J(P), for a set of labelsJ, is the encapsulation of the
actions ofJ from P by blocking and transition forP with label inJ.

Lemma 3. Let G⊆ LabelsD be a subset of globally inert actions. Then it holds for the induced quotientQClient ofClient that

(i) QClient ↔ b τG(Client), and

(ii) ∂H(Q̂Client‖ Ĉlient(CS)) ↔ b τOK(G)( Ĉlient(DG)), whereOK(G) = {ok(a) | a∈ G}.

QPQP

Waiting

Busy

Out

AtDoor
thank

enter
at!(Q)at!(P)

ok?(thank)

ok?(enter)

thank

enter

(b) (c)(a)

P Qτ τ

Figure 6: (a) processτG(Client) and related states, (b) quotient STDQClient and (c)Q̂Client.

Proof. We consider the case of the maximal set of local actions that are globally inert, i.e. forG= { explain, leave}. Split the
set of statesStatesD of the detailed STD intoP= {Out, AtDoor } andQ = {Waiting, Busy }. Let QClient be the induced
quotient STD, the STD obtained fromClient by identifying the statesOut andAtDoor as well as the statesWaiting andBusy.
The processesQClient andτG(Client) are shown in Figure 6ab. A branching bisimulation betweenQClient andτG(Client)
can be immediately established, which proves the first part of the lemma.

In order to prove the second part of the lemma, we first translateQClient into the process algebraic specification̂QClient

whose STD is shown in Figure 6c. In order to compute the composition of Q̂Client andĈlient(CS) the communication function

has to be adapted tôQClient. For theQ̂Client processOut andAtDoor are identified into theP. Similar forWaiting,Busy, now
represented byQ. Thus, a detailedQ̂Client communication intention conveying ‘at P’ or ‘ at Q’ updates the global process about
the current local state. Hence, we extend the communicationfunction withat!(P) | at?(Out) = τ, at!(P) | at?(AtDoor) =

τ, at!(Q) | at?(Waiting) = τ and at!(Q) | at?(Busy) = τ. Now we consider the process∂H(Q̂Client ‖ Ĉlient(CS)) with
H = AT∪OK as defined in Section 3, withAT extended accordingly. The composition is shown in Figure 7a, the process
τOK(G)( Ĉlient(DG)) is depicted in Figure 7b. It is straightforward to establisha branching bisimulation between these two
processes.

State names ofτOK(G)( Ĉlient(DG)) have been suppressed in Figure 7b for readability. Note thatthe number
of states inτG( Ĉlient(DG)) is 13, while thefirst-reduce then-composeapproach withQ̂Client and Ĉlient(CS)

generates a process with 9 states only. See table 1 below for more numerical results.
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(a)
ok(enter) ok(enter)
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(b)
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crule?(done)
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τ

τ

τ
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τ

τ

τ
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τ

τ

Figure 7: Branching bisimilar processes: (a)∂H(Q̂Client‖ Ĉlient(CS)) (b) processτOK(G)(Ĉlient(DG)).

P’

Q’

ok(explain)

ok(leave)

(a) (b)

crule?(notYet)crule?(triv)

crule?(done)

explainleave

crule?(request)τ

τ

τ

Figure 8: (a) adapted quotient processQClient, (b) composition of newQ̂Client andĈlient(CS).

It is obvious that not every choice of actions at the detailedlevel has the property of Lemma 3. For exam-
ple, selecting the set of actionsG′ = {enter, thank}, yields a split-up into{Out,Waiting} and{Busy, AtDoor}
and another reduction, depicted in Figure 8a. However, thisreduction is not a proper one as the induced
composition of the reduced detailed and the global behaviour in Figure 8 is not branching bisimilar with
the original compositionτOK(G′)(Ĉlient(DG)).

It is instructive to consider a slightly different client. Now we assume that the client may decide to
draw back the service request and return back to the initial stateOut. The detailed STD and the global
STD shown in Figure 9 differ from the model in Figure 1 only in the return transition. If we apply the
same reasoning of Lemma 3 to this model of a client, we observethat thereturn transition does not
change the situation regarding the reduction of the local behaviour. Again, theenter transition is not
globally inert, for the same reasons as in the previous model. Similarly, return is also not globally inert.
Still, the original quotient from Lemma 3 based on the inert actions explain and leave yields a proper
reduction. See Figure 10.

The last example we consider as a further variation, namedClient′′, is presented in Figure 11. The only
change is now in the global STDClient′′(CS). The client is provided service unconditionally, i.e. without
interruption, even without needing it. But, if it doesn’t need it the client is handled as if it does not
need serviceany longer. The simplified global behaviour, with less phases and less traps, imposes less
constraints on the detailed behaviour. Thus, the relation between the detailed and the global behaviour
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Figure 9: Modified client: (a) STD ofClient′, (b) phase and trap constraints.
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Figure 10: Branching bisimilar processes: (a)∂H(QClient
′ ‖ Ĉlient ′(CS)), (b) τOK(G)(Ĉlient

′(DG)).

is rather loose. In Figure 12 the behaviour of procesŝClient′′(CS) and the parallel composition̂Client′′(DG)
are graphically represented. In order to show this formally, we again apply thefirst-reduce then-compose

approach along the lines of Lemma 3 by taking the trivial split-up of StatesD along all detailed actions
in LabelsD. Thus, we identify all local actions inG′′ = LabelsD as globally inert. The resulting quotient
STD ofQClient′′ and its process algebraic translation are shown in Figure 13bc. The composition of the
reduced detailed behaviour ofClient′′ with its global behaviour has now 3 states as shown in Figure 13d.
A branching bisimulation between this process and the corresponding processτG′′( Ĉlient′′(DG)) can be
established easily.

In order to investigate the effect of the reduction on a larger scale, we have analyzed the client-server
system using themCRL2 toolset [11] and compared the implementation of the system using either the orig-
inal Ĉlient components or their reduced versionŝQClient. The translation of ACP-based specifications of
then clientsĈlienti , the global̂Clienti(CS) and the serverServer into the input language of themCRL2 toolset,
which we use for our model analysis, is largely straightforward (see also [3]). Indeed, the application of
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Figure 11: The Paradigm model ofClient′′.
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Figure 12: ProcesseŝClient′′(CS) andĈlient′′(DG).

thefirst-reduce then-composeprinciple yields a significant decrease in the size of the state space in a number
of cases. The results are collected in Table 1.

4.2 Extracting detailed behaviour

Intuitively it is clear that in the case of the client-serverexample the global behaviour does not change
or influence the local behaviour. In fact, if in the total client behaviourĈlient(DG) we hide the actions
crule?(·) from the setE performed by the global process (E for external), we obtain a process which is
branching bisimilar to the detailed behaviourClient. This is expressed by the following lemma.

Lemma 4. Client ↔ b τE( Ĉlient(DG)).

Proof. We start from the procesŝClient(DG) as shown in Figure 5. After hiding the actions inE, i.e. renaming them intoτ,

the processτE( Ĉlient(DG)) is obtained, shown in Figure 14. A branching bisimulation equivalence between this process and
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crule?(done)

crule?(triv)

(a)
(b)

(c)

Waiting

τ

τ

τ

τ

τ
τ τ

τ
at!(Sd)

Figure 13: (a)τG′′(Client′′), (b) Ĉlient′′, (c) Q̂Client′′, (d) composition ofQ̂Client′′ andĈlient′′(CS).
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n with Ĉlient with Q̂Client

states transitions states transitions

2 69 142 32 54
3 297 819 92 204
4 1161 3996 240 656
5 4293 17685 592 1920
6 15309 73386 1408 5280
10 – – 36863 212480

(no result forĈlient with n=10 within 24 hours)

Table 1: Effect of thefirst-reduce then-composeapproach.

Client process can be defined without difficulty. In Figure 15 related states are connected by differently dotted lines. Note, we
have mirrored theClient orientation with respect to the North-East South-West diagonal.
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Figure 14: ProcessτE(Ĉlient(DG)).

In the general situation, the statement of the lemma provides a check on the constraints imposed by the
global STD on the detailed one. In case the statement of the lemma holds, the complete behaviour of
the component is preserved in the consistent composition, assuming the coordinating protocol provides
all phase transfers in some order. In case the statement of the lemma does not hold, part of the original
detailed behaviour has been eliminated because of the participation with the protocol. This may be
deliberate and allows for further reduction of the detailedSTD. This may be accidental, requiring the
overall coordination to be revised.

5 Concluding remarks

In a Paradigm model several STDs may belong to the same component, describing the component’s
dynamics either at various levels of abstraction (detailedvs. global STDs) or describing different roles
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Figure 15: Branching bisimulation between (a)τE(Ĉlient(DG)) and (b)Client.

of the component in various collaborations. Collaborationbetween components is described in terms of
dynamic constraints. Vertical consistency is maintained by keeping phases vs. detailed transitions and
traps vs. transfers aligned. Starting point of our investigation here is the translation of Paradigm models
into the process algebra ACP and its coupling with themCRL2 toolset for subsequent automated analysis.
In the translated model, every STD from the Paradigm model isrepresented by a recursive specification;
the total behaviour of a single component is obtained as a composition of the recursive specifications of
the detailed and the global component’s STDs; the overall system is specified as a parallel composition
of all components.

In this paper we have described a method to reduce the Paradigm representation of the detailed STDs
of the components, yielding reduction of the overall Paradigm models, but preserving the overall be-
haviour. The reduction boils down to inferring globally inert detailed steps. By abstracting them away a
smaller representation of the detailed component is obtained. This representation contains all informa-
tion about the constraints the detailed behaviour imposes on the global behaviour(s) of the component.
The formal validation that the reduction, indeed, does not change the overall model behaviour is achieved
via the process algebraic representation of the model: we show for our client-server example that the re-
duced model is branching bisimilar to the original one, having the same properties. Furthermore, by
means of a proper abstraction, in this case applied at the global level, we can observe directly from the
model, by a direct comparison, in which way the global behaviour, and thus the collaboration, affects the
components’ detailed behaviour. In case no influence is to beexpected, it is sufficient to show that the
component model is equivalent, up to branching bisimulation, to the detailed behaviour after all global
steps are abstracted away.

As to the contribution of this paper, we have established a further connection of process algebra
and its supporting apparatus to the domain of coordination.In particular, abstraction and equivalences,
typical for process algebra, become techniques that can be applied to coordination models, via the estab-
lished link of the Paradigm language and ACP, in our case. Thus, coordination can be initially modeled
in the Paradigm language which offers compositional and hierarchical modeling flexibility. Then, model
reduction can be applied, if appropriate. Finally, via its process representation the model can be formally
analyzed.

As future work we want to address the reduction of general Paradigm models and property guided
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reduction, in particular in a situation with overlapping ororthogonal coordination. More specifically, it is
interesting to study the notion of globally inert detailed steps for a component that participates in multiple
collaborations. We plan to investigate whether other techniques from process algebraic analysis, e.g.
iterated abstraction, and pattern-based simplifications can be beneficial for the modeling with Paradigm.
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