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Deterministic one-way time-bounded multi-counter automata are studied with respect to their ability
to perform reversible computations, which means that the automata are also backward deterministic
and, thus, are able to uniquely step the computation back and forth. We study the computational
capacity of such devices and obtain separation results between irreversible and reversible k-counter
automata for superpolynomial time. For exponential time we obtain moreover an infinite and tight
hierarchy with respect to the number of counters. This hierarchy is shown with Kolmogorov com-
plexity and incompressibility arguments. In this way, on passing we can prove this hierarchy also
for ordinary counter automata. This improves the known hierarchy for ordinary counter automata
in the sense that here we consider a weaker acceptance condition. Then, it turns out that k+ 1 re-
versible counters are not better than k ordinary counters and vice versa. Finally, almost all usually
studied decidability questions turn out to be undecidable and not even semidecidable for reversible
multi-counter automata, if at least two counters are provided.

1 Introduction

In the last years, reversible computational models have earned a lot of attention. The reversibility of a
computation basically means that every configuration has at most one unique successor configuration
and at most one unique predecessor configuration. One incentive to study such computational devices
performing logically reversible computations is probably the question posed by Landauer of whether
logical irreversibility is an unavoidable feature of useful computers. Landauer has demonstrated the
physical and philosophical importance of this question by showing that whenever a physical computer
throws away information about its previous state it must generate a corresponding amount of entropy that
results in heat dissipation (see [2] for further details and references). First investigations on reversible
computations have been started in the sixties of the last century both for Turing machines as well as
for the massively parallel model of cellular automata. For both models it is known that irreversible
computations can be made reversible. For Turing machines it is shown in the work of Lecerf [16] and
Bennett [2] that for every Turing machine an equivalent reversible Turing machine can be constructed.
For cellular automata it is known from [20] that every, possibly irreversible, one-dimensional cellular
automaton can always be simulated by a reversible one-dimensional cellular automaton in a constructive
way.

At the other end of the Chomsky hierarchy there are the regular languages. Here, Angluin has
introduced reversible computations in deterministic finite automata (DFA) and showed that reversible
DFAs are weaker than DFAs in general [1]. Moreover, it is known that two-way DFAs and reversible
two-way DFAs are equally powerful [11]. Recent results on reversible regular languages concern the
descriptional complexity and the minimality of reversible (one-way) DFAs and are obtained in [9, 14,
15]. Furthermore, due to their nature (real-time) quantum finite automata can be said to be inherently
reversible [3, 11]. They do not capture the regular languages either. This is in contrast to modified recent

http://dx.doi.org/10.4204/EPTCS.367.9


M. Kutrib, A. Malcher 127

definitions that lead to quantum finite automata which recognize all and only the regular languages with
bounded error [8, 23, 24]. See [18] and the references therein for a recent survey on quantum automata.

For deterministic pushdown automata, the reversible variant has been introduced in [12], where its
is in particular shown that the reversible variant is weaker than the general one. A special case of de-
terministic pushdown automata are deterministic one-counter automata where the pushdown alphabet
consists of one symbol only, apart from the bottom symbol. Hence, the pushdown store can only be used
to count a number of symbols and no longer to store a sequence of different symbols. In general, multi-
counter automata are finite-state automata equipped with multiple counters which can be incremented,
decremented, and tested for zero. It is well known that general one-way deterministic two-counter au-
tomata are computationally universal, that is, they can simulate Turing machines [19]. However, the
latter simulation may need an unbounded amount of space. Hence, deterministic space-bounded, as
well as time-bounded, multi-counter automata have been considered in [5] where, in particular, the case
when the available time is restricted to real-time is studied. The authors establish in this case an infi-
nite and strict counter hierarchy as well as positive and negative closure results. The generalization to
multi-counter automata that may work nondeterministically as well as may use two-way motion on the
input tape has been done by Greibach [6]. Recent results on one-way deterministic multi-counter au-
tomata are given by Petersen in [22] where, in particular, some hierarchy results of Greibach concerning
counters and polynomial time could be improved and tightened at the price of a stronger acceptance
condition than defined in [6]. Finally, we already mentioned that one-counter automata can be seen as a
special case of pushdown automata. Hence, multi-counter automata may be considered a special case of
multi-pushdown automata introduced and studied in [4].

In this paper, we will consider reversible multi-counter automata. Such automata have been investi-
gated by Morita in [21] with respect to universal computations. In detail, the universality result of Minsky
could be improved, namely, it is shown by Morita that any Turing machine can already be simulated by a
reversible two-counter automaton. It should be noted that, naturally, the simulation of Minsky as well as
the reversible simulation of Morita may need an unbounded amount of space and time. In addition, the
input has to be provided suitably encoded by using prime numbers. In this paper, we will therefore con-
sider time-bounded (and hence space-bounded) reversible multi-counter automata that process a given
plain unencoded input. The paper is organized as follows. The definition of the model and illustrating
examples are given in Section 2. In Section 3 we study the computational capacity in detail and obtain
as first result that there is a regular language that can clearly be accepted by irreversible k-counter au-
tomata in real-time, for any k ≥ 0, but cannot be accepted by any reversible k-counter automaton within
time 2o(n), regardless of the number of counters. We then prove a tight counter hierarchy for reversible
counter automata working in exponential time. This hierarchy is shown with Kolmogorov complexity
and incompressibility arguments. In this way, on passing we can prove this hierarchy also for ordinary
counter automata. This improves the known hierarchy for ordinary counter automata [22] in the sense
that here we consider a weaker acceptance condition. Finally, we have incomparability results between
reversible and irreversible counter automata if the reversible automata have strictly more counters than
the irreversible once. Hence, we can draw a complete picture of the relations between the language fami-
lies discussed. In Section 4 we investigate decidability questions for reversible counter automata. It turns
out that all usually studied questions such as, for example, emptiness, finiteness, infiniteness, inclusion,
and equivalence are undecidable and not even semidecidable for reversible counter automata with at least
two counters.
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2 Preliminaries

We denote the non-negative integers {0,1,2, . . .} by N. Let Σ∗ denote the set of all words over the finite
alphabet Σ. We write λ for the empty word, and let Σ+ = Σ∗ \ {λ}. The set of words of length at most
n≥ 0 is denoted by Σ≤n. The reversal of a word w is denoted by wR. For the length of w, we write |w|.
The number of occurrences of a symbol a ∈ Σ in w ∈ Σ∗ is written |w|a. We use ⊆ for inclusions and ⊂
for strict inclusions.

Let k ≥ 0 be an integer. A one-way k-counter automaton is a finite automaton having a single read-
only input tape whose inscription is the input word in between two endmarkers (we provide two end-
markers in order to have a definition consistent with two-way devices). In addition, it is equipped with k
counters. At the outset of a computation the counter automaton is in the designated initial state, the
counters are set to zero, and the head of the input tape scans the left endmarker. Dependent on the cur-
rent state, the currently scanned input symbol, and the information whether the counters are zero or not,
the counter automaton changes its state, increases or decreases the counters, and moves the input head
one cell to the right or not. The automata have no extra output tape but the states are partitioned into
accepting and rejecting states.
Definition 1. A deterministic one-way counter automaton with k≥ 0 counters (abbreviated as DCA(k))
is a system M = 〈Q,Σ,k,B,C,δ ,q0,F〉, where

1. Q is the finite set of internal states,

2. Σ is the finite set of input symbols,

3. k ≥ 0 is the number of counters,

4. B /∈ Σ is the left and C /∈ Σ is the right endmarker,

5. q0 ∈ Q is the initial state,

6. F ⊆ Q is the set of accepting states, and

7. δ : Q× (Σ∪{B,C})×{+,⊥}k → Q×{0,1}×{−1,0,1}k is the partial transition function that
dependent on the current state, the current input symbol, and the current statuses of the counters
(+ indicates a positive value and⊥ a zero). The transition function determines the successor state,
the input head movement (0 means to keep the head on the current square, and 1 means to move
one square to the right), and the operations on the counters (−1 means to decrease, +1 to increase,
and 0 to keep the current value).

It is understood that the head of the input tape never moves beyond the endmarkers and that a counter
value zero is never decreased.

A configuration of a DCA(k) M = 〈Q,Σ,k,B,C,δ ,q0,F〉 is a (k + 3)-tuple (q,w,h,c1,c2, . . . ,ck),
where q ∈ Q is the current state, w ∈ Σ∗ is the input, h ∈ {0,1, . . . , |w|+ 1} is the current head position
on the input tape, and ci ≥ 0 is the current value of counter i , 1 ≤ i ≤ k. The initial configuration for
input w is set to (q0,w,0,0, . . . ,0). During the course of its computation, M runs through a sequence of
configurations. One step from a configuration to its successor configuration is denoted by `M.

A DCA(k) halts if the transition function is undefined for the current configuration (we do not require
that the head has to be placed on the right endmarker in order to have a definition consistent with two-way
devices). An input word w is accepted if the machine halts at some time in an accepting state, otherwise
it is rejected. The language accepted by M is L(M) = {w ∈ Σ∗ | w is accepted by M }.

Now we turn to reversible counter automata. Basically, reversibility is meant with respect to the
possibility of stepping the computation back and forth. So, the automata have also to be backward deter-
ministic. That is, any configuration must have at most one predecessor which, in addition, is computable
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by a counter automaton. In particular for the read-only input tape, the machines reread the input symbol
which they have been read in a preceding forward computation step. Therefore, for reverse computation
steps of one-way machines the head of the input tape is either moved to the left or stays stationary. One
can imagine that in a forward step, first the input symbol is read and then the input head is moved to its
new position, whereas in a backward step, first the input head is moved to its new position and then the
input symbol is read. So, a DCA(k) M is said to be reversible (REV-DCA(k)) if and only if there exists
a reverse transition function δ← : Q× (Σ∪{B,C})×{+,⊥}k → Q×{0,−1}×{−1,0,1}k inducing a
relation `←M from a configuration to its predecessor configuration, so that

(q′,w,h′,c′1,c
′
2, . . . ,c

′
k) `

←
M (q,w,h,c1,c2, . . . ,ck) if and only if

(q,w,h,c1,c2, . . . ,ck) `M (q′,w,h′,c′1,c
′
2, . . . ,c

′
k).

It is well known that general one-way two-counter automata are computational universal, that is, they
can simulate Turing machines [19]. So, in the sequel we also consider restricted variants. More precisely,
we consider time limits for accepting computations. Let t : N→ N be a function. A DCA(k) M is said
to be t-time-bounded or of time complexity t if and only if it halts on every input w ∈ L(M) after at most
t(|w|) time steps. A particular time bound is real time, that is, the smallest time at which the counter
automaton can read the input entirely (including the right endmarker). So, here real-time is defined to
be t(n) = n+2. A DCA(k) is said to be quasi real time if there is a constant that bounds the number of
consecutive stationary moves in all accepting computations.

The family of all languages which can be accepted by some device X with time complexity t is
denoted by Lt(X).

To clarify our notion we continue with examples.

Example 2. The deterministic context-free language {w ∈ {a,b}∗ | |w|a = |w|b } is accepted by the real-
time REV-DCA(1) M = 〈{q0,q1,qa,qb,q f },{a,b},1,B,C,δ ,q0,{q f }〉 where the transition functions δ

and δ← are as follows.

REV-DCA(1) forward
(1) δ (q0,B,⊥) = (q1,1,0)
(2) δ (q1,a,⊥) = (qa,1,0)
(3) δ (q1,b,⊥) = (qb,1,0)
(4) δ (q1,C,⊥) = (q f ,0,0)
(5) δ (qa,a,⊥) = (qa,1,+1)
(6) δ (qa,b,⊥) = (q1,1,0)
(7) δ (qa,a,+) = (qa,1,+1)
(8) δ (qa,b,+) = (qa,1,−1)
(9) δ (qb,a,⊥) = (q1,1,0)

(10) δ (qb,b,⊥) = (qb,1,+1)
(11) δ (qb,a,+) = (qb,1,−1)
(12) δ (qb,b,+) = (qb,1,+1)

REV-DCA(1) backward
(1) δ←(q1,B,⊥) = (q0,−1,0)
(2) δ←(q1,a,⊥) = (qb,−1,0)
(3) δ←(q1,b,⊥) = (qa,−1,0)
(4) δ←(q f ,C,⊥) = (q1,0,0)
(5) δ←(qa,a,⊥) = (q1,−1,0)
(6) δ←(qa,b,⊥) = (qa,−1,+1)
(7) δ←(qa,a,+) = (qa,−1,−1)
(8) δ←(qa,b,+) = (qa,−1,+1)
(9) δ←(qb,a,⊥) = (qb,−1,+1)

(10) δ←(qb,b,⊥) = (q1,−1,0)
(11) δ←(qb,a,+) = (qb,−1,+1)
(12) δ←(qb,b,+) = (qb,−1,−1)
(13) δ←(q1,C,⊥) = (q1,−1,0)

The basic idea of the construction is as follows. We use the counter for storing the difference between
the number of a’s and b’s in the input. However, to enable the deterministic backward computation,
the difference one is remembered in the states and the counter is only used to store larger differences.
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Hence, the state qa indicates that there are more a’s than b’s in the input read so far and qb denotes the
opposite. Now, the computation is started with transition (1) which moves from the left endmarker to
the first symbol and enters state q1 that indicates that the number of a’s and b’s currently read is equal.
Then, transitions (2) and (3) are used to count the difference one. Transitions (5), (7) and (10), (12)
increase the difference by one and transitions (8) and (11) decrease the difference by one. Finally, if
the difference is one, then transitions (6) and (9) can be used to decrease the difference to zero, to enter
state q1, and to enter an accepting state when reading the right endmarker with transition (4). For the
backward computation we just have to do the opposite by switching the roles of a and b. For example,
transitions (5) and (7) of δ increase the difference by one when an a is read and there have been more a’s
than b’s read so far. This difference is later decreased by one with transitions (6) and (8) when a b is
read. Thus, for δ← we have to increase the difference when reading a b (transitions (6) and (8)) and to
decrease the difference when reading an a (transitions (5) and (7)). The transitions (2)–(3) and (9)–(12)
can analogously be translated. To translate the transitions (1) and (4) concerning the endmarkers is
straightforward. It follows immediately from the transition function that M moves its head in any but the
last computation step. So, it takes at most n+2 steps, that is, it works in real time. �

Example 3. The non-context-free language {w ∈ {a,b,c}∗ | |w|a = |w|b = |w|c } can be accepted by a
real-time REV-DCA(2). The basic idea is to implement the construction described in Example2 twice,
namely, one counter is used to check whether the number of a’s is equal to the number of b’s and the
other counter is used to check whether the number of a’s is equal to the number of c’s. More precisely,
the construction can be realized using the Cartesian product of the construction from Example2, and one
component of the state set and one counter suffices to check the difference between a’s and b’s (c’s are
ignored) and a’s and c’s (b’s are ignored), respectively. The input is accepted if in both components the
state q1 is reached when reading the right endmarker. In this case, the numbers of a’s and b’s are equal
as well as the numbers of a’s and c’s. Hence, the numbers of b’s and c’s are equal as well. Since the
computation in each component is reversible, the overall computation is also reversible.

This idea can straightforwardly be generalized to show that the language

{w ∈ {a1,a2, . . . ,ak}∗ | |w|a1 = |w|a2 = · · ·= |w|ak }

for k≥ 2 and an alphabet {a1,a2, . . . ,ak} of k symbols can be accepted by a real-time REV-DCA(k−1).
�

3 Computational Capacity of Reversible Counter Automata

Here, we consider the computational capacities of reversible counter automata and compare it with the
general variants. First, we are interested in the role played by stationary moves in quasi real-time compu-
tations. In order to settle this role, we first deal with a more general issue. For, not necessarily reversible,
counter automata the restriction to be able to add or subtract only 1 per step to or from the counters is
not a limitation of the computational capacity. Clearly, any counter automaton that may add or subtract
an arbitrary number to or from the counters in a single step can be simulated by a sequence of stationary
moves that increment or decrement the counters by only 1 per step. However, the simulation can be
done without loss of time. It has been mentioned in [5] without details. Here, we will show that the
construction can be done such that reversibility is preserved.
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Lemma 4. Let k,c ≥ 0 be integers. For every REV-DCA(k) that obeys some time complexity t(n) and
that has the ability to alter the value of each counter independently by any integer between −c and c in
a single step, an equivalent ordinary REV-DCA(k) obeying the time complexity t(n) can effectively be
constructed.

Proof. Let M = 〈Q,Σ,k,B,C,δ ,q0,F〉 be a REV-DCA(k) that has the ability to alter the value of each
counter independently by any integer between−c and c in a single step. The basic idea of the construction
of an equivalent ordinary REV-DCA(k) M′ = 〈Q′,Σ,k,B,C,δ ′,q′0,F ′〉 is as follows. A counter value x
of M is represented by the counter value b x

cc and a state component that stores x mod c. To this end,
we set Q′ = Q×{0,1, . . . ,c−1}k, q′0 = (q0,(0,0, . . . ,0)), and F ′ = F×{0,1, . . . ,c−1}k. The transition
function δ ′ has to be constructed, in particular, such that it is reversible.

For q ∈ Q, m1,m2, . . . ,mk ∈ {0,1, . . . ,c−1}, a ∈ (Σ∪{B,C}), d1,d2, . . . ,dk ∈ {+,⊥}, we define

δ
′((q,(m1,m2, . . . ,mk)),a,d1,d2, . . . ,dk) = ((q′,(m′1,m

′
2, . . . ,m

′
k)),s,b1,b2, . . . ,bk) (1)

if and only if
δ (q,a, d̂1, d̂2, . . . , d̂k) = (q′,s, b̂1, b̂2, . . . , b̂k) (2)

where d̂i =⊥ if mi = 0 and di =⊥, and d̂i =+ otherwise, and

(m′i,bi) =


(mi + b̂i,0) if 0≤ mi + b̂i ≤ c−1
(mi + b̂i + c,−1) if mi + b̂i < 0
(mi + b̂i− c,1) if mi + b̂i > c−1

,

for 1≤ i≤ k. Note that −1≤ bi ≤ 1 and −c≤ b̂i ≤ c.
Immediately, from the construction it follows that (q0,w,0,0, . . . ,0) `∗M (q,w,h,c1,c2, . . . ,ck) if and only
if ((q0,(0,0, . . . ,0)),w,0,0, . . . ,0) `∗M′ ((q,(c1 mod c, . . . ,ck mod c)),w,h,b c1

c c, . . . ,b
ck
c c). So, we con-

clude that L(M) = L(M′) and that M and M′ share the same time complexity. It remains to be shown
that M′ is reversible.

Since M is reversible, the transition from Equation (2) can be reversed, say by

δ
←(q′,a, d̃1, d̃2, . . . , d̃k) = (q,s,−b̂1,−b̂2, . . . ,−b̂k).

Then, we construct

δ
′←((q′,(m′1,m

′
2, . . . ,m

′
k)),a,d

′
1,d
′
2, . . . ,d

′
k) = ((q,(m′′1,m

′′
2, . . . ,m

′′
k )),s,b

′
1,b
′
2, . . . ,b

′
k) (3)

where d̃i =⊥ if m′i = 0 and d′i =⊥, and d̃i =+ otherwise, and

(m′′i ,b
′
i) =


(m′i− b̂i,0) if 0≤ m′i− b̂i ≤ c−1
(m′i− b̂i + c,−1) if m′i− b̂i < 0
(m′i− b̂i− c,1) if m′i− b̂i > c−1

,

for 1≤ i≤ k.
In order to show that Equation (3) reverses Equation (1) we distinguish the three cases of the con-

struction of (m′i,bi).

Case (m′i,bi) = (mi + b̂i,0) : Here we know bi = 0 and 0≤mi+ b̂i≤ c−1. Since m′i− b̂i =mi+ b̂i− b̂i =
mi ∈ {0,1, . . . ,c− 1} we derive that (m′′i ,b

′
i) has been set to (m′i− b̂i,0). Therefore, we conclude

m′′i = m′i− b̂i = mi and b′i = 0. So, Equation (3) reverses Equation (1) in this case.
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Case (m′i,bi) = (mi + b̂i + c,−1) : The condition for this case is mi+ b̂i < 0 and we know bi =−1. Since
m′i− b̂i = mi + b̂i + c− b̂i = mi + c > c−1 we derive that (m′′i ,b

′
i) has been set to (m′i− b̂i− c,1).

Therefore, we conclude m′′i = m′i− b̂i− c = mi and b′i = 1. So, Equation (3) reverses Equation (1)
also in this case.

Case (m′i,bi) = (mi + b̂i− c,1) : Here we have bi = 1 and mi + b̂i > c−1. Since m′i− b̂i = mi + b̂i− c−
b̂i = mi− c < 0 we derive that (m′′i ,b

′
i) has been set to (m′i− b̂i + c,−1). Therefore, we conclude

m′′i = m′i− b̂i + c = mi and b′i =−1. So, Equation (3) reverses Equation (1) in this case, as well.

From the three cases we derive that M′ is reversible.

The next step is to use Lemma 4 to show that quasi real-time computations can be sped-up to real
time.

Theorem 5. Let k ≥ 0 be an integer. For every quasi real-time REV-DCA(k) an equivalent real-time
REV-DCA(k) can effectively be constructed.

Proof. Let M be a quasi real-time REV-DCA(k) that never performs more than ` ≥ 0 stationary moves
consecutively. Clearly, if `= 0 then M does not perform a stationary move at all and, thus, works in real
time. So, we consider `≥ 1 in the rest of the proof.

The first step is the construction of an equivalent REV-DCA(k) M′ = 〈Q′,Σ,k,B,C,δ ′,q′0,F ′〉 as in
the proof of Lemma 4, that may alter the value of each counter independently by any integer between
−(`+ 1) and `+ 1 in a single step. We let M′ simulate M step by step and derive that M′ will not use
its extended abilities, since it will change its counter values by at most one in each move. Moreover, M′

works still in quasi real-time.
The next step is to speed-up M′ to real-time. To this end, we modify M′ to an equivalent real-time

REV-DCA(k) M′′ = 〈Q′,Σ,k,B,C,δ ′′,q′0,F ′〉. Note that due to its construction, M′ knows in each step
whether the represented value of its counter ci is at least `+1. If it is strictly less than `+1 then M′ knows
its exact value, 1 ≤ i ≤ k. The purpose of the extended abilities of M′ is to simulate at once a possibly
empty sequence of stationary moves and a possibly subsequent non-stationary step by M′′. So, M′′ will
be able to detect whether its counters can get empty within the next `+1 steps.

By the construction in the proof of Lemma 4, a counter value of M′′ is represented by the sum of
the counter value itself times `+ 1 and a state component that stores a number from {0,1, . . . , `}. So,
we have Q′ = Q×{0,1, . . . , `}k, q′0 = (q0,(0,0, . . . ,0)), and F ′ = F×{0,1, . . . , `}k. Next, the transition
function δ ′′ has to be constructed, in particular, such that the reversibility of M′ is preserved.

Given q ∈ Q′, a ∈ (Σ∪{B,C}), and d1,d2, . . . ,dk ∈ {+,⊥}, the transition δ ′′(q,a,d1,d2, . . . ,dk) is
defined by the computation γ1 `M′ γ2 `M′ · · · `M′ γn of M′ starting on

γ1 = (q,x,h,c1,c2, . . . ,ck)

where (x,h) = (λ ,0) if a = B, and (x,h) = (a,1) otherwise, as well as ci = 1 if di = +, and ci = 0
if di = ⊥, 1 ≤ i ≤ k. The computation starts with a possibly empty sequence of stationary moves on
input symbol x, followed by a non-stationary move on x. Since M′ works in quasi real-time this takes at
most `+1 steps.

First, we construct δ ′′ for the cases where the computation does not halt before step `+ 1. Let γn

be the configuration reached after the non-stationary move. Now, assume the state of γn is q′, and M′

has altered the represented value of counter ci by some −(`+ 1) ≤ ji ≤ `+ 1 (recall that M′ changes
its represented counter values by at most one in each move). Then the transition δ ′′(q,a,d1,d2, . . . ,dk)
of M′′ to be defined yields (q′,1, j1, j2, . . . , jk).
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Second, assume that the computation halts in configuration γn before step `+ 1, that is, before per-
forming the non-stationary move. Then the transition δ ′′(q,a,d1,d2, . . . ,dk) of M′′ to be defined yields
(q′,0, j1, j2, . . . , jk).

So, from the construction we obtain that, given an input w, the computation of M′ is unambiguously
split into sequences of steps each of which is performed by M′′ at once. If M′ accepts, so does M′′ also in
cases where the input is accepted after some stationary moves at the end of the computation. Conversely,
every step of M′′ corresponds to a sequence of steps of M′. So, we have L(M′) = L(M′′). Moreover, M′′

works in real-time.
Finally, the reversibility of M′′ follows by the reversibility of M′. Since M′ is reversible, the compu-

tation cn `
←
M′ cn−1 `

←
M′ · · · `

←
M′ c1 is unique. There remains only one point. In the backwards computation,

first the non-stationary move is simulated followed by some stationary moves. While this causes no
trouble in general, we have to argue that the computation does not go before the initial configuration
with stationary moves. However, since a loop with stationary moves on the left endmarker that runs from
the initial configuration to the initial configuration would imply that the accepted language is empty, we
safely may assume that it does not exist. So, any stationary transition on the left endmarker that leads to
the initial configuration can safely be removed from M′′. Note, that these transitions can be identified by
the construction of M′′. We conclude that M′′ is reversible.

So, the family of languages accepted by quasi real-time REV-DCA(k) equals the family of languages
accepted by real-time REV-DCA(k).

Next, we turn to the question of whether the property of being reversible causes weaker computing
capabilities for counter automata at all. It is known that reversible two-counter automata that do not
have an input tape but receive their inputs suitably encoded into their counters can simulate Turing ma-
chines [21]. So, we have to consider counter automata working within time bounds. Though reversible
counter automata are able to accept even non-context-free languages in real time (Example 3), their re-
versibility has a drastic impact on their computational capacities for certain languages. We will show
that there is a regular language not accepted by any reversible counter automaton (with an arbitrary num-
ber of counters) with the super-polynomial time complexity 2o(n). To this end, we will use Kolmogorov
complexity and incompressibility arguments. General information on this technique can be found, for
example, in the textbook [17, Ch. 7]. Let w ∈ {0,1}∗ be an arbitrary binary string. The Kolmogorov
complexity C(w) of w is defined to be the minimal size of a binary program (Turing machine) describ-
ing w. The following key component for using the incompressibility method is well known: there are
binary strings w of any length such that |w| ≤C(w).

Theorem 6. Let k ≥ 0 be an integer. There exists a regular language that is not accepted by any 2o(n)-
time REV-DCA(k).

Proof. We consider the regular language L = ((aa+ a)(bb+ b))∗(aa+ a+ λ ) as witness. Assume in
contrast to the assertion that L is accepted by some REV-DCA(k) M = 〈Q,Σ,k,B,C,δ ,q0,F〉 in some
time t(n) = 2o(n).

We choose a word w ∈ {0,1}+ long enough such that C(w) ≥ |w|. Now, w is encoded as follows.
From left to right the digits are represented alternating by a’s and b’s such that a 0 is represented by a
single letter and a 1 by a double letter. For example, the word 010110 is encoded as abbabbaab. Let ϕ(w)
denote the code of w. We have ϕ(w) ∈ L. Next, we consider the accepting computation on ϕ(w) and
show that w can be compressed.

Since M accepts in time 2o(n), the maximum number stored in some counter of M in the accepting
computation on ϕ(w) is bounded from above by 2o(n). Therefore, omitting the second component, each
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configuration (q,ϕ(w),h,c1,c2, . . . ,ck) of M can be encoded with

dlog(|Q|)e+ dlog(|ϕ(w)|+2)e+ k ·o(|ϕ(w)|) = o(|ϕ(w)|) = o(|w|)

bits.
Knowing M, the length of ϕ(w), and the accepting configuration on ϕ(w) without the second compo-

nent, w can be reconstructed as follows. For each candidate string x of length |ϕ(w)|, the REV-DCA(k) M
is simulated.

We claim that if the simulation accepts in the accepting configuration of ϕ(w) then we have x = ϕ(w)
and, thus, decoding ϕ(w) yields w.

In order to show the claim, assume that x 6= ϕ(w). Then the computation is run backwards as long as
the suffixes of ϕ(w) and x are identical, thus, reaching some configurations (q,uzv, |u|+2,c1,c2, . . . ,ck)
and (q,u′z′v, |u|+ 2,c1,c2, . . . ,ck) with uzv = ϕ(w) and u′z′v = x, z,z′ ∈ {a,b}, |u| = |u′|, and z 6= z′.
We may safely assume that z = a and z′ = b. Since uzbb = uabb belongs to L the computation
continuing in (q,uzbb, |u|+2,c1,c2, . . . ,ck) ends accepting. But then the computation continuing in
(q,u′z′bb, |u|+2,c1,c2, . . . ,ck) is accepting as well. However the input u′z′bb = u′bbb has to be rejected
since it ends with three b’s. This contradiction shows the claim.

We conclude that the Kolmogorov complexity of w is C(w) = o(|w|)+ dlog(|ϕ(w)|)e+ ` = o(|w|),
for a positive constant ` which gives the size of M and the program that reconstructs w. So, we have
C(w) < |w|, for w long enough. This is a contradiction since w has been chosen such that C(w) ≥ |w|.
The contradiction shows that L is not accepted by M.

Since even DCA(0), which are essentially DFAs, can accept all regular languages, we have sepa-
rated the computational capacity of DCA(k) and REV-DCA(k) for all k ≥ 1 if they obey the same time
complexity.

Theorem 7. Let k ≥ 0 be an integer. The family of languages accepted by REV-DCA(k) in at most
2o(n)-time is strictly included in the family of languages accepted by DCA(k) in at most 2o(n) time.

Next, we turn to the impact of the number of counters to the computational capacities of reversible
counter automata. Infinite and strict counter hierarchies for general counter automata working in real-
time are known for a long time [5, 13]. Generalizations to polynomial and exponential time complexities
have been obtained in [22]. However, the hierarchy results [22] rely on a stronger acceptance condition.
This stronger condition requires that the computations on all inputs have to respect the time complexity.
In particular, this stronger condition weakens the non-acceptance results. On passing, here we obtain the
known hierarchies also for ordinary counter automata even for the weaker acceptance condition as used
overall in this paper. In our definition only accepting computations have to obey the time complexity. To
obtain the results, we use once more Kolmogorov arguments.

Our next counter hierarchy concerns reversible and general counter automata working in some ex-
ponential time. In order to define languages that serve as witnesses, let ϕ : {a,b, ā, b̄}∗→{0,1}∗ be the
homomorphism defined through ϕ(a) = ϕ(ā) = 0 and ϕ(b) = ϕ(b̄) = 1. Next, we consider all words w
over the alphabet {a,b, ā, b̄} as binary numbers ϕ(w). The integer represented by ϕ(w) is denoted by
η(ϕ(w)). Let k ≥ 2 and j ≥ 1 be integers and ϕ(w) = z1z2 · · ·z j·k ∈ {0,1} j·k. Then, for all 1≤ i≤ k, we
consider the scattered factors v(k)i (ϕ(w)) = zizk+iz2k+i · · ·z( j−1)k+i of ϕ(w). Now, for all k≥ 2, we define
the language

Lk = {uz1$iz2v | j ≥ 1,u ∈ {a,b} j·k−1,z1,z2 ∈ {ā, b̄},1≤ i≤ k,

v ∈ {a,b}∗,η(v(k)i (ϕ(uz1))) = η(ϕ(z2v)R)≥ 1}.
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Proposition 8. Let k ≥ 2 be an integer. The language Lk is accepted by a REV-DCA(k+ 1) with time
complexity O(2

n
k ).

In order to prove that k counters are not enough to accept Lk in time O(2
n
k ), we use again Kol-

mogorov complexity and incompressibility arguments. In particular, k counters are not enough even for
not necessarily reversible counter automata.

Proposition 9. Let k ≥ 2 be an integer. The language Lk is not accepted by any DCA(k) with time
complexity O(2

n
k ).

Proof. Assume contrarily that Lk is accepted by some DCA(k) M = 〈Q,Σ,k,B,C,δ ,q0,F〉 with time
complexity O(2

n
k ).

We choose some integer j ≥ 1 large enough and a word u′ ∈ {a,b} j·k such that C(u′) ≥ |u′|. Next,
we consider the computation of M on the prefix uz1, where uz1 is essentially u′ but with the last symbol
barred. In particular, we consider the configuration reached exactly after M has moved its input head
from z1 to the right.

Set `= n
k . Since M accepts in time O(2

n
k ) the maximum number stored in some counter of M in the

configuration is at most c ·2`, for some constant c≥ 0. Moreover, in [22] it is shown that in an accepting
computation if a counter machine has |Q| states then immediately after reading a prefix u′ of its input the
value of at least one counter is bounded from above by (|Q|+1) · |u′|. Since this could be each of the k
counters, the configuration in question without its second and third component can be encoded with

dlog(|Q| · (c ·2`)k−1 · k · (|Q|+1) · |u′|)e ≤ c′+ `(k−1)+ log(|u′|)

= c′+
n
k
(k−1)+ log(|u′|)

bits, for some constant c′ ≥ 0. Since n≤ j · k+ j+ k, we have n−k
k+1 k ≤ j · k = |u′| and conclude

c′+
n
k
(k−1)+ log(|u′|) ≤ c′′+

(
|u′|(k+1)

k
+ k
)

k−1
k

+ log(|u′|)

= c′′+
|u′|(k+1)(k−1)

k2 +
(k−1)k

k
+ log(|u′|)

= c′′+ |u′|− |u
′|

k2 + k−1+ log(|u′|)

< |u′|

Knowing M, the length of u′, and the configuration in question without its second and third com-
ponent, u′ can be reconstructed as follows. In order to reconstruct u′ it is sufficient to reconstruct the k

scattered factors v(k)i (ϕ(u′)). For each of these factors, we test all non-empty candidates from {a,b}≤
|u′ |
k .

A candidate v is tested by replacing its first symbol by the barred version, preceding it by $i, and feed-
ing it to M. Now it is sufficient to simulate M on this input starting in the encoded configuration. The
simulation can be made halting due to the upper bound of the time complexity. So, if M accepts then vR

preceded with leading a’s to obtain the length |u
′|

k gives the scattered factor v(k)i (ϕ(u′)). Moreover, there
is an accepted candidate for each i. Therefore, the reconstruction terminates.

We conclude that the Kolmogorov complexity of u′ is bounded from above by a positive constant
which gives the size of M and the program that reconstructs u′ plus log(|u′|) plus the size of the encoding
of the configuration. In total this is strictly less than |u′|. However, this is a contradiction since u′ has
been chosen such that C(u′) ≥ |u′|. The contradiction shows that Lk is not accepted by M with time
complexity O(2

n
k ).
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So, we have a strict counter hierarchy for reversible as well as irreversible counter automata obeying
the exponential time complexity O(2

n
k ). However, to compare reversible counter automata with some

k+ 1 counters to irreversible counter automata with k counters, we cannot utilize the regular language
provided by Theorem 6. This language is not accepted by any 2o(n)-time REV-DCA(k). So, counter
hierarchies for polynomial time complexities can be considered. Such hierarchies are known to exist for
irreversible counter automata that have to respect the time complexity on all inputs, that is, also on inputs
not accepted [22]. Here we just mention that this result can be improved by Kolmogorov arguments,
such that only accepting computations have to respect the time complexity. The witness languages are
modifications of the languages Lk used to show Proposition 8 and Proposition 9. The relations between
language families are depicted in Figure 1.

...
...

L (REV-DCA(k)) L (DCA(k))

...
...

L (REV-DCA(2)) L (DCA(2))

L (REV-DCA(1)) L (DCA(1))

REG

Figure 1: Relationships between language families induced by counter automata. An arrow between
families indicates a strict inclusion. Whenever two families are not connected by a path they are incom-
parable.

4 Decidability Problems

In this section, we study decidability problems for real-time REV-DCA(k) with k ≥ 2 and it turns out
at all usually studied questions such as emptiness, finiteness, inclusion, equivalence, or regularity are
not semidecidable. We recall (see, for example, [10]) that a decidability problem is semidecidable (de-
cidable) if and only if the set of all instances for which the answer is ‘yes’ is recursively enumerable
(recursive). Clearly, any decidable problem is also semidecidable, while the converse does not generally
hold. The non-semidecidability results are shown by reduction of the emptiness problem of Turing ma-
chines. It is well known that emptiness for such machines is not semidecidable (see, for example, [10]).

The technique to obtain this reduction is based on the notion of valid computations of multiplying
counter machines where we are following an idea and the notation given in [7]. Valid computations of a
multiplying counter machine are, basically, histories of multiplying counter machine computations which
are encoded into single words. It will be shown that the set of such suitably formatted valid computations



M. Kutrib, A. Malcher 137

can be represented as the intersection of two languages accepted by real-time REV-DCA(1). Since it is
known [7] that every language accepted by a Turing machine can be accepted, suitably encoded, by
some multiplying counter machine as well, the emptiness of a Turing machine can be reduced to the
emptiness of the intersection of two languages accepted by real-time REV-DCA(1)s. From this the
non-semidecidability of inclusion for real-time REV-DCA(1)s and the non-semidecidability results for
real-time REV-DCA(k) with k ≥ 2 can be derived.

We start by summarizing the necessary notations given in [7]. A multiplying counter machine is
a one-register machine (the register is capable of holding an arbitrary integer) which can multiply the
content of its register by one of a finite number of multiplicands, and branching if the resulting product is
not an integer. Formally, let Q be a finite set of states with two distinguished elements q0 6= q f , called the
initial and final state. Let C = {2,3,5,7,1/2,1/3,1/5,1/7} be a finite set of multiplicands. A transition
rule is an element of Q×C×Q×Q. A multiplying counter machine M is a set of transition rules such
that no two transition rules have the same first component and no transition rule of M has q f as the first
component nor q0 as the last component. A configuration of M is string of the form qai, where q ∈ Q.
For each integer n, we write qan ` pakn, if (q,k, p,r) is a transition rule of M and kn is an integer. We
write qan ` ran, if (q,k, p,r) is a transition rule of M and kn is not an integer. A valid computation is a
string built from a sequence of configurations passed through during a computation halting in state q f .
Theorem 10 ([7]). Let L⊆ {1,2}∗ be a set of strings accepted by a Turing machine and let each string
x1x2 · · ·xn ∈ {1,2}∗ be encoded as a natural number i = x1 + 3x2 + 32x3 + · · ·+ 3n−1xn. Then, a multi-
plying counter machine M can effectively be constructed such that q0a2i `∗ q f a j (for some j ≥ 0) if and
only if i = x1 +3x2 +32x3 + · · ·+3n−1xn and x1x2 · · ·xn is in L.

Now, a valid computation of a multiplying counter machine M (VALC(M)) is defined in [7] as a
string

q0aq0a2q0a4 · · ·q0a2i−1
α0α1 · · ·αn

where α0,α1, . . . ,αn are configurations of M such that α0 = q0a2i
, αn = q f ap for some p ≥ 1, and

α j ` α j+1 for 0≤ j < n.
Our goal is to represent the set of valid computations as the intersection of two languages where

each of which is accepted by a real-time reversible one-counter machine. Hence, we consider several
modifications to the set of valid computations to enable a reversible computation. First, we mark the a
in the first block, that is, q0a is replaced by q0a′. Second, we assume that n+ i+1 is even, that is, every
valid computation consists of an even number of configurations. If n+ i+ 1 is odd, then we consider a
new state q f ′ , replace αn = q f ap by αn = q f ′ap, add a configuration αn+1 = q f ap, and obtain an even
number of configurations.

Third, we add the state of each configuration to the end of a configuration. That is, α j = q jan j is
modified to α jq j = q jan j q j and for the initial phase of doubling a-blocks we modify q0a2p

(p ≥ 0) to
q′0a2p

q′0, where q′0 is a new state not in Q.
The fourth modification concerns configurations qan ` pakn, if (q,k, p,r) is a transition rule of M and

kn is an integer. In this case, we store the information of the multiple k as superscript (k) in the state p
of the successor configuration. In addition, we store in state q as subscript the result of n mod (1/k), if
k < 1. That is, qanqpakn p is modified to qanq(n mod (1/k))p(k)akn p(k) and q′0a2i−1

q′0q0a2i
q0 is modified to

q′0a2i−1
q′0q(2)0 a2i

q(2)0 .
The fifth modification concerns configurations qan ` ran, if (q,k, p,r) is a transition rule of M and

kn is not an integer. Hence, k ∈ {1/2,1/3,1/5,1/7} and we store the information (1) as superscript
in the state r of the successor configuration. In addition, we store in state q as subscript the result of
n mod (1/k). That is, qanqranr is modified to qanq(n mod (1/k))r(1)anr(1).
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Finally, if the state q f ′ has been introduced in the second modification, we modify q f ′apq f ′q f apq f to
q f ′apq f ′q

(1)
f apq(1)f .

Formally, the set VALC′(M) of valid computations of a multiplying counter machine M is the set of
strings. Let i = x1 +3x2 +32x3 + · · ·+3n−1xn be the unary encoding of a string x1x2 · · ·xn ∈ L. If i > 0,
we have

q′0a′q′0q′0a2q′0 · · ·q′0a2i−1
q′0q(`0)

0 an0q(`0)
0,ϕ0

q(`1)
1 an1q(`1)

1,ϕ1
· · ·q(` j)

j an j q(` j)
j,ϕ j

q(` j+1)
j+1 an j+1q(` j+1)

j+1,ϕ j+1
· · ·q(`n)

f annq(`n)
f

If i = 0, we have

q(`0)
0 a′q(`0)

0,ϕ0
q(`1)

1 an1q(`1)
1,ϕ1
· · ·q(` j)

j an j q(` j)
j,ϕ j

q(` j+1)
j+1 an j+1q(` j+1)

j+1,ϕ j+1
· · ·q(`n)

f annq(`n)
f

where q jan j (1 ≤ j ≤ n) are configurations of M such that n0 = 2i and q jan j ` q j+1an j+1 for 0 ≤ j < n.
Furthermore, due to the definition of M we know that for 0 < j≤ n each state q j different from q f and q f ′

has an associated number k j ∈C. If k j > 1 or, if k j < 1 and n j is divisible by 1/k j, we define ` j = k j−1
and ` j = 1 otherwise. Moreover, `0 = 2. For 0 ≤ j < n we define ϕ j = n j mod (1/k j), if k j < 1, and
ϕ j = 0 otherwise. We illustrate the definition with the following example.

Example 11. We consider some valid computation q0aq0a2q0a4q0a8q0a16q1a32q2a16q3a16q4a8q f a8 of a
multiplying counter machine M with transitions (q0,2,q1, ·), (q1,

1
2 ,q2, ·), (q2,

1
3 , ·,q3), (q3,

1
2 ,q4, ·), and

(q4,
1
5 , ·,q f ). States not relevant for the example are denoted by ·. According to the above discussion we

obtain

q′0a′q′0q′0a2q′0q′0a4q′0q′0a8q′0q(2)0 a16q(2)0,0q(2)1 a32q(2)1,0q(
1
2 )

2 a16q(
1
2 )

2,1 q(1)3 a16q(1)3,0q(
1
2 )

4 a8q(
1
2 )

4,3 q(1)f a8q(1)f .

�

Our next goal is to represent the set VALC′(M) of such modified valid computations as the inter-
section of two languages VALC′1(M) and VALC′2(M) that are accepted by real-time REV-DCA(1)s. To
this end, we define VALC′1(M) to be the set of strings that start with q′0a′q′0 or q(`0)

0 a′q(`0)
0,ϕ0

, end with

q(k)f a∗q(k)f (k ∈C∪{1}), have no a′ or q(k)f in between, and we require that the successor configuration
of any configuration at an odd position is correctly computed. Similarly, VALC′2(M) is the set of strings
that have the same format as VALC′1(M) and the successor configuration of any configuration at an even
position is correctly computed. Due to the required format of VALC′1(M) and VALC′2(M) we obtain that
VALC′1(M)∩VALC′2(M) = VALC′(M). Moreover, we have that VALC′(M) is empty if and only if M
accepts the empty set.

Lemma 12. Let M be a multiplying counter machine. Then real-time REV-DCA(1)s accepting the sets
VALC′1(M) and VALC′2(M) can effectively be constructed from M.

Proof. We describe the construction of a real-time REV-DCA(1) accepting the set VALC′1(M). A real-
time REV-DCA(1) accepting the set VALC′2(M) can similarly be constructed. First we note that the
required correct formatting of the input, namely, starting with q′0a′q′0 or q(`0)

0 a′q(`0)
0,ϕ0

, end with q(k)f a∗q(k)f

(k ∈C∪{1}), have no a′ or q(k)f in between, can be tested by a reversible deterministic finite automaton.
Hence, this test can be realized in an additional component using the standard cross product construction.
(See, e.g., [12], where the construction for reversible pushdown automata is described.)

We note that any string in VALC′1(M) consists of a sequence of blocks of adjacent configurations
having one of the following forms:
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1. q′0anq′0q′0a2nq′0 for some n≥ 1 (if n = 1, an = a′),

2. q′0anq′0q(2)0 a2nq(2)0,ϕ0
for some n≥ 1 (if n = 1, an = a′),

3. q(` j)
j an j q(` j)

j,ϕ j
q(` j+1)

j+1 an j+1q(` j+1)
j+1,ϕ j+1

, for some j ≥ 0,

4. q(`n−1)
n−1 ann−1q(`n−1)

n−1,ϕn−1
q(`n)

f annq(`n)
f or q(`n−1)

n−1 ann−1q(`n−1)
n−1,ϕn−1

q(`n)
f ′ annq(`n)

f ′ ,

5. q(`n)
f ′ annq(`n)

f ′ q(1)f annq(1)f ,

6. q(`0)
0 a′q(`0)

0,ϕ0
q(`1)

1 an1q(`1)
1,ϕ1

,

7. q(`0)
0 a′q(`0)

0,ϕ0
q(`1)

f an1q(`1)
f or q(`0)

0 a′q(`0)
0,ϕ0

q(`1)
f ′ an1q(`1)

f ′ .

We now describe how each such block can be accepted by a quasi real-time REV-DCA(1). A quasi
real-time REV-DCA(1) accepting blocks of the first form basically increases the counter for every a (or
a′ if n = 1) from the first part and decreases the counter for every second a from the second part. This can
be done reversibly, since in the backward computation every other a from the second part increases the
counter while every a (or a′ if n = 1) from the first part decreases the counter. We note that the counter
is empty at the end of each forward computation. A quasi real-time REV-DCA(1) accepting blocks of
the second form can similarly be constructed. The basic difference is that after reading q(2)0 in another
component of the state set a counter modulo 1/k0 is started, if k0 < 1. We recall that k0 ∈C is the number
associated to state q0. While reading a’s this counter is updated and finally compared with ϕ0 when
reading q(2)0,ϕ0

. If k0 ≥ 1, then no counter is started and it is only checked whether ϕ0 is 0 when reading

q(2)0,ϕ0
. This additional behavior can be realized reversibly.

For blocks of the third form we first note that we can reversibly check whether ϕ j and ϕ j+1 are
correctly computed with respect to an j and an j+1 by adapting the method described for blocks of the
second form. Let (q j,k j, p,r) be the transition rule for state q j Now, a quasi real-time REV-DCA(1)
increases its counter for every a from the first part. If ϕ j = 0, we know that q j+1 = p and ` j+1 = k j > 1
or n j is divisible by 1/k j, if k j < 1. If k j > 1, then we decrease the counter for every k j-th a from the
second part. If k j < 1, then we decrease the counter by 1/k j within 1/k j time steps on every a. This
is realized by 1/k j− 1 stationary moves on every a. If ϕ j > 0, we know that q j+1 = r and n j = n j+1.
Hence, we decrease the counter for every a from the second part. This can be done reversibly, since in
the backward computation we know due to the information ` j+1 what to do on the counter. If ` j+1 = 1,
then the counter is increased for every a from the second part. If ` j+1 > 1, then the counter is increased
for every k j-th a from the second part. If ` j+1 < 1, then the counter is increased by 1/k j within 1/k j

time steps for every a from the second part. Subsequently, the counter is decreased for every a from
the first part. Altogether, a quasi real-time REV-DCA(1) accepting blocks of the third form can be
constructed. We note that the counter is empty at the end of each forward computation. A quasi real-
time REV-DCA(1) accepting blocks of the fourth form can similarly be constructed. The only difference
is to replace q(` j+1)

j+1 and q(` j+1)
j+1,ϕ j+1

by q(`n)
f or q(`n)

f ′ , respectively. Finally, by using similar ideas we can also
construct quasi real-time REV-DCA(1)s accepting blocks of the remaining forms.

Since every block can be accepted by a quasi real-time REV-DCA(1) and the counter is empty at
the end of each computation, we can iterate these automata and obtain a quasi real-time REV-DCA(1)
for VALC′1(M) which can be sped-up to a real-time REV-DCA(1) owing to Theorem 5.
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Lemma 13. Let M be a multiplying counter machine. Then a real-time REV-DCA(2) accepting the set
VALC′(M) can effectively be constructed from M.

Proof. We consider the real-time REV-DCA(1)s M1 and M2 constructed in the proof of Lemma 12 that
accept VALC′1(M) and VALC′2(M), respectively. We note that in all accepting computations in M1 as
well as in M2 the input has been completely read. Hence, we can apply the well known Cartesian product
technique for intersection and construct a real-time REV-DCA(2) M′ that simulates M1 in one component
of the state set and uses one counter and and simulates M2 in a second component of the state set and uses
the other counter. The accepting states of M′ are defined as F1×F2, where F1 and F2 are the accepting
states in M1 and M2, respectively. Hence, M′ accepts VALC′1(M)∩VALC′2(M) = VALC′(M).

Now, we have all preparatory results to show the following non-semidecidability results.

Theorem 14. Let M and M′ be two real-time REV-DCA(k)s with k ≥ 2. Then the following questions
are not semidecidable.

1. Is L(M) = /0?

2. Is L(M) finite/infinite?

3. Is L(M)⊆ L(M′)?

4. Is L(M) = L(M′)?

5. Is L(M) regular/context free?

Proof. Let T be some Turing machine accepting a recursively enumerable set over {1,2}∗ and M0 its
corresponding multiplying counter machine according to Theorem 10. Then, the language L(T ) is empty
if and only if M0 accepts the empty set. Moreover, M0 accepts the empty set if and only if VALC′(M0)= /0
and T accepts a finite set if and only if M0 accepts a finite set if and only if VALC′(M0) is finite.

Now, let M1 be a real-time REV-DCA(2) accepting VALC′(M0) according to the construction in
Lemma 13. Hence, L(M1) is empty, finite, or infinite if and only if the Turing machine T accepts an
empty, finite, or infinite set. Since the latter questions are not semidecidable for Turing machines (see,
e.g., [10]), they are not semidecidable for real-time REV-DCA(2)s as well.

It is easy to construct a real-time REV-DCA(2) accepting the empty set. If the questions of inclusion
and equivalence would be semidecidable, the question of emptiness would be semidecidable as well
which is a contradiction. Hence, both questions are not semidecidable.

It is described in [10] how to define the set of valid computations VALC(T ) of a Turing machine T .
In addition, it is shown there with the help of the pumping lemma that VALC(T ) is not a context-free
language if T accepts an infinite language. It can be shown with a similar approach that VALC′(M0)
is not a context-free language if M0 accepts an infinite language. On the other hand, if M0 accepts a
finite language, then VALC′(M0) is finite and hence in particular a regular and a context-free language.
Altogether, we have that VALC′(M0) is finite if and only if M0 is regular or context free. If the regularity
or context-freeness of a real-time REV-DCA(2) would be semidecidable, we would therefore obtain that
the finiteness problem for a real-time REV-DCA(2) is semidecidable as well which is a contradiction
and shows the remaining claim of the theorem.
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[17] Ming Li & Paul M. B. Vitányi (1993): An Introduction to Kolmogorov Complexity and Its Applications.
Springer, doi:10.1007/978-1-4757-3860-5.

[18] Carlo Mereghetti & Beatrice Palano (2021): Guest Column: Quantum Finite Automata: From Theory to
Practice. SIGACT News 52, pp. 38–59, doi:10.1145/3494656.3494666.

[19] Marvin L. Minsky (1961): Recursive Unsolvability of Post’s Problem of ‘Tag’ and Other Topics in the Theory
of Turing machines. Annals of Math. 74, pp. 437–455, doi:10.2307/1970290.

[20] Kenichi Morita (1995): Reversible simulation of one-dimensional irreversible cellular automata. Theoret.
Comput. Sci. 148(1), pp. 157–163, doi:10.1016/0304-3975(95)00038-X.

[21] Kenichi Morita (1996): Universality of a Reversible Two-Counter Machine. Theor. Comput. Sci. 168, pp.
303–320, doi:10.1016/S0304-3975(96)00081-3.

http://dx.doi.org/10.1145/322326.322334
http://dx.doi.org/10.1147/rd.176.0525
http://dx.doi.org/10.1006/inco.2000.2911
http://dx.doi.org/10.1142/S0129054196000191
http://dx.doi.org/10.1007/BF01694011
http://dx.doi.org/10.1016/0304-3975(76)90072-4
http://dx.doi.org/10.1016/S0022-0000(70)80018-6
http://dx.doi.org/10.4018/jncr.2010010104
http://dx.doi.org/10.1142/S0129054118400063
http://dx.doi.org/10.1109/SFCS.1997.646094
http://dx.doi.org/10.1016/j.jcss.2011.12.004
http://dx.doi.org/10.25596/jalc-2017-145
http://dx.doi.org/10.1142/S0129054119400331
http://dx.doi.org/10.1007/978-1-4757-3860-5
http://dx.doi.org/10.1145/3494656.3494666
http://dx.doi.org/10.2307/1970290
http://dx.doi.org/10.1016/0304-3975(95)00038-X
http://dx.doi.org/10.1016/S0304-3975(96)00081-3


142 Reversible Computations of One-Way Counter Automata

[22] Holger Petersen (2011): Simulations by Time-Bounded Counter Machines. Int. J. Found. Comput. Sci. 22,
pp. 395–409, doi:10.1142/S0129054111008106.

[23] A. C. Cem Say & Abuzer Yakaryılmaz (2014): Quantum Finite Automata: A Modern Introduction. In
Cristian S. Calude, Rusins Freivalds & Kazuo Iwama, editors: Computing with New Resources, LNCS 8808,
Springer, pp. 208–222, doi:10.1007/978-3-319-13350-8 16.
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