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In this paper we show that a recently published finite automaton stream cipher can be considered as
a quasigroup based stream cipher. Some additional properties of the discussed cipher are also given.

1 Introduction

In this paper we consider the finite automaton based stream cipher published by Dömösi and Horváth
[2], and we show in details that this cipher can be considered as a stream cipher based on quasigroup.
Some additional properties are also discussed. The stream cipher in [2] works, in short, as follows. The
cipher consists of a cryptographically secure pseudorandom generator and a finite automaton without
outputs having the same input and state sets. During the encryption the plaintext is read in sequentially
character by character. After getting the next (initially the first) plaintext character, the system gets
simultaneously the next (initially the first) pseudorandom string of a fixed length which is also an input
string of the key-automaton. The corresponding ciphertext character will coincide with the state of the
key-automaton into which this pseudorandom input string takes the automaton from the state which
coincides with the corresponding plaintext character. The decryption works similarly, using a so-called
inverse key-automaton instead of the key automaton such that the input strings will be the mirror images
of the corresponding pseudorandom strings.

We note that there are several variants of the quasi group based ciphers. Fortunately, we did not find
such a solution in the literature that is equivalent to the solution we are discussing. (Detailed overviews
and summaries of quasi group based ciphers can be found, for example, in [1, 6, 7].)

2 Preliminaries

We start with some standard concepts and notation. For all notions and notation not defined here we refer
to the monographs [3, 4, 5, 7] and the reviews [1, 6]. By an alphabet we mean a finite nonempty set.
The elements of an alphabet are called letters. A word over an alphabet Σ is a finite string consisting of
letters of Σ. The length of a word w, in symbols |w|, means the number of letters in w when each letter is
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counted as many times as it occurs. The string consisting of zero letters is called the empty word, written
by λ . By definition, |λ | = 0. The mirror image wR of the word w = a1 · · ·an,a1 . . . ,an ∈ Σ is the word
wR = an · · ·a1. By definition, λ R = λ . Furthermore, for every nonempty word w, denote by −→w the last
letter of w. (

−→
λ is not defined.) The set of all nonempty words over an alphabet Σ will be denoted by Σ+.

In addition, we put Σ∗ = Σ+∪{λ}. By an automaton we mean a finite deterministic automaton without
outputs. In other words, by an automaton we mean a system A = (A,Σ,δ ) with a finite set A of states, a
finite set Σ of inputs, and the transition function δ : A×Σ→ A. We assume that the transition function
of A is given in the form of transition table, where the lines of this table are denoted by the elements of
the input set Σ and the columns of this table are denoted by the elements of the state set A. Therefore, for
every input x and state a, δ (a,x) is at the intersection of the row denoted by x and the column denoted
by a.

3 Automata and Quasigroups

Given an automaton A = (A,Σ,δ ), let a∈ A,a1, . . . ,an ∈ Σ and suppose b1 = δ (a,a1),b2 = δ (b1,a2), . . . ,
bn = δ (bn−1,an). Then we shall use the notation δ (a,a1 · · ·an) = b1 · · ·bn. (Thus we may use the notation
−−−−−−−−→
δ (a,a1 · · ·an) for the above considered bn.) Moreover, by definition, δ (a,λ ) = λ . In what follows we
consider automata having the same state and input sets, i.e., we assume A = Σ. A groupoid Q = (A,∗)
is a structure consisting of the nonempty set A and the binary operation ∗ over A. Therefore, the concept
of automaton A = (A,A,δ ) coincides with the concept of groupoid Q = (A,∗) having a∗b = δ (b,a) for
every pair a,b ∈ A. A groupoid Q = (A,∗) is called a quasigroup if for every pair a,b ∈ A there exists
unique x,y ∈ A such that a ∗ x = b and y ∗ a = b. It is easy to see that quasigroups satisfy both of the
cancellation properties, i.e., for every triplet a,b,c ∈ A, a∗b = a∗c implies b = c (left cancellation), and
a,b,c∈ A, a∗b = c∗b implies a = c (right cancellation). It is said that \ is the left inverse operation on Q
if for every triplet a,b,c∈ A, a∗b= c if and only if b= a\c. Analogously, / is the right inverse operation
on Q if for every triplet a,b,c ∈ A, b∗a = c if and only if b = c/a. Then the groupoid QLI = (A,\) is the
left inverse quasigroup of Q, and similarly, the groupoid QRI = (A,/) is the right inverse quasigroup of
Q. 1

4 Latin squares and key automata

A Latin square of order n is an n× n matrix (with n rows and n columns) in which the elements of
an n-state set {a0,a1, . . . ,an−1} are entered so that each element occurs exactly once in each fixed row,
and each fixed column, respectively. We say that A = (A,Σ,δ ) is a key automaton if for every pair of
distinct states a,b and pair of distinct inputs x,y, δ (a,x) differs from δ (b,x) and δ (a,x) also differs from
δ (a,y). Obviously, in this case the transition table of a key automaton forms a Latin square and there
is a one-to-one correspondence between the key automata A = (A,A,δ ) and quasigroups Q = (A,∗)
having the property δ (a,b) = b ∗ a for every pair a,b ∈ A of elements in A and vice versa. Given a key
automaton A = (A,A,δ ) , let us define the automaton B = (A,A,δ−1) such that for every pair a,b ∈
A,δ−1(δ (a,b),b) = a. Then we say that B is the inverse key automaton of the key automaton A.

Proposition 1 Every key automaton has exactly one inverse key automaton.
Proof. Consider a key automaton A = (A,A,δA). Suppose that B = (A,A,δB) and C = (A,A,δC) are
inverse key automata of A such that B 6= C. Then there are a,b ∈ A having δB(a,b) 6= δC(a,b). Put

1It is easy to show that both of QLI ,QRI are quasigroups
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x = δB(a,b) and y = δC(a,b). Then we have a = δA(x,b) = δA(y,b) contradicting the assumption that A
is a key automaton. This completes the proof.
QED.

Proposition 2 Every inverse key automaton is also a key automaton.
Proof. Consider a key automaton A = (A,A,δ ) and its inverse key automaton B = (A,A,δ−1). First
we suppose that there are states a,b,c with δ−1(a,b) = δ−1(a,c) and b 6= c. Put d = δ−1(a,b) =
δ−1(a,c).By our assumptions, this implies δ (d,b) = δ (d,c) = a with b 6= c contradicting the assumption
that A is a key automaton. Thus b 6= c implies δ−1(a,b) 6= δ−1(a,c) for every a ∈ A. Next we suppose
that there are states a,b,c with δ−1(a,b) = δ−1(c,b) and a 6= c. Put d = δ−1(a,b) = δ−1(c,b).By our as-
sumptions, this implies δ (d,b) = a = c contradicting to b 6= c. Thus a 6= c implies δ−1(a,b) 6= δ−1(c,b)
for every b ∈ A. Therefore, we received that B is also a key automaton.
QED.

By the definition of inverse key automaton and Poposition 2 we have as follows.

Corollary 3 Let B be the inverse key automaton of the key automton A. Then A is the inverse key
automaton of B.

Proposition 4 Given a key automaton A = (A,A,δ ), its inverse key automaton A−1 = (A,A,δ−1), a state
a∈A, and a string a1 · · ·an,a1 . . . ,an ∈A, we have δ (a,a1 · · ·an)= b1 · · ·bn if and only if δ−1(bn,an · · ·a1)
= bn−1 · · ·b1a.
Proof. Let A = (A,A,δ ) be an arbitrary finite automaton and consider (nonempty and finite) strings
a1 · · ·an and b1 · · ·bn consisting of the elements a1, . . . ,an,b1, . . . ,bn of A. In addition, δ (a,a1) = b1 if
and only if δ−1(b1,a1) = a, where δ−1 denotes the transition function of the inverse key automaton A−1

of A. Similarly, δ (b1,a2) = b2 if and only if δ−1(b2,a2) = b1. Thus we obtain that δ (a,a1a2) = b1b2 if
and only if δ−1(b2,a2a1) = b1a. Repeating this procedure we get our statement.
QED.

We have the following consequence of this statement.

Proposition 5 Given a key automaton A = (A,A,δ ), its inverse key automaton A−1 = (A,A,δ−1), a state

a∈A, and a string a1 · · ·an,a1 . . . ,an ∈A, we have
−−−−−−−−→
δ (a,a1 · · ·an)= bn if and only if

−−−−−−−−−−−→
δ
−1(bn,an · · ·a1)= a.

5 Quasigroups

We shall use the following statement.

Proposition 6 Given a quasigroup Q = (A,∗), its left inverse quasigroup QLI = (A,\), moreover, a1, . . . ,
an,a,b ∈ A. Then an ∗ (· · · ∗ (a2 ∗ (a1 ∗a)) · · ·) = b if and only if a1 \ (· · · \ (an−1 \ (an \b)) · · ·) = a.
Proof. We will prove our statement by induction. Suppose n = 1. Then, by definition, b = a1 ∗ a if
and only if a = a1 \b. Thus, it is enough to show than if our statement holds for any given case n = m,
then it must also hold for the next case n = m+ 1. Thus, assume that for every b,c,a2, . . . ,am+1 ∈ A,
am+1 ∗ (· · · ∗ (a2 ∗ c) · · ·) = b if and only if a2 \ (· · · \ (am+1 \b)) · · ·) = c. Set c = a1 ∗a for some a1 ∈ A.
Then am+1 ∗ (· · · ∗ (a2 ∗ (a1 ∗a)) · · ·) = b if and only if a2 \ (· · · \ (am+1 ∗b)) · · ·) = a1 ∗a.

Substituting a2 \ (· · · \ (am+1 ∗ b)) · · ·) for b, then we receive b = a1 ∗ a which follows a = a1 \ b by
definition. This implies a1 \a2 \ (· · · \ (am+1 ∗b)) · · ·) = b as we stated.
QED.

The following statement is obvious.
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Proposition 7 Given a quasigroup Q = (A,∗), let QLI = (A,\) be its left inverse quasigroup. Then for
every pair x,y ∈ A, x\ (x∗y) = y,x∗ (x\y) = y. Given a key automaton A = (A,A,δ ), the corresponding

quasigroup Q = (A,∗) ordered to A is defined by a∗b = δ (a,b),a,b ∈ A.

Theorem 8 Let Q = (A,∗) be the corresponding quasigroup ordered to the key automaton A = (A,A,δ ).
Then the left inverse quasigroup of Q is the corresponding quasigroup ordered to the inverse key automa-
ton of A = (A,A,δ ) and vice versa.
Proof. Consider a key automaton A = (A,A,δ ) and its inverse key automaton B = (A,A,δ−1).

Then the corresponding quasigroup Q = (A,∗) ordered to A has the property δ (a,b) = b ∗ a for
every pair a,b ∈ A. Similarly, the corresponding quasigroup R = (A,

⊙
) ordered to B has the property

δ−1(c,d) = d
⊙

c for every pair c,d ∈ A.
By definition, for every pair a,b∈ A,δ−1(δ (a,b),b) = a. This implies b

⊙
(b∗a) = a. Then c = b∗a

implies b
⊙

c = a.
Next we assume b

⊙
(b∗a) = a and c 6= b∗a with b

⊙
c = a. Put d = b∗a. Then we get b

⊙
d = a

with b
⊙

c = a and d 6= c. In other words, δ−1(d,b) = δ−1(c,b)(= a) with d 6= c. But then, by definition,
the inverse key automaton B is not a key automaton. This statement contradicts to Proposition 2.
QED.

Proposition 9 Given a quasigroup Q=(A,∗) ordered to the key automaton A=(A,A,δ ),let a,a1, . . . ,an ∈
A. Then

−−−−−−−−→
δ (a,a1 · · ·an) = b for some b ∈ A if and only if an ∗ (an−1 ∗ (· · · ∗ (a1 ∗a) · · ·)) = b.

Proof. By our conditions, we have in order,
−−−−→
δ (a,a1) = δ (a,a1) = a1 ∗ a,

−−−−−−→
δ (a,a1a2) =

−−−−−−−−−−−−−−−→
δ (a,a1)δ (δ (a,a1),a2) = δ (δ (a,a1),a2) = a2 ∗ (a1 ∗ a), and inductively,

−−−−−−−−→
δ (a,a1 · · ·an) = an ∗ (an−1 ∗

(· · · ∗ (a1 ∗a) · · ·)). Using these observations, by definition, b1 = δ (a,a1) if and only if b1 = a1 ∗a. Simi-
larly, b2 = δ (b1,a2) if and only if b2 = a2 ∗ (a1 ∗a). Repeating this procedure, we have bn = δ (bn−1,an)
if and only if bn = an ∗ (an−1 ∗ (· · · ∗ (a1 ∗a) · · ·)).

Let b = bn. Then we get as we stated.
QED.

6 A finite automaton based stream cipher

Consider a pseudorandom number generator, a key automaton A = (A,A,δ ), and its inverse key automa-
ton A−1 = (A,A,δ−1). The main idea of the discussed cipher is the following.

6.1 Encryption

Let p1 · · · pn, p1, . . . , pn ∈ A be a plaintext and let r1, . . . ,rn ∈ A+ be pseudorandom strings of the same
fixed length m≥ 1 generated by a given pseudorandom number generator starting by a seed r0. We note
that |r0|, . . . , |rk|= m holds for a fixed positive integer m.

The ciphertext will be c1 · · ·cn,c1, . . . ,cn ∈ A with c1 =
−−−−−→
δ (p1,r1), . . . ,cn =

−−−−−→
δ (pn,rn).

6.2 Decryption

Let c1 · · ·cn,c1, . . . ,cn ∈ A be a ciphertext and let r1, . . . ,rn ∈ Σ+ be the same pseudorandom strings
generated by the pseudorandom number generator starting by a seed r0.

The decrypted plaintext will be p1 · · · pn with p1 =
−−−−−−−−−→
δ
−1(c1,(r1)

R), . . . , pn =
−−−−−−−−−→
δ
−1(cn,(rn)

R).
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The next statement shows the correctness of the discussed finite automaton-based encryption and
decryption procedure.

Theorem 10 Let p1 · · · pn, p1, . . . , pn ∈ A be a plaintext and let r1, . . . ,rn ∈ A+ be pseudorandom strings of
the same fixed length m≥ 1 generated by a given pseudorandom number generator starting by a seed r0.
Moreover, let A = (A,A,δ ) be a key automaton and let A−1 = (A,A,δ−1) be its inverse key automaton.
If c1 · · ·cn is the ciphertext generated by the above finite automaton encryption procedure then p1 · · · pn

is the only plaintext which can be generated by the above finite automaton based decryption procedure
(assuming that the pseudorandom generator of the cipher generates the same sequence r1, . . . ,rn of the
pseudorandom strings during the encryption and also during the decryption).
Proof. Consider a key automaton A = (A,A,δ ), its inverse key automaton A−1 = (A,A,δ−1), a state

a ∈ A, and a string r ∈ A. By Proposition 5 we have
−−−−→
δ (a,r) = bn if and only if

−−−−−−−→
δ
−1(bn,rR) = a.2

By our construction, for every i = 1, . . . ,n,ci =
−−−−−→
δ (pi,ri). By Proposition 5pi =

−−−−−−−→
δ
−1(ci,rR

i ). In sum,
c1 · · ·cn =

−−−−−→
δ (p1,r1) · · ·

−−−−−→
δ (pn,rn) which, by Proposition 5 is possible if and only if p1 · · · p=−−−−−−−→

δ
−1(c1,rR

1 ) · · ·
−−−−−−−→
δ
−1(cn,rR

n ). This completes the proof.
QED.

7 A quasigroup based stream cipher

Consider again a cryptographically secure pseudorandom number generator, moreover a quasigroup
Q = (A,∗) and its left-inverse QLI = (A,\). The main idea of the discussed cipher is the following.

7.1 Encryption

Let m be a fixed positive integer, and in order to have PT = p1 p2 p3 · · · pn, p1, . . . , pn ∈ A, K = k1,1k1,2 · · ·
k1,m · · ·kn,1kn,2 · · ·kn,m, CT = c1c2 · · ·cn as the plaintext PT to be encrypted, a pseudorandom sequence
K is generated by the cryptographically secure pseudorandom number generator as the keystream to be
used for encryption, and the resulting ciphertext CT respectively. Then a way of encrypting PT with the
keystream K to obtain the corresponding CT is as follows:

c1 = k1,m ∗ (· · · ∗ (k1,2 ∗ (k1,1 ∗ p1)) . . .),c2 = k2,m ∗ (· · · ∗ (k2,2 ∗ (k2,1 ∗ p2)) . . .), . . .cn = kn,m ∗ (· · · ∗
(kn,2 ∗ (kn,1 ∗ pn)) . . .).

7.2 Decryption

Let m be the same fixed positive integer again as in Subsection 6.1, and in order to have the same
CT = c1c2 · · ·cn, K = k1,1k1,2 · · ·k1,m · · ·kn,1kn,2 · · ·kn,m as in Section 6.1, as the ciphertext to be decrypted,
a pseudorandom sequence K is generated by the cryptographically secure pseudorandom number gen-
erator as the keystream to be used for encryption,and the resulting plaintext PT = p1 p2 p3 · · · pn, re-
spectively. Then a way of decrypting CT with the keystream K to obtain the corresponding PT back
is as follows: p1 = k1,1 \ (· · · \ (k1,m−1 \ (k1,m \ c1)) . . .), p2 = k2,1 \ (· · · \ (k2,m−1 \ (k2,m \ c2)) . . .), pn =
kn,1 \ (· · · \ (kn,m−1 \ kn,m \ cn)) . . .), where \ denotes the quasigroup operation and \ denotes the corre-
sponding left inverse quasigroup operation.

2Recall that for every r ∈ A+,rR denotes the mirror image of r.
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Next we show that the work of the discussed stream cipher can be written easily by using automata-
theoretic disciplines like in [2]. In more details, the next statement shows the correctness of the discussed
finite qusigroup based encryption and decryption procedure.
Theorem 11 Let p1 · · · pn, p1, . . . , pn ∈ A be a plaintext and let r1, . . . ,rn ∈ A+ be random strings of
the same fixed length m ≥ 1 generated by a cryptographically secure pseudorandom number generator
starting by a seed r0. Moreover, let Q = (A,∗) be a quasigroup and let QLI = (A,\) be its left inverse
quasigroup. If c1 · · ·cn is the ciphertext generated by the above qusigroup based encryption procedure
then p1 · · · pn is the only plaintext which can be generated by the above qusigroup based decription pro-
cedure (assuming that the pseudorandom generator of the cipher generates the same sequence r1, . . . ,rn

of the pseudorandom strings during the encryption and also during the decryption).
Proof. By Proposition 6, for every quasigroup Q = (A,∗), its left inverse quasigroup QLI = (A,\), and
a1, . . . ,an,a,b ∈ A it holds that an ∗ (· · · ∗ (a2 ∗ (a1 ∗ a)) · · ·) = b if and only if a1 \ (· · · \ (an−1 \ (an \
b)) · · ·) = a. Let a denote the ith character pi of the plaintext, moreover, let b denote the ith character ci

of the ciphertext for some i ∈ {1, . . . ,n}. In addition, let a1 · · ·am denote the ith pseudorandom string ri

generated by the pseudorandom generator of the cipher. Then, by Proposition 6, we have that for every
i = 1, . . . ,n, that pi is the only ith plaintext character which can be generated by the discussed qusigroup
based decryption procedure whenever ci is the ith ciphertext character which can be generated by the
discussed qusigroup based encryption procedure and ri is the same ith pseudorandom string generated by
the pseudorandom generaton in both of the encryption and the decryption. Therefore, if c1 · · ·cn is the
ciphertext generated by the considered qusigroup based encryption procedure then p1 · · · pn is the only
plaintext which can be generated by the considered qusigroup based decription procedure (assuming that
the pseudorandom generator of the cipher generates the same sequence r1, . . . ,rn of the pseudorandom
strings during the encryption and also during the decryption).This completes the proof. QED.

8 Quasigroups in Cryptography

The most of the quasigroup-based cryptosystems essentially work based on the following principle [1, 6].

Given a quasigroup Q = (A,∗), its left inverse quasigroup QLI = (A,\), let ` ∈ A be a fixed ele-
ment, which is called a leader. (Actually, ` ∈ A can be considered as the secret seed of the encryp-
tion/decryption).

Encryption. Let p1 · · · pn be a plaintext of n ≥ 1 letters p1, . . . , pn ∈ A . Compute c1 = ` ∗ p1,c2 =
c1 ∗ p2, . . . ,cn = cn−1 ∗ pn. Then the ciphertext is c1 · · ·cn.

Decryption Let c1 · · ·cn be a plaintext of n letters c1, . . . ,cn ∈ A . Compute p1 = ` \ c1, p2 = c1 \
c2, . . . , pn = cn−1 \ cn. Then the recovered plaintext is p1 · · · pn .

Cryptanalyses of this classical quasigroup-based cipher was made by M. Vojvoda [8]. He showed
that this cipher is not resistant to chosen plaintext attack and ciphertext-only attack in contrast to our
discussed solution. There are several known variants of this classical quasigroup cipher applying special
quasigroups, and/or multiple leaders, multi-round ciphering, etc. [1].

9 Conclusion

This paper shows that the cipher in [2] can be considered as a quasigroup-based stream cipher. By this
observation, we can easily compare it with the other quasigroup-based ciphers. It can be concluded that
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our solution is mainly different from them.
In order, to achieve a higher speed of encryption/description operation, m should be as small as

possible. Therefore, next we should analyse this cipher with m = 1. Thus, using the finite automaton-
based form, we should consider again a c1 = δ (p1,k1), . . . ,cn = δ (pn,kn), and the description can be
given by p1 = δ−1(c1,k1), p2 = δ−1(c2,k2), . . . , pn = δ−1(cn,kn), where δ denotes the transition function
of the key automaton and δ−1 denotes the transition function of the inverse key automaton.

The equivalent quasigroup-based form of this cipher can also be considered as follows:
c1 = p1 ∗ k1,c2 = p2 ∗ k2, . . . ,cn = pn ∗ kn, and the description can be given by p1 = c1 \ k1,
p2 = c2 \k2, . . . , pn = cn \kn, where ∗ denotes the quasigroup operation and \ denotes the corresponding
right inverse quasigroup operation.

A further challenge of research is to show the security of the proposed cipher using several theoretical
and experimental investigations regarding the length of the applied pseudorandom sequences, the number
of rounds in multi-round encryption and decryption, and some other parameters.
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