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We continue the research on the generative capacity of contextual grammars where contexts are

adjoined around whole words (externally) or around subwords (internally) which belong to special

regular selection languages. All languages generated by contextual grammars where all selection

languages are elements of a certain subregular language family form again a language family. We

investigate contextual grammars with strictly locally testable selection languages and compare those

families to families which are based on finite, monoidal, nilpotent, combinational, definite, suffix-

closed, ordered, commutative, circular, non-counting, power-separating, or union-free languages.

1 Introduction

Contextual grammars were introduced by Solomon Marcus in [17] as a formal model that might be

used for the generation of natural languages. The derivation steps consist of adjoining contexts to given

sentences starting from a finite set. A context is given by a pair (u,v) of words. The external adjoining

to a word x gives the word uxv and the internal adjoining gives all words x1ux2vx3 with x1x2x3 = x.

Following the linguistic motivation, conditions are given for each context which have to be met by the

word in order to allow the context to be adjoined. Contextual grammars where the contexts are adjoined

ex- or internally are called external or internal contextual grammars, respectively. If conditions are given

to the subword where a context is to be adjoined, we speak about external or internal contextual grammars

with selection. Contextual grammars with ex- or internal derivation and selection in a certain family F

of languages were defined where it is required that the word where a context is wrapped around belongs

to a language of the family F . Contextual grammars have been studied where the family F is taken from

the Chomsky hierarchy (see [15, 20, 22] and references therein).

The study of external contextual grammars with selection in special regular sets was started by

Jürgen Dassow in [4]. The research was continued by Jürgen Dassow, Florin Manea, and Bianca Truthe

(see [8, 9, 10, 16]) where further subregular families of selection languages were considered and the effect

of subregular selection languages on the generative power of external and internal contextual grammars

was investigated. A recent survey can be found in [28]. The internal case is different from the case of

external contextual grammars, as there are two main differences between the ways in which words are

derived. In the case of internal contextual grammars, it is possible that the insertion of a context into a

sentential form can be done at more than one place, such that the derivation becomes in some sense non-

deterministic; in the case of external grammars, once a context was selected, there is at most one way to

insert it: wrapped around the sentential form, when this word is in the selection language of the context.
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If a context can be added internally, then it can be added arbitrarily often (because the subword where

the context is wrapped around does not change) which does not necessarily hold for external grammars.

In the present paper, we investigate the impact of strictly locally testable selection languages in con-

textual grammars on the generative capacity and compare it to those of the families which are based on

finite, monoidal, nilpotent, combinational, definite, suffix-closed, ordered, commutative, circular, non-

counting, power-separating, or union-free languages. External contextual grammars with such selection

languages have been investigated in [5]. We give here some further results. Internal contextual grammars

with strictly locally testable selection languages have not been investigated so far. So, this paper gives

first results in this area. In the end, we mention some open problems.

2 Preliminaries

After giving some notations used in this paper, we first recall the subregular families of languages un-

der investigation and then recall the contextual grammars with external or internal language generating

modes.

We assume that the reader is familiar with the basic concepts of the theory of automata and formal

languages. For details, we refer to [22].

Given an alphabet V , we denote by V ∗ and V+ the set of all words and the set of all non-empty words

over V , respectively. The empty word is denoted by λ . By V k and V≤k for some natural number k, we

denote the set of all words of the alphabet V with exactly k letters and the set of all words over V with at

most k letters, respectively. For a word w, we denote the length of w by |w|.

2.1 Subregular Language Families

2.1.1 Definitions of Subregular Language Families

We consider the following restrictions for regular languages. Let L be a language over an alphabet V .

We say that the language L – with respect to the alphabet V – is

• monoidal if and only if L =V ∗,

• nilpotent if and only if it is finite or its complement V ∗ \L is finite,

• combinational if and only if it has the form L =V ∗X for some subset X ⊆V ,

• definite if and only if it can be represented in the form L = A∪V ∗B where A and B are finite subsets

of V ∗,

• suffix-closed (or fully initial or multiple-entry language) if and only if, for any two words x ∈ V ∗

and y ∈V ∗, the relation xy ∈ L implies the relation y ∈ L,

• ordered if and only if the language is accepted by some deterministic finite automaton

A = (V,Z,z0,F,δ )

with an input alphabet V , a finite set Z of states, a start state z0 ∈ Z, a set F ⊆ Z of accepting states

and a transition mapping δ where (Z,�) is a totally ordered set and, for any input symbol a ∈V ,

the relation z � z′ implies δ (z,a) � δ (z′,a),

• commutative if and only if it contains with each word also all permutations of this word,

• circular if and only if it contains with each word also all circular shifts of this word,
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• non-counting (or star-free) if and only if there is a natural number k ≥ 1 such that, for any three

words x ∈V ∗, y ∈V ∗, and z ∈V ∗, it holds xykz ∈ L if and only if xyk+1z ∈ L,

• power-separating if and only if, there is a natural number m ≥ 1 such that for any word x ∈ V ∗,

either Jm
x ∩L = /0 or Jm

x ⊆ L where Jm
x = { xn | n ≥ m},

• union-free if and only if L can be described by a regular expression which is only built by product

and star,

• strictly locally k-testable if and only if there are three subsets B, I, and E of V k such that any word

a1a2 . . .an with n≥ k and ai ∈V for 1≤ i≤ n belongs to the language L if and only if a1a2 . . .ak ∈B,

a j+1a j+2 . . .a j+k ∈ I for 1 ≤ j ≤ n− k−1, and an−k+1an−k+2 . . .an ∈ E ,

• strictly locally testable if and only if it is strictly locally k-testable for some natural number k.

We remark that monoidal, nilpotent, combinational, definite, ordered, union-free, and strictly lo-

cally (k-)testable languages are regular, whereas non-regular languages of the other types mentioned

above exist. Here, we consider among the commutative, circular, suffix-closed, non-counting, and power-

separating languages only those which are also regular.

Some properties of the languages of the classes mentioned above can be found in [23] (monoids), [11]

(nilpotent languages), [13] (combinational and commutative languages), [19] (definite languages), [12]

and [2] (suffix-closed languages), [24] (ordered languages), [3] (circular languages), [18] (non-counting

and strictly locally testable languages), [25] (power-separating languages), [1] (union-free languages).

By FIN, MON, NIL, COMB, DEF, SUF, ORD, COMM, CIRC, NC, PS, UF, SLTk (for any natural

number k ≥ 1), SLT, and REG, we denote the families of all finite, monoidal, nilpotent, combinational,

definite, regular suffix-closed, ordered, regular commutative, regular circular, regular non-counting, reg-

ular power-separating, union-free, strictly locally k-testable, strictly locally testable, and regular lan-

guages, respectively.

A strictly locally testable language characterized by three finite sets B, I, and E as above which

includes additionally a finite set F of words which are shorter than those of the sets B, I, and E is

denoted by [B, I,E,F].

As the set of all families under consideration, we set

F = {FIN,MON,NIL,COMB,DEF,SUF,ORD,COMM,CIRC,NC,PS,UF,SLT}∪{SLTk | k ≥ 1}.

2.1.2 Hierarchy of Subregular Language Families

Many inclusion relations and incomparabilities between these families have been proved in the past,

see [28] for a survey. We now insert the families of the strictly locally (k-)testable languages into the

existing hierarchy.

The families of strictly locally k-testable languages form an infinite hierarchy of proper inclusions.

This is shown in [21] with the witness languages

Lh = {abh}+ ∈ SLTh+1 \SLTh for h ≥ 1.

From [18], we know the proper inclusion SLT ⊂ NC. In [5], the proper inclusions COMB ⊂ SLT1

and DEF ⊂ SLT as well as the incomparability of each family SLTk for k ≥ 1 with the families FIN,

NIL, and DEF were mentioned but not proved. This will be done in the sequel. We first give a witness

language which will be useful in all these proofs.
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Lemma 2.1 Let LSLT1,¬DEF = {a}∪{abna | n ≥ 0}. Then LSLT1,¬DEF ∈ SLT1 \DEF.

Proof. The language LSLT1,¬DEF can be represented as [{a},{b},{a}, /0], hence LSLT1,¬DEF ∈ SLT1.

Suppose, this language is definite. Then there are two finite subsets Ds ⊂ {a,b}∗ and De ⊂ {a,b}∗

such that

LSLT1,¬DEF = Ds ∪{a,b}∗De.

Let k = max{ |w| | w ∈ Ds ∪De }+ 1. The word abka belongs to the language LSLT1,¬DEF but not to the

subset Ds due to its length. Hence, abka ∈ {a,b}∗De and also

abka ∈ {a,b}+De

due to the length of the word. Then we have also bk+1a ∈ {a,b}+De and, therefore,

bk+1a ∈ LSLT1,¬DEF

which is a contradiction. Thus, LSLT1,¬DEF /∈ DEF. �

The language LSLT1,¬DEF is a witness language for the properness of the three inclusions stated in the

following lemmas.

Lemma 2.2 The proper inclusion MON ⊂ SLT1 holds.

Proof. We first prove that MON is included in SLT1. Let L be a monoidal language over an alphabet V .

Then L =V ∗. With [V,V,V,λ ], we have a representation of the language L as a strictly locally 1-testable

language. Hence, MON ⊆ SLT1.

A witness language for the properness is the language LSLT1,¬DEF which, according to Lemma 2.1,

belongs to the class SLT1 but not to DEF and not to MON because MON ⊆ DEF. �

Lemma 2.3 The proper inclusion COMB ⊂ SLT1 holds.

Proof. We first prove that COMB is included in SLT1. Let L be a combinational language over an

alphabet V . Then L = V ∗X for some subset X ⊆ V . With [V,V,X , /0], we have a representation of the

language L as a strictly locally 1-testable language. Hence, COMB ⊆ SLT1.

A witness language for the properness is the language LSLT1,¬DEF which, according to Lemma 2.1,

belongs to the class SLT1 but not to DEF and not to COMB because COMB ⊆ DEF. �

Lemma 2.4 The proper inclusion DEF ⊂ SLT holds.

Proof. We first prove DEF ⊆ SLT . Let L be a definite language over an alphabet V . Then L = Ds∪V ∗De

for some finite subsets Ds ⊂V ∗ and De ⊂V ∗. Let k = max{ |w| | w ∈ Ds ∪De }+1. Further, let

• F = {w | w ∈ L∩V≤k−1 } be the set of all words of L with a length smaller than k,

• B =V k and I =V k the set of all words over the alphabet V with a length of k,

• E =V ∗De ∩V k the set of all words of the set V ∗De with length k,

and L′ be the strictly locally k-testable language represented by [B, I,E,F]. We now prove that L = L′

holds.

We first show L ⊆ L′. Let w ∈ L. If |w| < k, then w ∈ F and, hence, w ∈ L′. Otherwise, w ∈ V ∗De

and there are words w0 and w1 such that w = w1w0 and w0 ∈V ∗De ∩V k (the word w0 is the suffix of w

of length k). Every subword of w of length k belongs to the set V k. Hence, the prefix of w of length k
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belongs to the set B, every proper infix of w of length k belongs to the set I, and the suffix w0 belongs to

the set E . Therefore, we have w ∈ L′ also in this case.

We now show L′ ⊆ L. Let w ∈ L′. If w ∈ F , then w ∈ L∩V≤k−1 and, hence, w ∈ L. Otherwise,

the length m = |w| of w is at least k and the word w is composed of m letters xi ∈ V for 1 ≤ i ≤ m

such that w = x1x2 . . .xm. Then we have for the prefix x1x2 . . .xk ∈ B, for each infix x j+1x j+2 . . .x j+k ∈ I

for 1 ≤ j ≤ m−1−k, and for the suffix xm−k+1xm−k+2 . . .xm ∈E . Therefore, xm−k+1xm−k+2 . . .xm ∈V ∗De

and x1x2 . . .xm−k ∈V ∗. Hence, w ∈V ∗De and w ∈ L.

Since L = L′ and L′ ∈ SLTk by construction, we also have that L ∈ SLTk and, thus, also L ∈ SLT.

A witness language for the properness of the inclusion DEF ⊆ SLT is the language LSLT1,¬DEF which,

according to Lemma 2.1, belongs to the class SLT1 and therefore also to SLT but not to DEF. �

The language LSLT1,¬DEF from Lemma 2.1 serves also partially for proving the incomparability of

the families of the strictly locally k-testable languages with the families of the finite languages, of the

nilpotent languages, and of the definite languages.

Lemma 2.5 The classes SLTk for k ≥ 1 are incomparable to the classes FIN, NIL, and DEF.

Proof. Due to the inclusion relations, it suffices to show that there is a language in the class SLT1 (which

belongs also to each other family SLTk for k > 1) but which is not definite (and hence neither nilpotent

nor finite) and that there are languages Lk (for k ≥ 1) which are finite (and, hence, nilpotent and definite)

but not strictly locally k-testable.

A language for the first case is LSLT1,¬DEF from Lemma 2.1 since LSLT1,¬DEF ∈ SLT1 \DEF.

Languages for the other incomparabilities are Lk = {a}k+1 for k ≥ 1. Every such language Lk is

finite. Let k be a natural number. Suppose that the language Lk is also strictly locally k-testable.

Then it is represented by [{a}k, /0,{a}k, /0]. But then, we also have ak ∈ Lk which is a contradiction.

Hence, Lk ∈ FIN \SLTk for k ≥ 1. �

The incomparabilies of the families of the strictly locally (k-)testable languages to the families UF

of the union-free languages, SUF of the suffix-closed languages, COMM of the commutative languages,

and CIRC of the circular languages follow, due to the inclusion relations, from the incomparabilities of

the classes UF, SUF, COMM, and CIRC to the classes COMB of the combinational languages and NC

of the non-counting languages which were proved in [14].

Regarding the class ORD of the ordered languages, we give the following relations without proofs1.

Lemma 2.6 The proper inclusion SLT1 ⊂ ORD holds. The classes SLTk for k ≥ 2 are incomparable to

the class ORD.

If we combine these results with those mentioned in [28], we obtain the following statement.

Theorem 2.7 The inclusion relations presented in Figure 1 hold. An arrow from an entry X to an entry Y

depicts the proper inclusion X ⊂ Y ; if two families are not connected by a directed path, then they are

incomparable.

An edge label in Figure 1 refers to a paper or a lemma in the present paper where the respective

inclusion is proved (it is not necessarily the first paper where the inclusion is already mentioned). The

incomparabilities which are not related to strictly locally testable languages are proved in [27].

1Proofs have been found by be the authors after the acceptance of this paper.
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Figure 1: Hierarchy of subregular language families

2.2 Contextual Grammars

Let F ∈ F be a family of languages. A contextual grammar with selection in F is a triple G = (V,P,A)
where

– V denotes an alphabet,

– P is a finite set of pairs (S,C) with a language S over some subset U of the alphabet V which

belongs to the family F with respect to the alphabet U and a finite set C ⊂V ∗×V ∗,

– A denotes a finite subset of V ∗.

The set V is called the basic alphabet; for a selection pair (S,C) ∈ P , the language S is called a

selection language and the set C is called a set of contexts of the grammar G; the elements of A are called

axioms.

We now define the derivation modes for contextual grammars with selection.

Let G = (V,P,A) be a contextual grammar with selection. The external derivation relation ==⇒
ex

is

defined as follows: a word x derives a word y if and only if there is a pair (S,C) ∈ P such that x ∈ S

and y = uxv for some pair (u,v) ∈C. The internal derivation relation ==⇒
in

is defined as follows: a word x

derives a word y if and only if there are words x1,x2,x3 ∈V ∗ such that x = x1x2x3 and a pair (S,C) ∈ P

such that x2 ∈ S and y = x1ux2vx3 for some pair (u,v) ∈C.

By
∗

==⇒
α

we denote the reflexive and transitive closure of the derivation relation ==⇒
α

for α ∈ {ex, in}.

The language generated externally or internally by the grammar G is defined as

Lα(G) =
{

z | x
∗

==⇒
α

z for some x ∈ A
}
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for α ∈ {ex, in}. If the derivation mode is known from the context, we omit the index α . For a family L

of languages, we denote by E C (L) and I C (L) the family of all languages generated externally and

internally, respectively, by contextual grammars with selection in L (where all selection languages belong

to the family L).

From the definition follows that the subset relation is preserved under the use of contextual grammars:

if we allow more, we do not obtain less.

Lemma 2.8 For any two language classes X and Y with X ⊆ Y , we have the inclusions

E C (X)⊆ E C (Y ) and I C (X)⊆ I C (Y ).

3 Results

3.1 External Contextual Grammars

When we speak about contextual grammars in this subsection, we mean contextual grammars with exter-

nal derivation (also called external contextual grammars). A language of an external contextual grammar

is a language which is externally generated.

In [4], contextual grammars were investigated where the selection languages are finite, monoidal,

combinational, definite, nilpotent, commutative, or suffix-closed and a hierarchy of the language fami-

lies generated was presented. In the papers [8, 9, 26], results on the power of external contextual gram-

mars with circular, ordered, union-free, or definite selection languages are given. The language families

generated by such systems were inserted into the hierarchy from [4]. Furthermore, subregular language

families Fn were considered and integrated which are obtained by restricting to n states, non-terminal

symbols, or production rules to accept or to generate regular languages ([28]). We consider here only

subregular families defined by structural properties (not resources).

We now present a witness language to prove a proper inclusion and incomparabilities regarding

ordered languages as selection languages.

Lemma 3.1 Let LORD,¬SLT = {a}∗∪{a}∗{b}{a}∗ ∪{c}{a}∗{b}{a}∗{c}. Then

LORD,¬SLT ∈ E C (ORD)\E C (SLT).

Proof. The language LORD,¬SLT can be generated by the contextual grammar

({a,b,c} ,{({a,b}∗,{(λ ,a),(a,λ )}),({a}∗{b}{a,b}∗ ,{(c,c)})} ,{λ ,b})

where the selection languages are ordered: For {a,b}∗, only one state is needed; the other selec-

tion language is accepted by a deterministic finite automaton where the transition function is given

by δ (z0,a) = z0 and δ (z0,b) = z1 = δ (z1,a) = δ (z1,b).
Assume that the language LORD,¬SLT can be generated by a contextual grammar with strictly lo-

cally testable selection languages. The subset {c}{a}∗{b}{a}∗{c} of LORD,¬SLT is infinite. There-

fore, there is an infinite selection language S ⊆ {a}∗{b}{a}∗ which is used to obtain words of the

set {c}{a}∗{b}{a}∗{c}. Hence, to S belongs some context (u,v) with u ∈ {c}{a}∗ and v ∈ {a}∗{c}.

If S is a strictly locally k-testable language, then S = [B, I,E,F] and ak ∈ B∩ I ∩E . Then, we have

also ak ∈ S. Therefore, a word from the set {c}{a}∗{c} is generated which does not belong to the

language LORD,¬SLT . This contradiction implies that LORD,¬SLT /∈ E C (SLT). �

We now prove the mentioned proper inclusion.
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Lemma 3.2 The proper inclusion E C (SLT1)⊂ E C (ORD) holds.

Proof. The inclusion E C (SLT1) ⊆ E C (ORD) follows from Lemma 2.6 and Lemma 2.8. A witness

language for the properness is LORD,¬SLT ∈ E C (ORD)\E C (SLT) from Lemma 3.1. �

Many incomparability results have been published in [4, 5, 28]. The only open questions are whether

the class E C (ORD) is incomparable to the classes E C (SLT) and E C (SLTk) for k ≥ 2. We have the fol-

lowing conjecture. If this proves to be true, then we have the incomparabilities together with Lemma 3.1.

Conjecture 3.3 There is a language LSLT2,¬ORD ∈ E C (SLT2)\E C (ORD).

Summarizing, we have the following result.

E C (REG)
[9]
= E C (UF)

E C (PS)

E C (NC)

E C (ORD)

E C (DEF)

E C (NIL)E C (COMB)

E C (MON)

E C (FIN)

E C (COMM)

E C (CIRC)

E C (SLT1)

E C (SLT2)

...

E C (SLT)

E C (SUF)

[4]

[5]
[4]

[4]

[4]

[4]

[28]

[26]

[28]

[28]

[9]

[9]

[28]

[5]

[5]

[5]

[5]

[5]

[5]

3.2

Figure 2: Hierarchy of language families by external contextual grammars with selection languages

defined by structural properties. An edge label refers to the paper or lemma where the respective inclusion

is proved.

Theorem 3.4 The inclusion relations presented in Figure 2 hold. An arrow from an entry X to an

entry Y depicts the proper inclusion X ⊂ Y ; the dashed arrow from E C (ORD) to E C (NC) indicates
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that it is not known so far whether the inclusion is proper or whether equality holds. With excep-

tion of the pairs (E C (ORD),E C (SLT)) and (E C (ORD),E C (SLTk)) for k ≥ 2, if two families X

and Y are not connected by a directed path, then X and Y are incomparable; in the exceptional cases,

E C (ORD) 6⊆ E C (SLT) and E C (ORD) 6⊆ E C (SLTk) for k ≥ 2 hold.

3.2 Internal Contextual Grammars

When we speak about contextual grammars in this subsection, we mean contextual grammars with inter-

nal derivation (also called internal contextual grammars). A language of an internal contextual grammar

is a language which is internally generated.

In [16], such contextual grammars were investigated where the selection languages belong to fami-

lies Fn which are obtained by restriction to n states or n non-terminal symbols, productions, or symbols

to accept or to generate regular languages. In [10], the research was continued and extended to the inves-

tigation of the effect of finite, monoidal, nilpotent, combinational, definite, ordered, regular commutative,

regular circular, regular suffix-closed, and union-free selection languages on the generative capacity of

internal contextual grammars. We consider here only subregular families defined by structural properties

(not resources).

In contrast to the external derivation mode, contextual grammars can internally apply a context in-

finitely often if it can be applied once. If a word contains a subword which belongs to a selection lan-

guage, also the word after inserting the context contains a subword (namely the same as before) which

belongs to this selection language. This difference has as a consequence that finite selection languages

not only yield finitely many words as in the case of contextual grammars working in the external mode.

Another consequence is that ‘outer’ parts of a word do not have to be added at the end of the derivation

process but can be produced at some time whereas ‘inner’ parts can be ‘blown up’ later. For this reason,

the results obtained for external contextual grammars are not of much help here.

According to Lemma 2.8, we have the inclusion I C (X) ⊆ I C (Y ) whenever we have the proper

inclusion X ⊂Y for two families of languages X and Y .

We now present witness languages for proving the properness of the inclusions

I C (COMB)⊂ I C (SLT1)⊂ I C (SLT2)⊂ ·· · ⊂ I C (SLTk)⊂ ·· · ⊂ I C (SLT)⊂ I C (NC)

and I C (DEF)⊂ I C (SLT).

Lemma 3.5 Let L = {acnbdn | n ≥ 0}. Then L ∈ I C (SLT1)\I C (COMB).

Proof. The internal contextual grammar ({a,b,c,d},{({b}+ ,{(c,d)})},{ab}) with the strictly locally

1-testable selection language {b}+ (which has a representation as [{b},{b},{b}, /0]) generates the lan-

guage L. Thus, L ∈ I C (SLT1).
Assume that L = L(G) for some internal contextual grammar G with combinational selection lan-

guages. Then, for sufficiently large n (which is larger than the sum of the longest length of axioms in G

and the maximum of |uv| for contexts (u,v) of G), we have a derivation x =⇒ acnbdn. Because x ∈ L

holds, the used context (α ,β ) contains no letter a and no letter b (otherwise, we can produce a word

with more than two occurrences of a or b), we have x = acmbdm, α = cn−m, β = dn−m, and the con-

text is wrapped around a subword ctbds for some numbers t and s with m ≥ t ≥ 0, m ≥ s ≥ 0. Since

the selection language C is combinational, we get acmbds ∈ C by ctbds ∈ C. Therefore, we have the

derivation x = acmbdsdm−s =⇒ αacmbdsβdm−s = cn−macmbdn, i. e., we can derive a word not in L.

Thus, L /∈ I C (COMB). �
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Lemma 3.6 Let n be a natural number with n ≥ 2 and

Ln = {amb2ncm | m ≥ n}∪{an−1bncn−1}.

Then Ln ∈ (I C (SLTn)∩I C (FIN))\I C (SLTn−1).

Proof. Let n be a natural number with n ≥ 2 and Ln the language mentioned in the claim. The lan-

guage Ln is generated by the contextual grammar

({a,b,c} ,{([{an} ,{a,b,c}n ,{cn} ],{(a,c)})} ,
{

anb2ncn,an−1bncn−1
}

)

with a selection language from the family SLTn and by

({a,b,c} ,
{

({b2n},{(a,c)})
}

,
{

anb2ncn,an−1bncn−1
}

)

with a finite selection language.

The language Ln is not generated by a contextual grammar where all selection languages belong to

the family SLTn−1. Assume the contrary. Since the subset {amb2ncm | m ≥ n} of Ln is infinite, there is

a selection language S = [B, I,E,F] used with a word apb2ncq for two natural numbers p ≥ 0 and q ≥ 0.

As S ∈ SLTn−1, we have bn−1 ∈ I. Then also the word apbncq belongs to the selection language which is

a subword of the word an−1bncn−1 ∈ Ln. Hence, another word with exactly n letters b would be generated

which is a contradiction to the form of the words in the language Ln. �

Lemma 3.7 Let L = {anbmcndm | m ≥ 1, n ≥ 1}. Then L ∈ I C (SLT1)\I C (DEF).

Proof. The language L can be generated by the contextual grammar

G = ({a,b,c,d} ,{(Sac,{(a,c)}),(Sbd ,{(b,d)})} ,{abcd})

with the strictly locally 1-testable selection languages Sac = {a}{b}∗{c} and Sbd = {b}{c}∗{d}:

Sac = [{a},{b},{c}, /0] and Sbd = [{b},{c},{d}, /0].

Assume that the language L can be generated by a contextual grammar G′ with definite selection lan-

guages. Let Si = Ai ∪V ∗Bi for 1 ≤ i ≤ q be the selection languages of G′. Further, let

p = max

{

|w|

∣

∣

∣

∣

∣

w ∈
q
⋃

i=1

(Ai ∪Bi)

}

.

Since the language L is infinite and the number of the letters a and b are unbounded in its words, there is a

word arbscrds ∈ L with r ≥ p and s≥ p such that from this word another one is generated. Hence, there is

a selection language Si with 1 ≤ i ≤ q which contains a word which is a subword of arbscrds. This word

is ar′bscr′′ with 1 ≤ r′ ≤ r and 1 ≤ r′′ ≤ r or bs′crds′′ with 1 ≤ s′ ≤ s and 1 ≤ s′′ ≤ s in order to maintain

the form of the words of the language. Since Si is definite and s− 1+ r′′ ≥ p or r − 1+ s′′ ≥ p, the

word bs−1cr′′ or cr−1ds′′ also belongs to the selection language Si. But then a letter a would be inserted

inside the b-block or a letter b would be inserted inside the c-block. In both cases, a word would be

generated which does not belong to the language L. Therefore, the language L cannot be generated by a

contextual grammar with definite selection languages. �

Lemma 3.8 Let L = {ap1 bap2 bap3+p1bap2 bap3 | pi ≥ 1, 1 ≤ i ≤ 3}. Then L ∈ I C (ORD)\I C (SLT).
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Proof. The language L can be generated by the contextual grammar

({a,b} ,{({a}∗{b}{a}∗{b}{a}∗,{(a,a)})} ,{ababaababa})

where the selection language is ordered since it is accepted by a deterministic finite automaton where

the transition function is given by the following table (the order is z0 � z1 � z2 � z3, start state is z0,

accepting state is z2):

δ z0 z1 z2 z3

a z0 z1 z2 z3

b z1 z2 z3 z3

Assume that the language L can be generated by a contextual grammar with strictly locally testable

selection languages. The length of each a-block is unbounded. Therefore, there is an infinite selection

language S ⊆ {a}∗{b}{a}∗{b}{a}∗ used where the length of the a-block between the two letters b is

unbounded and which has a context (al ,al) associated to it (otherwise, a word would be generated which

has not the required form of the words of the language L). If S is a strictly locally k-testable language,

then it contains with a word aqbarbas with q ≥ 0, r ≥ k, and s ≥ 0 also the word aqbarbarbas. Adding

the context (al ,al) around such a subword of a word of L would yield a word which does not belong to

the language L (a word with a wrong format). This contradiction implies that L /∈ I C (SLT). �

We now prove the proper inclusions mentioned above.

Theorem 3.9 The relations

I C (COMB)⊂ I C (SLT1)⊂ I C (SLT2)⊂ ·· · ⊂ I C (SLTk)⊂ ·· · ⊂ I C (SLT)⊂ I C (NC)

and I C (DEF)⊂ I C (SLT) hold.

Proof. The inclusions follow from the inclusions of the underlying language families (see [18, 21]) and

Lemma 2.8. The properness is shown by the witness languages in the previous lemmas:

I C (COMB)⊂ I C (SLT1) according to Lemma 3.5,

I C (SLT1)⊂ I C (SLT2)⊂ ·· · ⊂ I C (SLTk)⊂ ·· · ⊂ I C (SLT) due to Lemma 3.6,

I C (SLT)⊂ I C (NC) according to Lemma 3.8, since I C (ORD)⊆ I C (NC) ([28]),

I C (DEF)⊂ I C (SLT) due to Lemma 3.7, since I C (SLT1)⊂ I C (SLT).

�

Lemma 3.10 The proper inclusion I C (SLT1)⊂ I C (ORD) holds.

Proof. The inclusion I C (SLT1) ⊆ I C (ORD) follows from Lemma 2.6 and Lemma 2.8. A witness

language for the properness is the language L ∈ I C (ORD)\I C (SLT) from Lemma 3.8. �

The incomparabilities of the families I C (COMM) and I C (CIRC) with the families I C (SLTk)
for k ≥ 1 and I C (SLT) follow from the incomparabilities of the sets I C (COMM) and I C (CIRC)
with the sets I C (COMB) and I C (NC) shown in [28], since

I C (COMB)⊆ I C (SLT1)⊆ I C (SLT2)⊆ ·· · ⊆ I C (SLT)⊆ I C (NC).

Regarding I C (SUF), we know that there is a language in the set I C (COMB)\I C (SUF) ([10])

which also belongs to each set I C (SLTk) for k ≥ 1 and I C (SLT) due to the inclusion relations.
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However, it is still open whether there is a language in the set I C (SUF)\I C (NC) (which would not

belong to subsets of I C (NC) either). So, we cannot use the method as for the classes I C (COMM)
and I C (CIRC).

In the sequel, we show that, for every number k ≥ 1, there is a language which belongs to the

set I C (SUF) but not to I C (SLTk). We first note that the internal contextual grammar

({c,d},{({c,d}∗ ,{(c,d)})},{λ})

generates the Dyck language D over {c,d}. For k ≥ 1, we set

K′
k = { cm0 acm1 a . . .cmk acmk+1 bdm0+m1+···+mk+1 | mi ≥ 0, 0 ≤ i ≤ k+1},

K′′
k = K′

k ∪{cka2k−1}K′
k{dk},

and define Kk as the language obtained from K′′
k by inserting a word of D at any position.

Lemma 3.11 For all k ≥ 1, we have Kk ∈ I C (SUF)\I C (SLTk).

Proof. The internal contextual grammar

({a,b,c,d},{({ar b | 0 ≤ r ≤ k+1}∪{λ},{(c,d)})},{ak+1b,cka3kbdk}

with a suffix closed selection language generates the language Kk. Thus, Kk ∈ I C (SUF).

Assume that Kk = L(G) for some internal contextual grammar G where all selection languages are

strictly locally k-testable. Let n be sufficiently large. Then there is a derivation x =⇒ cnak+1bdn ∈ Kk.

Since x ∈ Kk holds, the used context (α ,β ) contains no letter a and no letter b. We have x = cmak+1bdm,

α = cn−m, β = dn−m, and the context is wrapped around a subword ctak+1bds for some numbers t and s

with m ≥ t ≥ 0 and m ≥ s ≥ 0.

Let t ≥ k. Since the strictly locally k-testable selection language C which is used contains the

word ctak+1bds, it also contains the word cka3kbds. Analogously, if s ≥ k, the selection language C

also contains the word cta3kbdk. Let k′ = min{k, t} and k′′ = min{k,s}. Then we have ck′a3kbdk′′ ∈ C.

Hence, we have the derivation

cka3kbdk =⇒ ck−k′αck′a3kbdk′′βdk−k′′ = ck+n−ma3kbdk+n−m

which produces a word not in Kk. Therefore, Kk /∈ I C (SLTk). �

Together with the result I C (COMB) \I C (SUF) 6= /0 (recalled from [10]) which also implies

that I C (SLTk)\I C (SUF) 6= /0 for all k ≥ 1, we obtain the following incomparability result.

Lemma 3.12 The families I C (SLTk) for k ≥ 1 are incomparable to the family I C (SUF).

It is left open, whether the family I C (SUF) is also incomparable to the family I C (SLT) or

whether it is a proper subset (since we know already that I C (SLT)\I C (SUF) 6= /0).

Now we investigate the relations of the families I C (FIN), I C (NIL), and I C (DEF) to the fami-

lies I C (SLTk) for k ≥ 1 as well as the relation of the family I C (SLT) to the family I C (ORD).

Lemma 3.13 The families I C (SLTk) for k ≥ 1 are incomparable to the families I C (FIN), I C (NIL),
and I C (DEF).
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Proof. Due to the inclusion relations, it suffices to show that there are languages

L0 ∈ I C (SLT1)\I C (DEF) and Ln ∈ I C (FIN)\I C (SLTn) for n ≥ 1.

From Lemma 3.7, we know for L0 = {anbmcndm | m ≥ 1, n ≥ 1} that L0 ∈ I C (SLT1) \I C (DEF).
From Lemma 3.6, we know Ln = { amb2ncm | m ≥ n } ∪ {an−1bncn−1} ∈ I C (FIN) \I C (SLTn−1)
for n ≥ 2. �

From [18] and by Lemma 2.8, we know the inclusion I C (SLT) ⊆ I C (NC); from [28], we have

the relation I C (ORD) ⊆ I C (NC). Here, we have shown with Lemma 3.8 that there is a language in

the family I C (ORD) which does not belong to the family I C (SLT). The question whether the fam-

ily I C (SLT) is a proper subset of the family I C (ORD) or whether these two families are incomparable

is left open.

Summarizing, we have the following result.

I C (REG)
[10]
= I C (UF)

I C (PS)

I C (NC)

I C (ORD)

I C (DEF)

I C (COMB)I C (NIL)

I C (MON)I C (FIN)

I C (SLT1)

I C (SLT2)

...

I C (SLT)

I C (SUF) I C (COMM)

I C (CIRC)

[10] [10][10]

[10]

[10]

[10]

[10]

[26]

[28]

[28]

[10]

[10]

[28]

3.9

3.9

3.9

3.9

3.9

3.9

3.10

Figure 3: Hierarchy of language families by internal contextual grammars with selection languages

defined by structural properties. An edge label refers to the paper where the respective inclusion is

proved.

Theorem 3.14 The inclusion relations presented in Figure 3 hold. An arrow from an entry X to an

entry Y depicts the proper inclusion X ⊂ Y ; the dashed arrow from I C (ORD) to I C (NC) indicates
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that it is not known so far whether the inclusion is proper or whether equality holds. If two fami-

lies are not connected by a directed path, then they are incomparable with the exception of the fam-

ily I C (SUF) and the families I C (ORD), I C (NC), and I C (SLT) where I C (ORD) 6⊆I C (SUF),
I C (NC) 6⊆I C (SUF), and I C (SLT) 6⊆I C (SUF) hold, and with exception of the family I C (ORD)
and the families I C (SLTk) for k ≥ 2 and I C (SLT), where I C (ORD) 6⊆ I C (SLTk) for k ≥ 2

and I C (ORD) 6⊆ I C (SLT) hold.

4 Conclusions

The inclusion relations obtained for the families of languages generated by external or internal contextual

grammars are in most cases the same as for the families where the selection languages are taken from.

For further research, the open questions already mentioned should be considered: What is the

relation between the families E C (SLT) and E C (ORD) as well as between the families I C (SLT)
and I C (ORD), especially, is there a language in the set E C (SLT2) \E C (ORD) or a language in the

set I C (SLT2) \I C (ORD)? Is the family I C (SUF) incomparable to the family I C (SLT) or is it

a proper subset? Additionally, it remains to investigate the relations of the family I C (SUF) to the

families I C (ORD) and I C (NC).

In [28], two independent hierarchies have been obtained for each type of contextual grammars, one

based on selection languages defined by structural properties (as considered in this present paper), the

other based on resources (number of non-terminal symbols, production rules, or states). These hierar-

chies should be merged.

The families of languages which are locally (k-)testable (not necessarily in the strict sense) are the

Boolean closure of the families in the strict sense. For contextual grammars where the selection lan-

guages are intersections or unions of strictly locally (k-)testable languages, nothing has to be done

since the classes SLTk for k ≥ 1 and SLT are closed under intersection and, for union in a selec-

tion pair (S1 ∪ S2,C), one can take several selection pairs (S1,C), (S2,C) instead. It remains to in-

vestigate the impact of locally (k-)testable selection languages which are the complement of a strictly

locally (k-)testable language.

Additionally, other subfamilies of regular languages could be taken into consideration. Recently, by

Jürgen Dassow, external contextual grammars have been investigated where the selection languages are

ideals or codes ([6, 7]). This reseach could be extended to internal contextual grammars with ideals or

codes as selection languages.
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