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We propose another interpretation of well-known derivatives computations from regular expressions,
due to Brzozowski, Antimirov or Lombardy and Sakarovitch, in order to abstract the underlying
data structures (e.g. sets or linear combinations) using the notion of monad. As an example of
this generalization advantage, we introduce a new derivation technique based on the graded module
monad.

We also extend operators defining expressions to any n-ary functions over value sets, such as
classical operations (like negation or intersection for Boolean weights) or more exotic ones (like
algebraic mean for rational weights).

Moreover, we present how to compute a (non-necessarily finite) automaton from such an ex-
tended expression, using the Colcombet and Petrisan categorical definition of automata. These cate-
gory theory concepts allow us to perform this construction in a unified way, whatever the underlying
monad.

Finally, to illustrate our work, we present a Haskell implementation of these notions using ad-
vanced techniques of functional programming, and we provide a web interface to manipulate concrete
examples.

1 Introduction

Regular expressions are a classical way to represent associations between words and value sets. As an
example, classical regular expressions denote sets of words and regular expressions with multiplicities
denote formal series. From a regular expression, solving the membership test (determining whether
a word belongs to the denoted language) or the weighting test (determining the weight of a word in
the denoted formal series) can be solved, following Kleene theorems [10, 17] by computing a finite
automaton, such as the position automaton [8, 2, 4, 5].

Another family of methods to solve these tests is the family of derivative computations, that does not
require the construction of a whole automaton. The common point of these techniques is to transform
the test for an arbitrary word into the test for the empty word, which can be easily solved in a purely
syntactical way (i.e. by induction over the structure of expressions). Brzozowski [3] shows how to
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compute, from a regular expression E and a word w, a regular expression dw(E) denoting the set of
words w′ such that ww′ belongs to the language denoted by E. Solving the membership test hence
becomes the membership test for the empty word in the expression dw(E). Antimirov [1] modifies this
method in order to produce sets of expressions instead of expressions, i.e. defines the partial derivatives
∂w(E) as a set of expressions the sum of which denotes the same language as dw(E). If the number of
derivatives is exponential w.r.t. the length |E| of E in the worst case1, the partial derivatives produce at
most a linear number of expressions w.r.t. |E|. Finally, Lombardy and Sakarovitch [12] extends these
methods to expressions with multiplicities.

It is well-known that these methods are based on a common operation, the quotient of languages.
Furthermore, Antimirov’s method can be interpreted as the derivation of regular expression with mul-
tiplicities in the Boolean semiring. However, the Brzozowski computation does not produce the same
expressions (i.e. equality over the syntax trees) as the Antimirov one.

Main contributions: In this paper, we present a unification of these computations by applying
notions of category theory to the category of sets, and show how to compute categorical automata as
defined in [6], by reinterpreting the work started in [15]. We make use of classical monads to model
well-known derivatives computations. Furthermore, we deal with extended expressions in a general
way: in this paper, expressions can support extended operators like complement, intersection, but also
any n-ary function (algebraic mean, extrema multiplications, etc.). The main difference with [15] is
that we formally state the languages and series that the expressions denote in an inherent way w.r.t. the
underlying monads.

More precisely, this paper presents:

• an extension of expressions to any n-ary function over the value set,

• a monadic generalization of expressions,

• a solution for the membership/weight test for these expressions,

• a computation of categorical derivative automata,

• a new monad that fits with the extension to n-ary functions,

• an illustration implemented in Haskell using advanced functional programming.

Motivation: The unification of derivation techniques is a goal by itself. Moreover, the formal tools
used to achieve this unification are also useful: Monads offer both theoretical and practical advantages.
Indeed, from a theoretical point of view, these structures allow the abstraction of properties and focus
on the principal mechanisms that allow solving the membership and weight problems. Besides, the
introduction of exotic monads can also facilitate the study of finiteness of derivated terms. From a
practical point of view, monads are easy to implement (even in some other languages than Haskell) and
allow us to produce compact and safe code. Finally, we can easily combine different algebraic structures
or add some technical functionalities (capture groups, logging, nondeterminism, etc.) thanks to notions
like monad transformers [9].

This paper is structured as follows. In Section 2, we gather some preliminary material, like algebraic
structures or category theory notions. We also introduce some functions well-known to the Haskell com-
munity that can allow us to reduce the size of our equations. We then structurally define the expressions
we deal with, the associated series and the weight test for the empty word in Section 3. In order to extend
this test to any arbitrary word, we first state in Section 4 some properties required by the monads we

1as far as rules of associativity, commutativity and idempotence of the sum are considered, possibly infinite otherwise.
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consider. Once this so-called support is determined, we show in Section 5 how to compute the deriva-
tives. The computation of derivative automata is explained in Section 6. A new monad and its associated
derivatives computation is given in Section 7. Finally, our implementation is presented in Section 8.

2 Preliminaries

We denote by S→ S′ the set of functions from a set S to a set S′. The notation λx→ f (x) is an equivalent
notation for a function f .

A monoid is a set S endowed with an associative operation and a unit element. A semiring is a
structure (S,×,+,1,0) such that (S,×,1) is a monoid, (S,+,0) is a commutative monoid, × distributes
over + and 0 is an annihilator for ×. A starred semiring is a semiring with a unary function ? such that

k? = 1+ k× k? = 1+ k?× k.
A K-series over the free monoid (Σ∗, ·,ε) associated with an alphabet Σ, for a semiring K where

K= (K,×,+,1,0), is a function from Σ∗ to K. The set of K-series can be endowed with the structure of
semiring as follows:

1(w) =

{
1 if w = ε,

0 otherwise,
0(w) = 0,

(S1 +S2)(w) = S1(w)+S2(w), (S1×S2)(w) = ∑
u·v=w

S1(u)×S2(v).

Furthermore, if S1(ε) = 0 (i.e. S1 is said to be proper), the star of S1 is the series defined by
(S1)

?(ε) = 1, (S1)
?(w) = ∑

n≤|w|,w=u1···un,u j 6=ε

S1(u1)×·· ·×S1(un).

Finally, for any function f in Kn→ K, we set:
( f (S1, . . . ,Sn))(w) = f (S1(w), . . . ,Sn(w)). (1)

A functor2 F associates with each set S a set F(S) and with each function f in S→ S′ a function
F( f ) from F(S) to F(S′) such that

F(id) = id, F( f ◦g) = F( f )◦F(g),
where id is the identity function and ◦ the classical function composition.
A monad3 M is a functor endowed with two (families of) functions

• pure, from a set S to M(S),

• bind, sending any function f in S→M(S′) to M(S)→M(S′),

such that the three following conditions are satisfied:
bind( f )(pure(s)) = f (s), bind(pure) = id,

bind(g)(bind( f )(m)) = bind(λx→ bind(g)( f (x)))(m).

Example 1. The Maybe monad associates:

• any set S with the set Maybe(S) = {Just(s) | s ∈ S}∪{Nothing}, where Just and Nothing are
two syntactic tokens allowing us to extend a set with one value;

• any function f with the function Maybe( f ) defined by
Maybe( f )(Just(s)) = Just( f (s)), Maybe( f )(Nothing) = Nothing

2More precisely, a functor over a subcategory of the category of sets.
3More precisely, a monad over a subcategory of the category of sets.
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• is endowed with the functions pure and bind defined by:

pure(s) = Just(s),
bind( f )(Just(s)) = f (s),

bind( f )(Nothing) = Nothing.

Example 2. The Set monad associates:

• with any set S the set 2S,

• with any function f the function Set( f ) defined by Set( f )(R) =
⋃

r∈R{ f (r)},

• is endowed with the functions pure and bind defined by:
pure(s) = {s}, bind( f )(R) =

⋃
r∈R

f (r).

Example 3. The LinComb(K) monad, for K= (K,×,+,1,0), associates:

• with any set S the set of K-linear combinations of elements of S, where a linear combination is
a finite (formal, commutative) sum of couples (denoted by �) in K × S where (k,s)� (k′,s) =
(k+ k′,s),

• with any function f the function LinComb(K)( f ) defined by
LinComb(K)( f )(R) = �

(k,r)∈R
(k, f (r)),

• is endowed with the functions pure and bind defined by:
pure(s) = (1,s), bind( f )(R) = �

(k,r)∈R
k⊗ f (r),

where k⊗R = �
(k′,r)∈R

(k× k′,r).

To compact equations, we use the following operators for any monad M:
f <$> s = M( f )(s), m>>= f = bind( f )(m).

If <$> can be used to lift unary functions to the monadic level, >>= and pure can be used to lift any
n-ary function f in S1×·· ·× Sn→ S, defining a function liftn sending S1×·· ·× Sn→ S to M(S1)×
·· ·×M(Sn)→M(S) as follows:

liftn( f )(m1, . . . ,mn) =m1 >>=(λ s1→ . . .

mn >>=(λ sn→ pure( f (s1, . . . ,sn))) . . .)

Let us consider the set 1 = {>} with only one element. The images of this set by some previously
defined monads can be evaluated as value sets classically used to weight words in association with
classical regular expressions. As an example, Maybe(1) and Set(1) are isomorphic to the Boolean set,
and any set LinComb(K)(1) can be converted into the underlying set of K. This property allows us to
extend in a coherent way classical expressions to monadic expressions, where the type of the weights is
therefore given by the ambient monad.

3 Monadic Expressions

As seen in the previous section, elements in M(1) can be evaluated as classical value sets for some
particular monads. Hence, we use these elements not only for the weights associated with words by
expressions, but also for the elements that act over the denoted series.

In the following, in addition to classical operators (+, · and ∗), we denote:

• the action of an element over a series by �,
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• the application of a function by itself.

Definition 1. Let M be a monad. An M-monadic expression E over an alphabet Σ is inductively defined
as follows:

E = a, E = ε, E = /0,

E = E1 +E2, E = E1 ·E2, E = E∗1 ,

E = α�E1, E = E1�α, E = f (E1, . . . ,En) ,
where a is a symbol in Σ, (E1, . . . ,En) are n M-monadic expressions over Σ, α is an element of M(1) and
f is a function from (M(1))n to M(1).

We denote by Exp(Σ) the set of monadic expressions over an alphabet Σ.

Example 4. As an example of functions that can be used in our extension of classical operators, one can
define the function ExtDist(x1,x2,x3) = max(x1,x2,x3)−min(x1,x2,x3) from N3 to N.

Similarly to classical regular expressions, monadic expressions associate a weight with any word.
Such a relation can be denoted via a formal series. However, before defining this notion, in order to
simplify our study, we choose to only consider proper expressions. Let us first show how to characterize
them by the computation of a nullability value.

Definition 2. Let M be a monad such that the structure (M(1),+,×, ?,1,0) is a starred semiring. The
nullability value of an M-monadic expression E over an alphabet Σ is the element Null(E) of M(1)
inductively defined as follows:

Null(ε) = 1, Null( /0) = 0,

Null(a) = 0, Null(E1 +E2) = Null(E1)+Null(E2),

Null(E1 ·E2) = Null(E1)×Null(E2), Null(E∗1 ) = Null(E1)
?,

Null(α�E1) = α×Null(E1), Null(E1�α) = Null(E1)×α,

Null( f (E1, . . . ,En)) = f (Null(E1), . . . ,Null(En)),
where a is a symbol in Σ, (E1, . . . ,En) are n M-monadic expressions over Σ, α is an element of M(1) and
f is a function from (M(1))n to M(1).

When the considered semiring is not a starred one, we restrict the nullability value computation to
expressions where a starred subexpression admits a null nullability value. In order to compute it, let us
consider the Maybe monad, allowing us to elegantly deal with such a partial function.

Definition 3. Let M be a monad such that the structure (M(1),+,×,1,0) is a semiring. The partial
nullability value of an M-monadic expression E over an alphabet Σ is the element PartNull(E) of
Maybe(M(1)) defined as follows:

PartNull(ε) = Just(1), PartNull( /0) = Just(0), PartNull(a) = Just(0),

PartNull(E1 +E2) = lift2(+)(PartNull(E1),PartNull(E2)),

PartNull(E1 ·E2) = lift2(×)(PartNull(E1),PartNull(E2)),

PartNull(E∗1 ) =

{
Just(1) if PartNull(E1) = Just(0),
Nothing otherwise,

PartNull(α�E1) = (λE→ α×E)<$>PartNull(E1),

PartNull(E1�α) = (λE→ E×α)<$>PartNull(E1),

PartNull( f (E1, . . . ,En)) = liftn( f )(PartNull(E1), . . . ,PartNull(En)),
where a is a symbol in Σ, (E1, . . . ,En) are n M-monadic expressions over Σ, α is an element of M(1) and
f is a function from (M(1))n to M(1).
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An expression E is proper if its partial nullability value is not Nothing, therefore if it is a value
Just(v); in this case, v is its nullability value, denoted by Null(E) (by abuse).
Definition 4. Let M be a monad such that the structure (M(1),+,×,1,0) is a semiring, and E be a M-
monadic proper expression over an alphabet Σ. The series S(E) associated with E is inductively defined
as follows:

S(ε)(w) =

{
1 if w = ε,

0 otherwise,
S( /0)(w) = 0, S(a)(w) =

{
1 if w = a,
0 otherwise,

S(E1 +E2) = S(E1)+S(E2), S(E1 ·E2) = S(E1)×S(E2), S(E∗1 ) = (S(E1))
?,

S(α�E1)(w) = α×S(E1)(w), S(E1�α)(w) = S(E1)(w)×α,

S( f (E1, . . . ,En)) = f (S(E1), . . . ,S(En)),
where a is a symbol in Σ, (E1, . . . ,En) are n M-monadic expressions over Σ, α is an element of M(1) and
f is a function from (M(1))n to M(1).

From now on, we consider the set Exp(Σ) of M-monadic expressions over Σ to be endowed with the
structure of a semiring, and two expressions denoting the same series to be equal. The weight associated
with a word w in Σ∗ by E is the value weightw(E) = S(E)(w). The nullability of a proper expression is
the weight it associates with ε , following Definition 3 and Definition 4.
Proposition 1. Let M be a monad such that the structure (M(1),+,×,1,0) is a semiring. Let E be an
M-monadic proper expression over Σ. Then:

Null(E) = weightε(E).
The previous proposition implies that the weight of the empty word can be syntactically computed

(i.e. inductively computed from a monadic expression). Now, let us show how to extend this computation
by defining the computation of derivatives for monadic expressions.

4 Monadic Supports for Expressions

A K-left-semimodule, for a semiring K = (K,×,+,1,0), is a commutative monoid (S,±,0) endowed
with a function . from K×S to S such that:

(k× k′). s = k . (k′ . s), (k+ k′). s = k . s± k′ . s,

k . (s± s′) = k . s± k . s′, 1. s = s, 0. s = k .0 = 0.

A K-right-semimodule can be defined symmetrically.
An operad [11, 13] is a structure (O,(◦ j) j∈N, id) where O is a graded set (i.e. O =

⋃
n∈N On), id is an

element of O1, ◦ j is a function defined for any three integers (i, j,k)4 with 0 < j≤ k in Ok×Oi→Ok+i−1
such that for any elements p1 ∈ Om, p2 ∈ On, p3 ∈ Op:

∀0 < j ≤ m, id◦1 p1 = p1 ◦ j id = p1,

∀0 < j ≤ m,0 < j′ ≤ n, p1 ◦ j (p2 ◦ j′ p3) = (p1 ◦ j p2)◦ j+ j′−1 p3,

∀0 < j′ ≤ j ≤ m,(p1 ◦ j p2)◦ j′ p3 = (p1 ◦ j′ p3)◦ j+p−1 p2.
Combining these compositions ◦ j, one can define a composition ◦ sending Ok ×Oi1 × ·· · ×Oik to
Oi1+···+ik : for any element (p,q1, . . . ,qk) in Ok×Ok,

p◦ (q1, . . . ,qk) = (· · ·((p◦k qk)◦k−1 qk−1 · · ·) · · ·)◦1 q1.

4every couple (i,k) unambiguously defines the domain and codomain of a function ◦ j
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Conversely, the composition ◦ can define the compositions ◦ j using the identity element: for any two
elements (p,q) in Ok×Oi, for any integer 0 < j ≤ k:

p◦ j q = p◦ (id, . . . , id︸ ︷︷ ︸
j−1 times

,q, id, . . . , id︸ ︷︷ ︸
k− j times

).

As an example, the set of n-ary functions over a set, with the identity function as unit, forms an operad.
A module over an operad (O,◦, id) is a set S endowed with a function > from On×Sn to S such that

f > ( f1 > (s1,1, . . . ,s1,i1), . . . , fn > (sn,1, . . . ,sn,in))

= ( f ◦ ( f1, . . . , fn))> (s1,1, . . . ,s1,i1 , . . . ,sn,1, . . . ,sn,in).
The extension of the computation of derivatives could be performed for any monad. Indeed, any

monad could be used to define well-typed auxiliary functions that mimic the classical computations.
However, some properties should be satisfied in order to compute weights equivalently to Definition 4.
Therefore, in the following we consider a restricted kind of monads.

A monadic support is a structure (M,+,×,1,0,±,0,n,.,/,>) satisfying:
• M is a monad,

• R= (M(1),+,×,1,0) is a semiring,

• M= (M(Exp(Σ)),±,0) is a monoid,

• (M,n) is a Exp(Σ)-right-semimodule,

• (M,.) is a R-left-semimodule,

• (M,/) is a R-right-semimodule,

• (M(Exp(Σ)),>) is a module for the operad of the functions over M(1).
An expressive support is a monadic support (M,+,×,1,0,±,0,n,.,/,>) endowed with a function
toExp from M(Exp(Σ)) to Exp(Σ) satisfying the following conditions:

weightw(toExp(m)) = m>>=weightw (2)

toExp(mnF) = toExp(m) ·F, (3)

toExp(m±m′) = toExp(m)+toExp(m′), (4)

toExp(m. x) = toExp(m)� x, (5)

toExp(x/m) = x�toExp(m), (6)

toExp( f > (m1, . . . ,mn)) = f (toExp(m1), . . . ,toExp(mn)). (7)
Let us now illustrate this notion with three expressive supports that will allow us to model well-known
derivatives computations.
Example 5 (The Maybe support).

toExp(Nothing) = 0, toExp(Just(E)) = E,

Nothing+m = m,

m+Nothing= m,

Just(>)+Just(>) = Just(>),

Nothing×m = Nothing,

m×Nothing= Nothing,

Just(>)×Just(>) = Just(>),
Nothing±m = m, m±Nothing= m, Just(E)±Just(E ′) = Just(E +E ′),

1 = Just(>), 0 = Nothing, 0 = Nothing,

mnF = (λE→ E ·F)<$>m,

m.m′ = m>>=(λx→ m′), m/m′ = m′>>=(λx→ m),

f > (m1, . . . ,mn) = pure( f (toExp(m1), . . . ,toExp(mn))).
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Example 6 (The Set support).
toExp({E1, . . . ,En}) = E1 + · · ·+En,

+= ∪, ×= ∩, ±= ∪, 1 = {>}, 0 = /0, 0 = /0,

mnF = (λE→ E ·F)<$>m,

m.m′ = m>>=(λx→ m′), m/m′ = m′>>=(λx→ m),

f > (m1, . . . ,mn) = pure( f (toExp(m1), . . . ,toExp(mn))).

Example 7 (The LinComb(K) support).
toExp((k1,E1)� · · ·� (kn,En)) = k1�E1 + · · ·+ kn�En,

+=�, (k,>)× (k′,>) = (k× k′,>), 1 = (1,>), 0 = (0,>),
±=�, 0 = (0,>),

mnF = (λE→ E ·F)<$>m,

m.m′ = m>>=(λx→ m′), m/ k = (λE→ E� k)<$>m,

f > (m1, . . . ,mn) = pure( f (toExp(m1), . . . ,toExp(mn))).

5 Monadic Derivatives

In the following, (M,+,×,1,0,±,0,n,.,/,toExp) is an expressive support.

Definition 5. The derivative of an M-monadic expression E over Σ w.r.t. a symbol a in Σ is the element
da(E) in M(Exp(Σ)) inductively defined as follows:

da(ε) = 0, da( /0) = 0, da(b) =

{
pure(ε) if a = b,
0 otherwise,

da(E1 +E2) = da(E1)±da(E2), da(E∗1 ) = da(E1)nE∗1 ,

da(E1 ·E2) = da(E1)nE2±Null(E1).da(E2),

da(α�E1) = α .da(E1), da(E1�α) = da(E1)/α,

da( f (E1, . . . ,En)) = f > (da(E1), . . . ,da(En))
where b is a symbol in Σ, (E1, . . . ,En) are n M-monadic expressions over Σ, α is an element of M(1) and
f is a function from (M(1))n to M(1).

The link between derivatives and series can be stated as follows, which is an alternative description
of the classical quotient.

Proposition 2. Let E be an M-monadic expression over an alphabet Σ, a be a symbol in Σ and w be a
word in Σ∗. Then:

weightaw(E) = da(E)>>=weightw.

Proof. Let us proceed by induction over the structure of E. All the classical cases (i.e. the function
operator left aside) can be proved following the classical methods ([1, 3, 12]). Therefore, let us consider
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this last case.
da( f (E1, . . . ,En))>>=weightw

= weightw(toExp(da( f (E1, . . . ,En)))) (Eq (2))

= weightw(toExp( f > (da(E1), . . . ,da(En))) (Def 5))

= weightw( f (toExp(da(E1)), . . . ,toExp(da(En)))) (Eq (7))

= f (weightw(toExp(da(E1))), . . . ,weightw(toExp(da(En)))) (Def 4,Eq (1))

= f (da(E1)>>=weightw, . . . ,da(En)>>=weightw) (Eq (2))

= f (weightaw(E1), . . . ,weightaw(En)) (Ind. hyp.)

= weightaw( f (E1, . . . ,En)) (Def 4,Eq (1))

Let us define how to extend the derivative computation from symbols to words, using the monadic
functions.

Definition 6. The derivative of an M-monadic expression E over Σ w.r.t. a word w in Σ∗ is the element
dw(E) in M(Exp(Σ)) inductively defined as follows:

dε(E) = pure(E), da·v(E) = da(E)>>=dv,
where a is a symbol in Σ and v a word in Σ∗.

Finally, it can be easily shown, by induction over the length of the words, following Proposition 2,
that the derivatives computation can be used to define a syntactical computation of the weight of a word
associated with an expression.

Theorem 1. Let E be an M-monadic expression over an alphabet Σ and w be a word in Σ∗. Then:
weightw(E) = dw(E)>>=Null.

Notice that, restraining monadic expressions to regular ones,

• the Maybe support leads to the classical derivatives [3],

• the Set support leads to the partial derivatives [1],

• the LinComb support leads to the derivatives with multiplicities [12].

Example 8. Let us consider the function ExtDist defined in Example 4 and the LinComb(N)-monadic
expression E = ExtDist(a∗b∗+b∗a∗,b∗a∗b∗,a∗b∗a∗).

da(E) = ExtDist(a∗b∗+a∗,a∗b∗,a∗b∗a∗+a∗)

daa(E) = ExtDist(a∗b∗+a∗,a∗b∗,a∗b∗a∗+2�a∗)

daaa(E) = ExtDist(a∗b∗+a∗,a∗b∗,a∗b∗a∗+3�a∗)

daab(E) = ExtDist(b∗,b∗,b∗a∗)

weightaaa(E) = daaa(E)>>=Null

= ExtDist(1+1,1,1+3) = 4−1 = 3

weightaab(E) = daab(E)>>=Null= ExtDist(1,1,1) = 0

In the next section, we show how to compute the derivative automaton associated with an expression.

6 Automata Construction

A category C is defined by:
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• a class ObjC of objects,

• for any two objects A and B, a set HomC (A,B) of morphisms,

• for any three objects A, B and C, an associative composition function ◦C in HomC (B,C) −→
HomC (A,B)−→ HomC (A,C),

• for any object A, an identity morphism idA in HomC (A,A), such that for any morphisms f in
HomC (A,B) and g in HomC (B,A), f ◦C idA = f and idA ◦C g = g.

Given a category C , a C -automaton is a tuple (Σ, I,Q,F, i,δ , f ) where

• Σ is a set of symbols (the alphabet),

• I is the initial object, in Obj(C ),

• Q is the state object, in Obj(C ),

• F is the final object, in Obj(C ),

• i is the initial morphism, in HomC (I,Q),

• δ is the transition function, in Σ−→ HomC (Q,Q),

• f is the value morphism, in HomC (Q,F).

The function δ can be extended as a monoid morphism from the free monoid (Σ∗, ·,ε) to the mor-
phism monoid (HomC (Q,Q),◦C , idQ), leading to the following weight definition.

The weight associated by a C -automaton A = (Σ, I,Q,F, i,δ , f ) with a word w in Σ∗ is the morphism
weight(w) in HomC (I,F) defined by

weight(w) = f ◦C δ (w)◦C i.
If the ambient category is the category of sets, and if I = 1, the weight of a word is equivalently an

element of F . Consequently, a deterministic (complete) automaton is equivalently a Set-automaton with
1 as the initial object and B as the final object.

Given a monad M, the Kleisli composition of two morphisms f ∈HomC (A,B) and g ∈HomC (B,C)
is the morphism ( f >=>g)(x) = f (x)>>=g in HomC (A,C). This composition defines a category, called
the Kleisli category K (M) of M, where:

• the objects are the sets,

• the morphisms between two sets A and B are the functions between A and M(B),

• the identity is the function pure.

Considering these categories:

• a deterministic automaton is equivalently a K (Maybe)-automaton,

• a nondeterministic automaton is equivalently a K (Set)-automaton,

• a weighted automaton over a semiring K is equivalently a K (LinComb(K))-automaton,

all with 1 as both the initial object and the final object.
Furthermore, for a given expression E, if i = pure(E), δ (a)(E ′) = da(E ′) and f = Null, we can

compute the well-known derivative automata using the three previously defined supports, and the acces-
sible part of these automata are finite ones as far as classical expressions are concerned [3, 1, 12].

More precisely, extended expressions can lead to infinite automata, as shown in the next example.
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Example 9. Considering the computations of Example 8, it can be shown that
dan(E) = ExtDist(a∗b∗+a∗,a∗b∗,a∗b∗a∗+n�a∗).

Hence, there is not a finite number of derivated terms, that are the states in the classical derivative
automaton. This infinite automaton is represented in Figure 1, where the final weights of the states are
represented by double edges. The sink states are omitted.

ExtDist(a∗b∗+b∗a∗,b∗a∗b∗,a∗b∗a∗)

ExtDist(a∗b∗+a∗,a∗b∗,a∗b∗a∗+a∗)

ExtDist(a∗b∗+a∗,a∗b∗,a∗b∗a∗+2�a∗) ExtDist(b∗,b∗,b∗a∗)

ExtDist(0,0,a∗)

ExtDist(b∗+b∗a∗,b∗a∗b∗+b∗,b∗a∗)

ExtDist(b∗+b∗a∗,b∗a∗b∗+2�b∗,b∗a∗)

ExtDist(a∗,a∗b∗,a∗)

ExtDist(0,b∗,0)
ExtDist(a∗b∗+a∗,a∗b∗,a∗b∗a∗+n�a∗)

ExtDist(b∗+b∗a∗,b∗a∗b∗+n�b∗,b∗a∗)

1
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Figure 1: The (infinite) derivative weighted automaton associated with E.

In the following section, let us show how to model a new monad in order to solve this problem.

7 The Graded Module Monad

Let us consider an operad O= (O,◦, id) and the association sending:
• any set S to

⋃
n∈N On×Sn,

• any f in S→ S′ to the function g in
⋃

n∈N On×Sn→
⋃

n∈N On×S′n:
g(o,(s1, . . . ,sn)) = (o,( f (s1), . . . , f (sn)))

It can be checked that this is a functor, denoted by GradMod(O). Moreover, it forms a monad considering
the two following functions:

pure(s) = (id,s),

(o,(s1, . . . ,sn))>>= f = (o◦ (o1, . . . ,on),(s1,1, . . . ,s1,i1 , . . . ,sn,1, . . . ,sn,in))
where f (s j) = (o j,s j,1, . . . ,s j,i j). However, notice that GradMod(O)(1) cannot be easily evaluated as a
value space. Thus, let us compose it with another monad. As an example, let us consider a semiring
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K = (K,×,+,1,0) and the operad O of the n-ary functions over K. Hence, let us define the functor5

GradComb(O,K) that sends S to GradMod(O)(LinComb(K)(S)).

To show that this combination is a monad, let us first define a function α sending GradComb(O,K)(S)
to GradMod(O)(S). It can be easily done by converting a linear combination into an operadic combina-
tion, i.e. an element in GradMod(O)(S), with the following function toOp:

toOp((k1,s1)� · · ·� (kn,sn))

= (λ (x1, . . . ,xn)→ k1× x1 + · · ·+ kn× xn,(s1, . . . ,sn)),

α(o,(L1, . . . ,Ln)) = (o◦ (o1, . . . ,on),(s1,1, . . . ,s1,i1 , . . . ,sn,1, . . . ,sn,in))
where toOp(L j) = (o j,(s j,1, . . . ,s j,i j)).

Consequently, we can define the monadic functions as follows:
pure(s) = (id,(1,s)),

(o,(L1, . . . ,Ln))>>= f = α(o,(L1, . . . ,Ln))>>= f
where the second occurrence of >>= is the monadic function associated with the monad GradMod(O).

Let us finally define an expressive support for this monad:
toExp(o,(L1, . . . ,Ln)) = o(toExp(L1), . . . ,toExp(Ln)),

(o,(L1, . . . ,Ln))+(o′,(L ′
1, . . . ,L

′
n′)) = (o+o′,(L1, . . . ,Ln,L

′
1, . . . ,L

′
n′))

(o,(L1, . . . ,Ln))× (o′,(L ′
1, . . . ,L

′
n′)) = (o×o′,(L1, . . . ,Ln,L

′
1, . . . ,L

′
n′))

±=+, 1 = (id,(1,>)), 0 = (id,(0,>)), 0 = (id,(0,>)),
mnF = pure(toExp(m) ·F),

(o,(M1, . . . ,Mk)). (o′,(L1, . . . ,Ln)) = (o(M1, . . . ,Mk)×o′,(L1, . . . ,Ln)),

(o,(L1, . . . ,Ln))/ (o′,(M1, . . . ,Mk)) = (o×o′(M1, . . . ,Mk),(L1, . . . ,Ln))

f > ((o1,(L1,1, . . . ,L1,i1)), . . . ,(on,(Ln,1, . . . ,Ln,in)))

= ( f ◦ (o1, . . . ,on),(L1,1, . . . ,L1,i1 , . . . ,Ln,1, . . . ,Ln,in))

where (o+o′)(x1, . . . ,xn+n′) = o(x1, . . . ,xn)+o′(xn+1, . . . ,xn+n′)

(o×o′)(x1, . . . ,xn+n′) = o(x1, . . . ,xn)×o′(xn+1, . . . ,xn+n′)

Example 10. Let us consider that two elements in GradComb(O,K)(Exp(Σ)) are equal if they have the
same image by toExp. Let us consider the expression E = ExtDist(a∗b∗+ b∗a∗,b∗a∗b∗,a∗b∗a∗) of

5it is folk knowledge that the composition of two functors is a functor.
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Example 8.
da(E) = ExtDist> ((+,(a∗b∗,a∗)),(id,a∗b∗),(+,(a∗b∗a∗,a∗)))

= (ExtDist◦ (+, id,+),(a∗b∗,a∗,a∗b∗,a∗b∗a∗,a∗))

daa(E) = (ExtDist◦ (+, id,+◦ (+, id)),(a∗b∗,a∗,a∗b∗,a∗b∗a∗,a∗,a∗))

= (ExtDist◦ (+, id,+◦ (id,2×)),(a∗b∗,a∗,a∗b∗,a∗b∗a∗,a∗))
daaa(E) = (ExtDist◦ (+, id,+◦ (id,3×)),(a∗b∗,a∗,a∗b∗,a∗b∗a∗,a∗))
daab(E) = (ExtDist◦ (+, id,+),(b∗, /0,b∗,b∗a∗, /0))

= (ExtDist,(b∗,b∗,b∗a∗))

weightaaa(E) = daaa(E)>>=Null

= ExtDist◦ (+, id,+)(1,1,1,1,3)

= ExtDist(1+1,1,1+3) = 4−1 = 3

weightaab(E) = daab(E)>>=Null= ExtDist(1,1,1) = 0
Using this monad, the number of derivated terms, that is the number of states in the associated derivative
automaton, is finite. Indeed, the computations are absorbed in the transition structure. This automaton
is represented in Figure 2. Notice that the dashed rectangle represent the functions that are composed
during the traversal associated with a word. The final weights are represented by double edges. The sink
states are omitted. The state b∗ is duplicated to simplify the representation.
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ExtDist(a∗b∗+b∗a∗,b∗a∗b∗,a∗b∗a∗)
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Figure 2: The Associated Derivative Automaton of ExtDist(a∗b∗+b∗a∗,b∗a∗b∗,a∗b∗a∗).

However, notice that not every monadic expression produces a finite set of derivated terms, as shown
in the next example.

Example 11. Let us consider the expression E of Example 8 and the expression F = E · c∗. It can be
shown that

dan(F) = toExp(dan(E)) · c∗

= ExtDist(a∗b∗+a∗,a∗b∗,a∗b∗a∗+n�a∗) · c∗.

The study of the necessary and sufficient conditions of monads that lead to a finite set of derivated
terms is one of the next steps of our work.

8 Haskell Implementation

The notions described in this paper have been implemented in Haskell, as follows:

• The notion of monad over a sub-category of sets is a typeclass using the Constraint kind to specify
a sub-category;

• n-ary functions and their operadic structures are implemented using fixed length vectors, the size
of which is determined at compilation using type level programming;
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• The notion of graded module is implemented through an existential type to deal with unknown
arities: Its monadic structure is based on an extension of heterogeneous lists, the graded vectors,
typed w.r.t. the list of the arities of the elements it contains;

• The parser and some type level functions are based on dependently typed programming with sin-
gletons [7], allowing, for example, determining the type of the monads or the arity of the functions
involved at run-time;

• An application is available here [14, 16] illustrating the computations:

– the backend uses servant to define an API hosted by Heroku;
– the frontend is defined using Reflex, a functional reactive programming engine and cross

compiled in JavaScript with GHCJS.

As an example, the monadic expression of the previous examples can be entered in the web appli-
cation as the input ExtDist(a*.b*+b*.a*,b*.a*.b*,a*.b*.a*).

9 Conclusion and Perspectives

In this paper, we achieved the first step of our plan to unify the derivative computation over word expres-
sions. Monads are indeed useful tools to abstract the underlying computation structures and thus may
allow us to consider some other functionalities, such as capture groups via the well-known StateT monad
transformer [9], that we plan to study in a future work. We also aim to study the conditions satisfying
by monads that lead to finite set of derivated terms, and to extend this method to tree expressions using
enriched categories.
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