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Membrane computing and P systems are a paradigm of massively parallel natural computing intro-
duced by Gheorghe Păun in 1999, inspired by the structure of the living cell and by its biochemical
reactions. In spite of this explicit biological motivation, P systems have not been extensively used in
modelling real-world systems. To confirm this intuition, we establish a state of the art investigation
comparing the use of P systems to that of Boolean networks in this line of research. We then propose
to use P systems as a tool for setting up formal frameworks to reason about other formalisms, and we
introduce Boolean P systems, specifically tailored for capturing sequential controllability of Boolean
networks. We show how to tackle some technical challenges and prove that sequential controllability
properly embeds in the framework of Boolean P systems.
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1 Introduction

Membrane computing and P systems are a paradigm of massively parallel computing introduced more
than two decades ago by Gheorghe Păun [19], and inspired by the structure and function of the biologi-
cal cell. Following the example of the cell, a membrane (P) system is a hierarchical membrane structure
defining compartments containing multisets of objects, representing the biochemical species in an ab-
stract sense. Multiset rewriting rules are attached to every membrane to represent the reactions. Over
the last two decades, a considerable number of variants of P systems have been introduced, inspired by
various aspects of cellular life, or capturing specific computing properties. For comprehensive overviews
we refer the reader to [13, 20].

Even though P systems resemble the organisation of a “fundamental unit” of modern life, their use
in representing actual biological knowledge has historically been scarce. Furthermore, one of the salient
examples of P systems in modelling are the works by the Sevillan team (e.g. [3, 4, 6, 7, 12, 23, 24]),
in which P systems represent ecosystems, an undeniably biological structure, but far removed from the
organisation of a cell.

To give more substance to this impression of underuse, we performed a comparative bibliographic
study of the literature using P systems to represent any biological knowledge on the one hand, and on the
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other hand the publications in the conference Computational Methods in Systems Biology (e.g. [5]) using
Boolean networks to represent biological knowledge. A Boolean network is a set of Boolean variables
equipped with Boolean update functions, describing how to compute the new value of the variables
from their current values. While Boolean networks represent well gene regulatory networks (e.g. [25]),
their structure arguably resembles less the actual organisation of cellular processes. Our study suggests
nonetheless that Boolean networks tend to be considerably more popular than P systems for representing
these processes. We give the details of this comparison in the appendix.

The main message of this paper is that the potential of P systems to represent biological knowledge
seems to remain relatively unexplored, but that one can already rely on P systems as a flexible formal
framework providing powerful tools for studying other abstract structures. As an example, we show how
to construct a P system variant which naturally captures the semantics of sequentially controlled Boolean
networks. In the future, this construction will allow for more straightforward proofs of some properties
of interest.

This paper is structured as follows. Sections 2 and 3 recall the notions of P systems as well as Boolean
networks, Boolean control networks, and sequential controllability. Section 4 introduces Boolean P
systems. Section 5 introduces quasimodes to bridge between the dynamics of Boolean networks and
Boolean P systems, and Section 6 formally proves that Boolean P systems capture Boolean networks.
Finally, Sections 7 and 8 show how Boolean P systems explicitly embed sequential controllability of
Boolean networks.

2 Preliminaries

To ensure unambiguous notation, in this section we briefly recall some basic notions and concepts of
formal language theory and membrane computing. For a detailed reference on both, we suggest [20].

For any alphabet V , V ◦ is the set of multisets over V , and V ∗ denotes the set of all strings over V . For
any u ∈V ∗ and any u ∈V ◦, |u| is the length of the string u and the number of elements in the multiset u,
respectively. For V ◦ and V ∗ we use ε to denote the empty multiset and empty string, respectively.

We use 2V to denote the set of all subsets of V (the power set of V ). Given two sets A and B, by BA

we denote the set of all functions f : A→ B.
An indicator function of a subset U ⊆ V is the function iU : V → {0,1} with the property that U =

{a | iU(a) = 1}. In this paper, we will often use the same symbol to refer to a subset and to its indicator
function.

A Boolean variable is a variable which may only have values in the Boolean domain {0,1}.

2.1 P Systems

Definition 1. A P system is a construct

Π = (O,T,µ,w1, . . . ,wn,R1, . . .Rn,hi,ho),

where O is the alphabet of objects, T ⊆O is the alphabet of terminal objects, µ is the membrane structure
injectively labelled by the numbers from {1, . . . ,n} and usually given by a sequence of correctly nested
brackets, wi are the multisets giving the initial contents of each membrane i (1≤ i≤ n), Ri is the finite set
of rules associated with membrane i (1≤ i≤ n), and hi and ho are the labels of the input and the output
membranes, respectively (1≤ hi ≤ n, 1≤ ho ≤ n).
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Quite often the rules associated with membranes are multiset rewriting rules (or special cases of such
rules). Multiset rewriting rules have the form u→ v, with u ∈ O◦ \ {ε} and v ∈ O◦. If |u| = 1, the rule
u→ v is called non-cooperative; otherwise it is called cooperative. In communication P systems, rules
are additionally allowed to send symbols to the neighbouring membranes. In this case, for rules in Ri,
v ∈ (O×Tari)

◦, where Tari contains the symbols out (corresponding to sending the symbol to the parent
membrane), here (indicating that the symbol should be kept in membrane i), and inh (indicating that the
symbol should be sent into the child membrane h of membrane i). When writing out the multisets over
O×Tari, the indication here is often omitted.

In P systems, rules often are applied in a maximally parallel way: in one derivation step, only a
non-extendable multiset of rules can be applied. The rules are not allowed to consume the same instance
of a symbol twice, which creates competition for objects and may lead to the P system choosing non-
determinstically between the maximal collections of rules applicable in one step. Yet rules may also
be applied in a sequential way, i.e. in every derivation step one rule which is applicable to the current
configuration is carried out. Moreover, when any multiset of applicable rules may be applied, we speak
of the asynchronous derivation mode.

A computation of a P system is traditionally considered to be a sequence of configurations it can
successively visit by applying the applicable rules in the given derivation mode (maximally parallel,
sequential, asynchronous), stopping at a halting configuration. A halting configuration is a configuration
in which no rule can be applied any more, in any membrane. The result of a computation in a P system
Π as defined above is the contents of the output membrane ho projected over the terminal alphabet T .

Example 1. Figure 1 shows the graphical representation of the P system formally given by

Π = ({a,b,c},{a,b}, [1[2]2]1,R1,R2,1,2),
R1 = /0,
R2 = {c→ c(a,out), c→ c(b,out), c→ ε}.

c→ c(a,out)
c→ c(b,out)
c→ ε

c
2

1

Figure 1: An example of a simple P system.

In any derivation mode (maximally parallel, sequential, asynchronous), Π may apply one of the rules
c→ c(a,out) or c→ c(b,out), thereby keeping the object c in membrane 2 and at the same time sending
out to membrane 1 one object a or b, respectively.

After k such derivation steps, in membrane 1 a multiset u ∈ {a,b}◦ with |u| = k has been obtained.
Now applying the final rule c→ ε , we obtain the halting configuration with no objects in membrane 2
and the multiset u in membrane 1 as the result of the computation in Π.
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3 Sequential Controllability of Boolean Networks

In this section we briefly recall the definition of Boolean networks, the extension of the formalism with
control inputs, and the problem of sequential controllability. For a more in-depth coverage of these
definitions and problems, as well as the underlying biomedical motivations, we refer the reader to [18].

3.1 Boolean Networks

Definition 2. Let X be a finite alphabet of Boolean variables. A state of these variables is any function s
in {0,1}X , i.e., s : X →{0,1}, assigning a Boolean value to every single variable in X. By SX we denote
the set of all states s in {0,1}X .

An update function is a Boolean function computing a Boolean value from a state: f : s→{0,1}. A
Boolean network over X is a function F : SX → SX , in which the update function for a variable x ∈ X is
computed as a projection of F: fx(s) = F(s)x.

A Boolean network F computes trajectories on states by updating its variables according to a (Bool-
ean) mode M ⊆ 2X , defining the variables which may be updated together in a step. Typical examples
of modes are the synchronous mode syn = {X} and the asynchronous mode asyn = {{x} | x ∈ X}. A
trajectory τ of a Boolean network under a given mode M is any finite sequence of states τ = (si)0≤i≤n

such that F can derive si+1 from si under the mode M.
An attractor is a set of mutually reachable states A⊆ SX of F with the property that F cannot escape

from A. Since the set of states SX is finite, any run of a Boolean network, under any mode, must end up
in an attractor. These are called the asymptotic behaviors.

Remark 1. These definitions are quite different from similar definitions generally used in P systems.
The asynchronous mode in Boolean networks only allows updating one variable at a time, while the
asynchronous mode in P systems generally allows any combinations of updates. Furthermore, no halting
conditions are considered in Boolean networks, and the asymptotic behavior is often looked at as the
important part of the dynamics.

Example 2. Consider the set of variables X = {x,y} with the corresponding update functions fx(x,y) =
x̄∧ y and fy(x,y) = x∧ ȳ. Figure 2 shows the possible state transitions of this network under the syn-
chronous and the asynchronous modes. The states are represented as pairs of binary digits, e.g. 01
stands for the state in which x = 0 and y = 1.

00 01

1011

00 01

1011

Figure 2: The synchnronous (left) and the asynchnronous (right) dynamics of the Boolean network in
Example 2.

We notice that, under the synchronous mode, this network exhibits two kinds of behaviors. If ini-
tialized in the state 00 or 11, it will stay in the initial state forever—these two are stable states. If it is
initialized in any one of the states 01 or 10, it will oscillate between them. The behavior of the network
therefore is deterministic under the synchronous update mode.
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The state transitions are quite different under the asynchronous mode, under which only one variable
may be updated at a time. While the states 00 and 11 remain stable, two possible transitions are now
from the states 01 and 10, and there are no transitions leading from 01 to 10 or vice versa.

3.2 Boolean Control Networks

Boolean networks are often used to represent biological networks in the presence of external pertur-
bations: environmental hazards, drug treatments, etc. (e.g., [1, 2, 18]). To represent network repro-
gramming, an extension of Boolean networks can be considered: Boolean control networks (BCN) [2].
Informally, a BCN is a parameterized Boolean network template; assigning a Boolean value to every
single one of its parameters yields a Boolean network.

Formally, a Boolean control network is a function FU : SU → (SX → SX), where the elements of U ,
U ∩X = /0, are called the control inputs. To every valuation of control inputs, FU associates a Boolean
network. A control µ of FU is any Boolean assignment to the control inputs: µ : U →{0,1}.

While this definition of BCNs is very general, in practice one restricts the impact the control inputs
may have on the BCN to some biologically relevant classes. One particularly useful class are freeze
perturbations, in which a variable in X is temporarily frozen to 0 or to 1, independently of its normal
update function.

When Boolean update functions are written as propositional formulae, freeze control inputs can be
written directly in the formulae of the update functions. For example, consider a Boolean network
F over X = {x1,x2} with the update functions f1 = x1 ∧ x2 and f2 = x2. To allow for freezing x1,
we introduce the control variables U = {u0

1,u
1
1} into the Boolean formula of f1 in the following way:

f ′1 = (x1∧ x2)∧u0
1∨ ū1

1. Setting u0
1 to 0 and u1

1 to 1 freezes x1 to 0, independently of the values of x1 and
x2. Symmetrically, setting u1

1 to 0 and u0
1 to 1 (or 0) freezes x1 to 1.

3.3 Sequential Controllability of Boolean Control Networks

In many situations, perturbations of biological networks do not happen once, but rather accumulate or
evolve over time [9, 15, 18]. In the language of Boolean control networks, this corresponds to considering
sequences of controls (µ1, . . . ,µn). More precisely, take a BCN FU with the variables X and the control
inputs U , as well as a sequence of controls µ[n] = (µ1, . . . ,µn), µi : U → {0,1} ∈ SU . This gives rise
to a sequence of Boolean networks (FU(µ1), . . . ,FU(µn)). Fix a mode M and consider a sequence of
trajectories (τ1, . . . ,τn) of these Boolean networks. Such a sequence is an evolution of FU under the
sequence of controls µ[n] if the last state of every τi is the first state of τi+1. In this case we can speak
of the trajectory of the BCN FU under the control sequence µ[n] as the concatenation of the individual
trajectories τi, in which the last state of every single τi is glued together with the first state of τi+1.

The problem of inference of control sequences (the CoFaSe problem) was extensively studied in [18].
Given the 3-tuple (FU ,Sα ,Sω), where FU is a BCN, Sα is a set of starting states, and Sω is a set of target
states, the CoFaSe problem consists in inferring a control sequence driving FU from any state in Sα to
any state in Sω . Deciding the existence of such a sequence is PSPACE-hard.

Example 3. While the framework of Boolean control networks allows for considering arbitrary kinds of
control actions, it has been extensively used (e.g. [18]) for capturing freezing, i.e. setting and maintaining
specific variables at specific values. These actions mean to model gene knock-ins and knock-outs.

Consider again the Boolean network from Example 2, with X = {x,y} and the update functions
fx = x̄∧ y and fy = x∧ ȳ. A convenient way to express freezing controls is by explicitly including the
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control inputs into the update functions in the following way:

f ′x = (x̄∧ y)∧u0
x ∨u1

x ,

f ′y = (x∧ ȳ)∧u0
y ∨u1

y .

Notice that setting u0
x to 0 essentially sets f ′x = 0, and setting u1

x to 0 essentially sets f ′x = 1, independently
of the actual value of x or y.

Consider now the following 3 controls:

µ1 = {u0
x ← 0,u1

x ← 0,u0
y ← 0,u1

y ← 0},
µ2 = {u0

x ← 1,u1
x ← 0,u0

y ← 0,u1
y ← 0},

µ3 = {u0
x ← 0,u1

x ← 0,u0
y ← 0,u1

y ← 1}.

Informally µ1 does not freeze any variables, µ2 freezes x to 0, and µ3 freezes y to 1. Consider now the
BCN FU with the variables X = {x,y} and the controlled update functions f ′x and f ′y. Fix the synchronous
update mode. A trajectory of this BCN under the control µ1—i.e. a trajectory of FU(µ1)—is τ1 : 01→
10→ 01. A trajectory of FU(µ2) is τ2 : 01→ 00→ 00; remark that 00 is still a stable state of FU(µ2).
A trajectory of FU(µ3) is τ3 : 00→ 01→ 11. We can now glue together the trajectories τ1, τ2, and τ3 by
identifying their respective ending and starting states, and we will obtain the following trajectory of the
BCN FU under the control sequence µ[3] = (µ1,µ2,µ3):

τ : 01→ 10→ 01→ 00→ 00→ 01→ 11.

It follows from this construction that µ[3] is a solution for the CoFaSe problem (FU ,{01},{11}). Remark
that 11 is not reachable from 01 in the uncontrolled case, as Figure 2 illustrates.

4 Boolean P Systems

In this section we introduce a new variant of P systems—Boolean P systems—tailored specifically to
capture sequential control of Boolean networks with as little descriptional overhead as possible. Rather
than trying to be faithful to the original model as recalled in Section 2, we here invoke the intrinsic
flexibility of the domain to design a variant fitting to our specific use case.

We construct Boolean P systems as set rewriting systems. A Boolean state s : X → {0,1} will be
represented as the subset of X obtained by considering s as an indicator function: {x ∈ X | s(x) = 1}.
By abuse of notation, we will sometimes use the symbol s to refer both to the Boolean state and to the
corresponding subset of X .

A Boolean P system is a construct
Π = (V,R),

where V is the alphabet of symbols, and R is a set of rewriting rules with guards. A rule r ∈ R is of the
form

r : A→ B | ϕ,

where A,B ⊆ X and ϕ is the guard—a propositional formula with variables from V . The rule r is ap-
plicable to a set W ⊆ V if A ⊆W and W ∈ ϕ , where by abuse of notation we use the same symbol ϕ

to indicate the set of subsets of V which satisfy ϕ . Formally, for W ⊆ V , by ϕ(W ) we denote the truth
value of the formula obtained by replacing all variables appearing in W by 1 in ϕ , and by 0 all variables
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from V \W . Then the set of subsets satisfying ϕ is ϕ = {W ⊆ V | ϕ(W ) ≡ 1}, where 1 is the Boolean
tautology.

Applying the rule r : A→ B | ϕ to a set W results in the set (W \A)∪B. Applying a set of separately
applicable rules {ri : Ai→ Bi | ϕi} to W results in the new set(

W \
⋃

i

Ai

)
∪
⋃

i

Bi.

Note how this definition excludes competition between the rules, as only individual applicability is
checked. Further note that applying a rule multiple times to the same configuration has exactly the
same effect as applying it once.

In P systems, the set of multisets of rules of Π applicable to a given configuration W is usually
denoted by Appl(Π,W ) [11]. Since in Boolean P systems multiple applications of rules need not be
considered, we will only look at the set of sets of rules applicable to a given configuration W of a
Boolean P system Π = (V,R), and use the same notation Appl(Π,W ). A mode M of Π will then be a
function assigning to any configuration W of Π a set of sets of rules applicable to W , i.e.,

M : 2V → 2R such that M(W )⊆ Appl(Π,W ).

If |M(W )| ≤ 1 for any W ⊆V , the mode M is called deterministic. Otherwise it is called non-deterministic.
An evolution of Π under the mode M is a sequence of states (Wi)0≤i≤k with the property that Wi+1 is

obtained from Wi by applying one of the sets of rules R′ ∈M(Wi) prescribed by the mode M in the state

Wi. This is usually written as Wi
R′−→Wi+1. If no rules are applicable to the state Wk, Wk is called halting

state, and (Wi)0≤i≤k is called a halting evolution.
Finally, we remark that the starting state is not part of this definition of a Boolean P system. We make

this choice to better parallel the way in which Boolean networks are defined.

Example 4. Take V = {a,b} and consider the following rules r1 : {a,b}→ {a} | 1 and r2 : {a}→ /0 | b̄,
where 1 is the Boolean tautology. Construct the Boolean P system Π = (V,{r1,r2}). Informally, r1
removes b from a configuration which contains a and b, and r2 removes a from the configuration which
does not already contain b. A possible trajectory of Π under the maximally parallel mode—which applies
non-extendable applicable sets of rules—is {a,b}→ {a}→ /0. Note that only r1 is applicable in the first
step, since r2 requires the configuration to not contain b.

Remark 2. Boolean P systems as defined here are very close to other set rewriting formalisms, and in
particular to reaction systems [8]. A reaction system A over a set of species S is a set of reactions (rules)
of the form a : (Ra, Ia,Pa), in which Ra ⊆ S is called the set of reactants, Ia ⊆ S the set of inhibitors, and
Pa ⊆ S the set of products. For a to be applicable to a set W, it must hold that Ra ⊆W and Ia ∩W =
/0. Applying such a reaction to W yields Pa, i.e., the species which are not explicitly sustained by the
reactions disappear.

We claim that despite their apparent similarity and tight relationship with Boolean functions, reac-
tion systems are not such a good fit for reasoning about Boolean networks as Boolean P systems. In
particular:

1. Reaction systems lack modes and therefore non-determinism, which may appear in Boolean net-
works under the asynchronous Boolean mode.

2. The rule applicability condition is more powerful in Boolean P systems, and closer to Boolean
functions than in reaction systems.
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3. Symbols in reaction systems disappear unless sustained by a rule, which represents the degradation
of species in biochemistry, but which makes reaction systems harder to use to directly reason about
Boolean networks.

We recall that our main goal behind introducing Boolean P systems is reasoning about Boolean networks
in a more expressive framework. This means that zero-overhead representation of concepts from Boolean
networks is paramount.
Remark 3. Reaction systems [8] are intrinsically interesting for discussing controllability, because they
are defined as open systems from the start, via the explicit introduction of context. We refer to [14] for
an in-depth discussion of controllability of reaction systems.

5 Quasimodes

An update function in a Boolean network can always be computed, but a rule in a Boolean P system need
not always be applicable. This is the reason behind the difference in the way modes are defined in the
two formalisms: in Boolean networks a mode is essentially a set of subsets of update functions, while in
Boolean P systems a mode is a function incorporating applicability checks. This means in particular that
Boolean network modes are not directly transposable to Boolean P systems.

To better bridge the two different notions of modes, we introduce quasimodes. A quasimode M̃ of a
P system Π = (V,R) is any set of sets of rules: M̃ ⊆ 2R. The mode M corresponding to the quasimode M̃
is derived in the following way:

M(W ) = M̃∩Appl(Π,W ).

Given a configuration W of Π, M picks only those sets of rules from M̃ which are also applicable to
W . Thus, instead of explicitly giving the rules to be applied to a given configuration of a P system W , a
quasimode advises the rules to be applied.

In the rest of the paper, we will say “evolution of Π under the quasimode M̃” to mean “evolution of
Π under the mode derived from the quasimode M̃”.

6 Boolean P Systems Capture Boolean Networks

Consider a Boolean network F over the set of variables X , and take a variable x∈X with its corresponding
update function fx. The update function fx can be simulated by two Boolean P systems rules: the rules
corresponding to setting x to 1, i.e. introducing x into the configuration, and the rules corresponding to
setting x to 0, i.e. erasing x from the configuration:

Rx = { /0→{x} | fx, {x}→ /0 | ¬ fx }.

Now consider the following Boolean P system:

Π(F) =

(
X ,
⋃
x∈X

Rx

)
.

We claim that Π(F) faithfully simulates F .
Theorem 1. Take a Boolean network F and a Boolean mode M. Then the Boolean P system Π(F)
constructed as above and working under the quasimode M̃ = {

⋃
x∈m Rx | m ∈M} faithfully simulates F:

for any evolution of F under M there exists an equivalent evolution of Π(F) under M̃, and conversely,
for any evolution of Π(F) under M̃ there exists an equivalent evolution of F under M.
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Proof. Consider two arbitrary states s and s′ of F such that s′ is reachable from s by the update prescribed
by an element m ∈ M. Now consider the subsets of variables W,W ′ ⊆ X defined by s and s′ taken
as respective indicator functions. It follows from the construction of M̃ that it contains an element m̃
including the update rules for all the variables of m: m̃ =

⋃
x∈m Rx. Therefore, Π(F) can derive W ′ from

W under the quasimode M̃.
Conversely, consider two subsets of variables W,W ′ ⊆ X such that Π(F) can derive W ′ from W under

the update prescribed by an element m̃ ∈ M̃. By construction of M̃, there exists a subset m⊆ X such that
m̃ =

⋃
x∈m Rx. Now take the indicator functions s,s′ : X→{0,1} describing W and W ′ respectively. Then

F can derive s′ from s by updating the variables in m.
We conclude that the transitions of Π(F) exactly correspond to the transitions of F , which proves the

statement of the theorem.

The above proof stresses the original motivation behind the introduction of Boolean P systems as a
framework for direct and easy generalization of Boolean networks: Boolean P systems were designed to
make the simulation of Boolean networks as easy as possible.
Remark 4. Incidentally, Boolean P systems also capture reaction systems (see also Remarks 2 and 3).
Indeed, consider a reaction a = (Ra, Ia,Pa) with the reactants Ra, inhibitors Ia, and products Pa. It can
be directly simulated by the Boolean P system rule /0→ Pa | ϕa, where ϕa =

∧
x∈Ra

x∧
∧

y∈Ia
ȳ. The

degradation of the species in reaction systems is simulated by adding a rule x→ /0 | 1 for every species
x, where 1 is the Boolean tautology.

7 Composition of Boolean P Systems

In this section, we define the composition of Boolean P systems in the spirit of automata theory. Consider
two Boolean P systems Π1 = (V1,R1) and Π2 = (V2,R2). We will call the union of Π1 and Π2 the Boolean
P system Π1∪Π2 = (V1∪V2,R1∪R2). Note that the alphabets V1 and V2, as well as the rules R1 and R2
are not necessarily disjoint.

To talk about the evolution of Π1∪Π2, we first define a variant of Cartesian product of two sets of sets
A and B, which consists in taking the union of the elements of the pairs: A×̇B = {a∪b | a ∈ A,b ∈ B}.
We remark now that

∀W ⊆V1∪V2 : Appl(Π1∪Π2,W ) = Appl(Π1,W )×̇Appl(Π2,W ).

Indeed, since the rules of Boolean P systems do not compete for resources among them, the applicability
of any individual rule is independent of the applicability of the other rules. Therefore, the applicability
of a set of rules of Π1 to a configuration W is independent of the applicability of a set of rules of Π2
to W .

For a mode M1 of Π1 and a mode M2 of Π2, we define their product as follows:

(M1×M2)(W ) = M1(W )×̇M2(W ).

The union of Boolean P systems Π1∪Π2 together with the product mode M1×M2 implements parallel
composition of the two P systems. In particular, if the alphabets of Π1 and Π2 are disjoint, the projection
of any evolution of Π1∪Π2 under the mode M1×M2 on the alphabet V1 will yield a valid evolution of
Π1 under M1 (modulo some repeated states), while the projection on V2 will yield a valid evolution of
Π2 under the mode M2 (modulo some repeated states). Note this property may not be true if the two
alphabets intersect V1∩V2 6= /0.

Quasimodes fit naturally with the composition of modes, as the following lemma shows.
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Lemma 1. If the mode M1 can be derived from the quasimode M̃1 and M2 from the quasimode M̃2, then
the product mode M1×M2 can be derived from M̃1 ×̇M̃2:

M1×M2

M̃1 ×̇M̃2
M̃1 M̃2

M1 M2

where a dashed arrow from a quasimode to a mode indicates that the mode is derived from the
quasimode, and the arrows are the respective projections.

Proof. Pick a state W ⊆ X and recall that the mode M12 derived from M̃1 ×̇M̃2 is defined as follows:

M12(W ) =
(
M̃1 ×̇M̃2

)
∩Appl(Π,W ).

Consider an arbitrary element m12 ∈M12(W ) and remark that it can be seen as a union m = m1∪m2
where m1 is a subset of applicable rules with the property that m1 ∈ M̃1, and m2 is a subset of applicable
rules with the property that m2 ∈ M̃2. Thus m1 ∈ M̃1∩Appl(Π,W ) and m2 ∈ M̃2∩Appl(Π,W ), implying
that

M12(W )⊆
(
M̃1∩Appl(Π,W )

)
×̇
(
M̃2∩Appl(Π,W )

)
.

On the other hand, consider arbitrary m1 ∈ M̃1 ∩Appl(Π,W ) and arbitrary m2 ∈ M̃2 ∩Appl(Π,W ).
By definition of ×̇, m1 ∪m2 ∈ M̃1 ×̇M̃2. Remark that every rule in m1 and m2 is individually appli-
cable, meaning that they are also applicable together and that m1 ∪m2 ∈ Appl(Π,W ). Combining this
observation with the reasoning from the previous paragraph we finally derive:

M12(W ) =
(
M̃1∩Appl(Π,W )

)
×̇
(
M̃2∩Appl(Π,W )

)
= M1(W )×̇M2(W ),

which implies that M12 = M1×M2 and concludes the proof.

8 Boolean P Systems Capture Sequential Controllability

Underlying sequential controllability of Boolean control networks (Section 3.3) is the implicit presence
of a master dynamical system emitting the control inputs of the network and thereby driving it. This
master system is external with respect to the controlled BCN. The framework of Boolean P systems is
sufficiently general to capture both the master system and the controlled BCN in a single homogeneous
formalism. In this section, we show how to construct such Boolean P systems for dealing with questions
of controllability.

Any BCN FU : SU → (SX → SX) can be written as a set of propositional formulae over X ∪U . Indeed,
any control µ ∈ SU can be translated into the conjuction

∧
u∈µ u∧

∧
v∈U\µ v̄. Now fix an x∈X and consider

the formula ∨
µ∈SU

µ ∧F(µ)x, (1)

in which µ enumerates all the conjuctions corresponding to the controls in SU and F(µ)x is the propo-
sitional formula of the update function which F associates to x under the control µ . With the formulae
(1), we can translate any BCN FU : SU → (SX → SX) into F ′ : SX∪U → SX and use the set Rx from Sec-
tion 6 to further translate the individual components of F ′ to pairs of Boolean P system rules. Denote
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Π = (X ∪U,R) the Boolean P system whose set of rules is precisely the union of the sets Rx mentioned
above. Finally, construct the Boolean P system ΠU(U,RU) with the following rules whose guards are
always true:

RU = R0
U ∪R1

U ,

R0
U = { {u}→ /0 | 1 | u ∈U },

R1
U = { /0→{u} | 1 | u ∈U }.

Suppose now that the original BCN FU runs under the mode M, and consider the corresponding
quasimode M̃ = {

⋃
x∈m Rx | m ∈M}, as well as the quasimode

M̃U = {R0
U}×̇2R1

U .

Every element of M̃U is a union of R0
U and a subset of R1

U . We claim that the Boolean P system Π∪ΠU

running under the quasimode M̃ ×̇M̃U faithfully simulates the BCN FU running under the mode M. The
following theorem formalizes this claim.
Theorem 2. Consider a BCN FU running under the mode M. Then the Boolean P system Π∪ΠU

constructed as above and running under the quasimode M̃ ×̇M̃U faithfully simulates FU :
1. For any evolution of FU under M there exists an equivalent evolution of Π∪ΠU under M̃ ×̇M̃U .

2. For any evolution of Π∪ΠU under M̃ ×̇M̃U there exists an equivalent evolution of FU under M.

Proof. (1) Consider two states s,s′ ∈ SX and a control µ ∈ SU such that FU(µ) reaches s′ from s in one
step. Take W,W ′ ⊆ X and WU ⊆U by respectively taking s, s′, and µ as indicator functions. Then, as in
Theorem 1, there exists an m̃ ∈ M̃ such that Π reaches W ′∪WU from W ∪WU in one step. This follows
directly from the construction of the rules in Π and from the fact that WU contains exactly the symbols
corresponding to the control inputs activated by µ .

Now take M̃ ×̇M̃U and remark that it contains an element m̃∪ m̃U , where m̃U = m̃1
U ∪R0

U and m̃1
U ⊆

R1
U . Under this element m̃∪ m̃U , Π∪ΠU reaches a state W ′ ∪W ′U from W ∪WU in one step, where W ′U

contains the symbols from U introduced by the rules selected by m̃1
U . Further note that all the elements

of WU are always erased by the rules R0
U , but may be reintroduced by m1

U .
Suppose that FU(µ) reaches s′ from s in multiple steps. Then Π reaches W ′ ∪WU from W ∪WU in

the same number of steps, provided that m̃1
U is always chosen such that the rules it activates reintroduce

exactly the subset WU . If FU reaches s′ from s in multiple steps, but the control evolves as well, it suffices
to choose m̃1

U such that it introduces the correct control inputs before each step. Finally, the control µ0
applied in the first step of a trajectory of FU must be introduced by setting the starting state of Π∪ΠU to
W ∪W 0

U , where W corresponds to the initial state of the trajectory of FU .

(2) The converse construction is symmetric. A state W ∪WU of Π∪ΠU is translated into the state
s ∈ SX and the control µ ∈ SU corresponding to WU . A step of Π∪ΠU under m̃∪ m̃U is translated to
applying µ to FU and updating the variables corresponding to the rules activated by m̃. In this way, for
any trajectory of Π∪ΠU under the quasimode M̃ ×̇M̃U there exists a corresponding trajectory in the
controlled dynamics of FU .

The component ΠU in the composite P system of Theorem 2 is an explicit implementation of the
master dynamical system driving the evolution of the controlled system Π. The setting of this theorem
captures the situation in which the control can change at any moment, but ΠU can be designed to im-
plement other kinds of control sequences. We give the construction ideas for the kinds of sequences
introduced in [18]:
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The Real World

Boolean networks

P systems

formalism1 formalism2

general
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modelling

Figure 3: A graphical summary of our methodological conclusion: P systems are a powerful tool for
constructing formal frameworks for other formalisms.

• Total Control Sequence (TCS): all controllable variables are controlled.

The quasimode of ΠU will be correspondingly defined to always freeze the controlled variables:
M̃U = {R0

U}×̇2P1
U , where P1

U ⊆ R1
U with the property that for every xi ∈ X every set p ∈ P1

U either
introduces u0

i or u1
i , but not both.

• Abiding Control Sequence (ACS): once controlled, a variable stays controlled forever, but its value
may change.

The rules of ΠU will be constructed to never erase the control symbols which have already been
introduced, but will be allowed to change the value to which the corresponding controlled variable
will be frozen: RU = R1

U ∪PU , with the new set of rules defined as follows:

PU =
{
{ua

i }→ {ub
i } | 1 | xi ∈ X , a,b ∈ {0,1}

}
.

The P system ΠU will be able to rewrite some of the control symbols, or to introduce new control
symbols: M̃U = 2RU .

9 Conclusion

The motivation of this work stems from the relative underuse of P systems in representing biological
knowledge, in spite of its obvious biological inspiration. To informally confirm this intuition of underuse,
we established a state of the art comparing the numbers of publications using P systems and Boolean
networks to represent any kind of biological knowledge. Our conclusion is that Boolean networks tend
to be more popular in this line of research. We speculate that the reason behind this relative popularity
of Boolean networks is the greater simplicity of the formalism and original interest on the part of the
biological community.

We therefore propose that P systems should be used as a tool for setting up general frameworks for
reasoning about other formalisms, which are more popular in biological modelling. We give an example
of such a general framework—Boolean P systems—which capture Boolean networks and in particular
provide a homogeneous language for sequential controllability. Indeed, sequential controllability of
Boolean networks implicitly supposes the presence of a master dynamical system emitting the control
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inputs. Our Boolean P system framework makes this master system explicit, as well as its interactions
with the controlled Boolean network.

The immediate future research direction which we have already started is actually showing how
Boolean P systems facilitate proving some properties of sequential controllability of Boolean networks.
Another challenge would be capturing and reasoning about the ConEvs dynamics of the control se-
quence [18]. Under ConEvs, the control is only allowed to evolve in a stable state, meaning that the
master dynamical system is not unilaterally acting on the Boolean network any more, but both of them
are part of feedback loop.

The main conclusion of our work is methodological: we believe that the intrinsic flexibility and
richness of P systems makes them an excellent tool for constructing formal frameworks for other models
of computing.
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of the time interval has a double motivation. On the one hand, in 2010 P systems became a fully mature domain, and
the first international Conference on Membrane Computing was organized. On the other hand, Boolean networks
started gaining popularity in modelling and analysis over the same period of time.

For P systems, we focused mostly on the following sources, representing the major bibliographical references
of the domain:

• the bibliography of the Research Group on Natural Computing [21],

• the proceedings of the Brainstorming Weeks on Membrane Computing in Seville (BWMC), e.g. [16],

• the proceedings of the Conference on Membrane Computing (CMC), e.g. [10],

• the Journal of Membrane Computing, e.g. [17],

• the proceedings of the Asian Conference on Membrane Computing (ACMC), e.g. [26].

A quantitative synthesis of the relevant publications in these sources is shown in Figure 4. This histogram indexes
33 publications. The category “Other” refers to the papers which we found cited in the indexed sources, and is not
exhaustive.

For Boolean networks, we only focused on the publications in the conference Computational Methods in
Systems Biology, e.g. [5], concerned with using Boolean networks to represent any kind of biological knowledge.
We found 18 publications, as shown in Figure 5.

Full lists of indexed publications are given in the following appendices.
The informal conclusion which we draw from this bibliographic study comparing the number of publications

in many major membrane computing sources to the number of publications in a single systems biology conference
confirms the intuition from the introduction: Boolean networks enjoy more success in biological modelling and
analysis.

Even though explaining the deep reasons behind this disparity is beyond the scope of our work, we speculate
that the ultimate simplicity of Boolean models and finiteness of the state space may play a role. Furthermore, the
interest in Boolean modelling may be traced back to the biological research (e.g., [22]), and has developed in tight
connection with biology (e.g., [1, 25]).

Figure 4: A breakdown by source of the 33 publications concerned with using P systems to represent any kind of
biological knowledge between years 2010 and 2021. The bibliography behind the source “Other” is not exhaustive.
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Figure 5: The distribution over the period 2010–2021 of the 18 publications in the proceedings of the international
conference Computational Methods in Systems Biology (CMSB) using Boolean networks to represent any kind of
biological knowledge.

Appendix 2

In this appendix, we list the 33 papers using P systems to represent any kind of biological knowledge published
between years 2010 and 2021 which were counted in Figure 4. The publications are annotated by tags, representing
the source:

• rgnc : the bibliography of the Research Group on Natural Computing,

• bwmc : the proceedings of the Brainstorming Weeks on Membrane Computing in Seville,

• cmc : the proceedings of the Conference on Membrane Computing,

• jmc : the Journal of Membrane Computing,

• acmc : the proceedings of the Asian Conference on Membrane Computing.

2021

1. García-Quismondo, M., Hintz W. D., Schuler M. S., & Relyea R. A. (2021): Modeling Diel Vertical Migra-
tion with Membrane Computing. Journal of Membrane Computing 3, 35–50. rgnc cmc

2020

1. Barbuti, R., Gori, R., Milazzo, P. et al. (2020): A survey of gene regulatory networks modelling methods:
from differential equations, to Boolean and qualitative bioinspired models. Journal of Membrane Comput-
ing 2, 207–226.
https://doi.org/10.1007/s41965-020-00046-y jmc

https://doi.org/10.1007/s41965-020-00046-y
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2019

1. Nash, A., Kalvala, S. (2019): A P system model of swarming and aggregation in a Myxobacterial colony.
Journal of Membrane Computing 1, 103–111.
https://doi.org/10.1007/s41965-019-00015-0 jmc

2018

1. Valencia-Cabrera, L., Graciani C., Pérez-Hurtado I., Pérez-Jiménez M. J., & Riscos-Núñez A. (2018): A
Decade of Ecological Membrane Computing Applications. Bulletin of the International Membrane Com-
puting Society. 6, 39–50. rgnc

2. García-Quismondo, M., Graciani C., & Riscos-Núñez A. (2018): Membrane Computing as a Modelling
Tool: Looking Back and Forward from Sevilla. In: Carmen Graciani, Agustín Riscos-Núñez, Gheorghe
Păun, Gregorz Rozenberg, Arto Salomaa, editors: Enjoying Natural Computing: Essays Dedicated to Mario
de Jesús Pérez-Jiménez on the Occasion of His 70th Birthday. 114–129. rgnc

2017

1. Cavaliere M., Sanchez A. (2017): The Evolutionary Resilience of Distributed Cellular Computing. In:
Leporati A., Rozenberg G., Salomaa A., Zandron C., editors: Membrane Computing. CMC 2016. Lecture
Notes in Computer Science, vol. 10105. Springer, Cham.
https://doi.org/10.1007/978-3-319-54072-6_1 cmc

2. Hinze T.: Coping with Dynamical Structures for Interdisciplinary Applications of Membrane Computing
(2017). In: Leporati A., Rozenberg G., Salomaa A., Zandron C., editors: Membrane Computing. CMC
2016. Lecture Notes in Computer Science, vol. 10105. Springer, Cham.
https://doi.org/10.1007/978-3-319-54072-6_2 cmc

3. Barbuti R., Bove P., Milazzo P., Pardini G. (2017): Applications of P Systems in Population Biology and
Ecology: The Cases of MPP and APP Systems. In: Leporati A., Rozenberg G., Salomaa A., Zandron C.,
editors: Membrane Computing. CMC 2016. Lecture Notes in Computer Science, vol. 10105. Springer,
Cham.
https://doi.org/10.1007/978-3-319-54072-6_3 cmc

4. Zhang G., Pérez-Jiménez M.J., Gheorghe M. (2017): Data Modeling with Membrane Systems: Applications
to Real Ecosystems. In: Real-life Applications with Membrane Computing. Emergence, Complexity and
Computation, vol. 25. Springer, Cham.
https://doi.org/10.1007/978-3-319-55989-6_7

5. Mario J. Pérez-Jiménez (2017): Modelling the dynamics of complex systems: A membrane computing
based framework, Proceedings of the 6th Asian Conference on Membrane Computing, 2017. acmc

2016

1. Cristian Fondevilla, M. Àngels Colomer, Federico Fillat, Ulrike Tappeiner (2016): Using a new PDP mod-
elling approach for land-use and land-cover change predictions: A case study in the Stubai Valley (Central
Alps), Ecological Modelling, vol. 322, pp. 101–114, ISSN 0304-3800,
https://doi.org/10.1016/j.ecolmodel.2015.11.016.

2015

1. Gheorghe Păun (2011): Looking for Computer in the Biological Cell. After Twenty Years, Proceedings of
the Ninth Brainstorming Week on Membrane Computing, 251–300. bwmc
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Appendix 3
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Methods in Systems Biology (CMSB), and which were counted in Figure 5.
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