
H. Bordihn, G. Horváth, G. Vaszil (Eds.): 12th International Workshop on

Non-Classical Models of Automata and Applications (NCMA 2022)

EPTCS 367, 2022, pp. 177–189, doi:10.4204/EPTCS.367.12

© C. RAUCH, M. HOLZER

This work is licensed under the

Creative Commons Attribution License.

On the Accepting State Complexity of Operations on

Permutation Automata

Christian Rauch Markus Holzer

Institut für Informatik, Universität Giessen, Arndstr. 2, 35392 Giessen, Germany

christian.rauch@informatik.uni-giessen.de holzer@informatik.uni-giessen.de

We investigate the accepting state complexity of deterministic finite automata for regular languages

obtained by applying one of the following operations to languages accepted by permutation automata:

union, quotient, complement, difference, intersection, Kleene star, Kleene plus, and reversal. The pa-

per thus joins the study of accepting state complexity of regularity preserving language operations

which was initiated by the work [J. Dassow: On the number of accepting states of finite automata,

J. Autom., Lang. Comb., 21, 2016]. We show that for almost all of the operations, except for reversal

and quotient, there is no difference in the accepting state complexity for permutation automata com-

pared to deterministic finite automata in general. For both reversal and quotient we prove that certain

accepting state complexities cannot be obtained; these number are called “magic” in the literature.

Moreover, we solve the left open accepting state complexity problem for the intersection of unary

languages accepted by permutation automata and deterministic finite automata in general.

1 Introduction

The state complexity of a regular language is a classical well-understood descriptional complexity mea-

sure of finite state systems, that is defined to be the number of states of the smallest, either deterministic

or nondeterministic, finite automaton that recognizes it. It has been studied from different perspectives

in the literature like, for instance, (i) for regular languages in general and for certain sub-families, (ii)

for converting nondeterministic finite automata to equivalent deterministic finite automata, and (iii) for

operations, called the operational complexity, on regular languages in general and sub-families thereof.

For a brief survey on the subject we refer to, e.g., [3].

Recently, the accepting state complexity of a regular language was introduced in [2]. It is defined to

be the minimal number of accepting states needed for a finite state device, either deterministic or non-

deterministic, that accepts it. While the accepting state complexity forms a strict hierarchy of language

classes for deterministic finite automata, it collapses for nondeterministic state devices, since every reg-

ular language not containing the empty word is accepted by a nondeterministic finite automaton with

a single final state. If the empty word belongs to the language, the nondeterministic accepting state

complexity is at most two. Thus, the conversion from nondeterministic to equivalent deterministic finite

automata can produce unbounded deterministic accepting state complexity for a regular language. More-

over, the operational accepting state complexity was studied in [6]. The obtained results on the accepting

state complexity prove that this measure is significantly different to the original state complexity. What

is missing for the accepting state complexity is a study for certain sub-families of the regular languages

in order to better understand the intrinsic behaviour of this measure.

We close this gap by studying the operational accepting state complexity for the class of permutation

automata (PFAs) which accept the so called p-regular languages, also named pure-group languages. This

language family is of particular interest from an algebraic point of view since their syntactic monoid

http://dx.doi.org/10.4204/EPTCS.367.12
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

178 Accepting State Complexity of Operations on Permutation Automata

induces a group. Additionally permutation automata together with permutation-reset automata play a

key role in the decomposition of deterministic finite automata (DFAs), see, e.g., [10]. It is also worth to

mention that the class of p-regular languages was one of the first subclasses of the regular languages for

which the star height problem was shown to be decidable, see, e.g., [1]. Recently, the family of p-regular

languages, and thus PFAs, gained renewed interest. For instance, in [9] the decomposing of PFAs into

the intersection of smaller automata of the same kind was investigated. Moreover the operational state

complexity on PFAs was studied in [7]. Up to our knowledge the operational accepting state complexity

of p-regular languages was not investigated so far. We study this problem by examining the following

question:

Given are three non-negative integers m, n, and α and a regularity preserving language oper-

ation ◦, are there minimal permutation automata A and B with accepting state complexity m

and n, respectively, such that the language L(A)◦L(B) is accepted by a minimal determinis-

tic finite automaton with α accepting states?

Following the terminology of [8] we call values α “magic” if there are no such automata A and B. The

following results were shown in [2] and [6] for the operational accepting state complexity on languages

accepted by DFAs—for accepting state complexities m and n one can obtain all values from the given

number set for α :

• Complement: N∪{0 | m = 1}.

• Kleene star and Kleene plus: N.

• Union: N.

• Set difference: N.

• Intersection: [0,mn] (if the input alphabet is at least binary).

• Reversal: N.

• Quotient: N∪{0}.

One may have noticed that for none of the above mentioned operations magic numbers exist up to the

special case of complementation and m = 1.1 It is worth mentioning that these results were obtained

without the use of PFAs automata witnesses.

We generalize these results for the operations complement, union, set difference, Kleene star, and

Kleene plus to the family of languages accepted by PFAs. This means even though PFAs are restricted in

their expressive power compared to arbitrary DFAs, there are no magic numbers for the accepting state

complexity of PFAs w.r.t. the above mentioned operations. When considering the reversal operation

a significant difference appears. While for DFAs the reversal operation induces the whole set N as

accepting state complexities as mentioned above, this is not the case for PFAs, where we can prove

that the number α = 1 is magic for every m ≥ 2. In fact, we prove that for m = 2 no other magic

number as α = 1 exists. Whether this is also true for larger m is left open. Yet another difference in the

accepting state complexity comes from the quotient operation. Here it turns out that for unary languages

accepted by PFAs only the range [1,mn] is obtainable for the accepting state complexity. This is entirely

different compared to the general case. Finally, the unary case for the accepting state complexity of the

intersection operation for DFAs in general was left open in [6]. We close this gap by considering this

1The intersection of two languages L1 and L2 of accepting state complexity m and n is accepted by the cross product of

the minimal DFAs accepting L1 and L2. So the accepting state complexity is directly bounded by mn. Therefore the numbers

greater mn are not of interest.

C. RAUCH, M. HOLZER 179

problem in detail. In this way, we identify a whole range of magic numbers for the intersection of unary

languages accepted by PFAs and extend this result to the case of DFAs, solving the left open problem

mentioned above. Due to space constraints some of the proofs are omitted; they can be found in the full

version of this paper.

2 Preliminaries

Let N denote the set of all positive integers and N≥x (N≤x, respectively) the set of all positive integers

that are greater or equal x (less or equal x, respectively).

We recall some definitions on finite automata as contained in [4]. Let Σ
∗ denote the set of all words

over the finite alphabet Σ. The empty word is denoted by ε . Further, we denote the set {i, i+ 1, . . . , j}
by [i, j], if i and j are integers. A deterministic finite automaton (DFA) is a quintuple A = (Q,Σ, · ,s,F),
where Q is the finite set of states, Σ is the finite set of input symbols, s ∈ Q is the initial state, F ⊆ Q is

the set of accepting states, and the transition function · maps Q×Σ to Q. The language accepted by the

DFA A is defined as

L(A) = {w ∈ Σ
∗ | s ·w ∈ F },

where the transition function is recursively extended to a map Q×Σ
∗ onto Q. Obviously, every letter

a ∈ Σ induces a mapping on the state set Q to Q by q 7→ q · a, for every q ∈ Q. A DFA is unary, if the

input alphabet Σ is a singleton set, that is, Σ = {a}, for some input symbol a. Moreover, if every letter

of the automaton induces only permutations on the state set, then we simply speak of a permutation

automaton (PFA).

As usual we denote the state complexity of a language L accepted by a DFA by

sc(L) = min{sc(A) | A is a DFA with L = L(A)},

where sc(A) refers to the number of states of the automaton A. Similarly we define the measure asc(L)
the accepting state complexity of a language L accepted by a DFA, where asc(A) refers to the number of

final states of the automaton A.

An automaton is minimal (a-minimal, respectively) if it admits no smaller equivalent automaton

w.r.t. the number of states (final states, respectively). For DFAs both properties can be easily verified.

Minimality can be shown if all states are reachable from the initial state and all states are pairwise

inequivalent. For a-minimality the following result shown in [2] applies:

Theorem 1. Let L be a language accepted by a minimal DFA A. Then asc(L) = asc(A).

In order to characterize the behaviour of complexities under operations we introduce the following

notation: for c ∈ {sc,asc}, a k-ary regularity preserving operation ◦ on languages, and natural numbers

n1,n2, . . . ,nk, we define

gc
◦(n1,n2, . . . ,nk)

as the set of all integers r such that there are k regular languages L1,L2, . . . ,Lk with c(Li) = ni, for

1 ≤ i ≤ k, and c(◦(L1,L2, . . . ,Lk)) = r. In case we only consider unary languages L1,L2, . . . ,Lk we

simply write g
c,u
◦ instead. When restricting the underlying languages to, e.g., be accepted by permutation

automata (PFAs), we indicate this by writing gc
◦,PFA and g

c,u
◦,PFA, respectively.

In order to explain the notation we give a small example.

Example 2. Consider the unary operation C of complementation of languages. It is obvious that

gsc
C (m) = {m}, for m ≥ 1.

180 Accepting State Complexity of Operations on Permutation Automata

On the other hand, when we consider the accepting state complexity, in [2] the following behaviour

gasc
C (m) =











{1} if m = 0,

{0}∪N if m = 1,

N otherwise,

for the complementation was proven. Moreover, it is easy to see that

g
sc,u
C (m) = gsc

C (m) and g
asc,u
C (m) = gasc

C (m)

holds.

In the constructions to come, note that we will use the mod operation such that x mod y+ z is the

same as (x mod y)+ z and not equal to x mod (y+ z), but x+ y mod z is the same as (x+ y) mod z. We

use ÷ for the integer division and / for the ordinary division.

3 Results

We investigate the accepting state complexity of various regularity preserving language operations such

as union, quotient, complement, difference, intersection, Kleene star, Kleene plus, and reversal on lan-

guages accepted by permutation automata. Before we start our investigation we introduce a useful notion

for unary permutation automata by strings. Since a unary permutation automaton consists of a cycle only,

it suffices to encode the finality of these cycle states by a binary string. This is done as follows: a word

w ∈ {0,1}+ with w = a0a1 . . .a|w|−1, for ai ∈ {0,1} and 0 ≤ i ≤ |w|− 1, describes the permutation au-

tomaton

Aw = ({0,1, . . . , |w|−1},{a}, · ,0,{ i | 0 ≤ i < |w|−1 and ai = 1})

with

i ·a =

{

i+1 for 0 ≤ i < |w|−1,

0 otherwise.

It is clear that there is a bijection between words in {0,1}+ with all unary PFAs. Thus, we can identify

words with PFAs and vice versa. Now we are ready for the investigation of the accepting state complexity

of certain operations on PFAs.

3.1 Complementation

The complement of a language accepted by a finite automaton can be obtained by simply interchanging

accepting and non-accepting states. Hence, the state complexity of a language accepted by a finite

automaton, regardless whether the automaton is a permutation automaton or not, is the same. The result

on the accepting state complexity for unrestricted DFAs was presented in Example 2. Next we show that

this result even holds for PFAs.

Theorem 3. We have g
asc,u
C,PFA(m) = gasc

C,PFA(m) = gasc
C (m) = g

asc,u
C (m).

C. RAUCH, M. HOLZER 181

3.2 Kleene Star and Kleene Plus

Next we study the accepting state complexity of the Kleene star and the Kleene plus operations for

permutation automata. We want to mention that the Kleene closure of a p-regular language cannot be

accepted by a PFA in many cases, see for example [7]. First we prove a useful relation between PFAs

and the languages which they accept.

Lemma 4. Let I be a finite set of non-negative integers and j be a number which is greater than the

biggest number in I. The language
⋃

i∈I

ai(a j)∗ can be accepted by the PFA

A = ({q0,q1, . . . ,q j−1},{a}, ·A ,q0,{qi | i ∈ I })

with qi ·A a = qi+1 mod j. Additionally A is minimal if there is no divisor t of j such that for every i ∈ I the

number i+ t mod j is in I.

Proof. The tedious details for the first statement are left to the reader. We prove the second statement

by contradiction. So assume that there is a divisor t of j such that for every i ∈ I the number i+ t mod j

is in I. Assuming that A is minimal, for every pair of states there is a word w which distinguishes them,

i.e., maps one of the states onto an accepting and the other one onto a non-accepting state. This includes

the states qi and qi+t mod j. Since w ∈ a∗ we can assume w = ak for a non-negative integer k. Due to the

definition of A the word w maps the states qi and qi+t mod j onto qi+k mod j and qi+t+k mod j which are either

both in I or are both not in I. This contradicts the assumption that w distinguishes qi and qi+t mod j.

We will use this result to prove that no magic numbers exist for the accepting state complexity of the

Kleene star operation.

Theorem 5. We have

gasc,u
∗ (m) = g

asc,u
∗,PFA(m) =

{

{1} if m = 0,

N otherwise.

Proof. For m = 0 we observe that /0∗ = {ε}, for ε being the empty word. So the first statement follows.

For the second one we distinguish whether α or m are equal to one. We distinguish four cases, where in

each case we use Lemma 4 to show that the defined language has accepting state complexity m:

1. Case α = 1 and m > 1: The language L =
m
⋃

i=1

ai(am+1)∗ has accepting state complexity m and its

Kleene star is equal to Σ
∗ which has accepting state complexity one.

2. Case α = 1 and m = 1: The language of the previous case can also be used if m = 1.

3. Case α > 1 and m > 1: Let L = a2(a2(α−1)+m+1)∗∪
m−1
⋃

i=1

a2(α−1)+i(a2(α−1)+m+1)∗. Then L∗ is equal

to
α−2
⋃

i=0

a2i ∪ a2(α−1)
Σ
∗. In turn

α−2
⋃

i=0

a2i ∪ a2(α−1)
Σ
∗ can be accepted by a unary DFA which has a

tail of length 2(α −1) and a cycle formed by one state, where all states on positions with an even

number are accepting if we start counting by zero.

4. Case α > 1 and m = 1: Define L = a2(a2α−1)∗. Then L∗ is equal to
α−2
⋃

i=0

a2i ∪a2(α−1)
Σ
∗, which is

the Kleene star language from the previous case.

So in all cases the Kleene closure has accepting state complexity α which completes the proof.

182 Accepting State Complexity of Operations on Permutation Automata

By taking into account that for every language L the empty word ε is in L+ if and only if ε ∈ L, with

a small adjustment of the used languages for the previous theorem we obtain the following corollary for

the Kleene plus operation.

Corollary 6. We have

g
asc,u
+ (m) = g

asc,u
+,PFA(m) =

{

{0} if m = 0,

N otherwise.

3.3 Union

In this subsection we extent the results for the accepting state complexity from [2] for the union operation

to the class of permutation automata. For DFAs in general the following result was shown in [2]:

g
asc,u
∪ (m,n) = gasc

∪ (m,n) =











{m} if n = 0,

{n} if m = 0,

N otherwise,

and since the union operation is commutative g
asc,u
∪ (m,n) = g

asc,u
∪ (n,m) and gasc

∪ (m,n) = gasc
∪ (n,m). Note

the languages that prove these results are not accepted by any PFA.

We will prove that except for the special cases m = 0 or n = 0 every accepting state complexity can

be reached also for unary alphabets. Therefore the reachable numbers coincide in the cases that the input

DFAs are restricted or not. We split this into three theorems which show that N≤min{n,m}, N≥max{n,m}

and [min{n,m}+1,max{n,m}−1] are reachable. We start with the upper range.

Theorem 7. For m,n ≥ 1 we have N≥max{n,m} ⊂ g
asc,u
∪,PFA(m,n).

We split the proof of this theorem into two lemmata, which show the reachability of smaller intervals

(Lemma 8) and that the union of those intervals equals the whole range N≥max{n,m} (Lemma 9).

Lemma 8. Let m ≥ n ≥ 1, i ≥ 1 and α ∈ [max{in,m}, in+m]. There are minimal unary PFAs A and B

with accepting state complexity m and n, respectively, such that L(A)∪ L(B) has accepting state com-

plexity α .

The next lemma shows that the union of the intervals which are reachable due to the previous lemma

is again an interval.

Lemma 9. For m ≥ n holds
⋃

i∈N[max{in,m}, in+m] = N≥m.

It is not hard to see that the Lemmata 8 and 9 are symmetric in n and m so together they prove

Theorem 7. Next we show that the lower range is reachable, too.

Theorem 10. For m,n ≥ 1 we have [1,min{n,m}]⊂ g
asc,u
∪,PFA(m,n).

The constructions for the previous lemmata created sequences 1α 0ℓ for some ℓ ∈N. There are values

for n, m and α such that α cannot be reached by this method. Therefore we have to create sequences

which contain α accepting and distinguishable states which are not consecutive. We want to mention

here that we count the positions of the states in an unary PFA in the same way we count the positions of

the letters describing the PFA, namely we start by zero.

Theorem 11. For m,n ≥ 1 we have [min{n,m}+1,max{n,m}−1]⊂ g
asc,u
∪,PFA(m,n).

Obviously K∪ /0= K and /0∪L= L for every languages K,L ⊆ Σ
∗. Together with the Theorems 7, 10,

and 11 we obtain the following corollary.

C. RAUCH, M. HOLZER 183

Corollary 12. We have

g
asc,u
∪ (m,n) = g

asc,u
∪,PFA(m,n) =











{n} if n = 0,

{m} if m = 0,

N otherwise.

3.4 Difference

Now let us come to the difference operation which was also considered in [2]. For deterministic finite

automata with no restrictions the following result was shown:

g
asc,u
\ (m,n) = gasc

\ (m,n) =











{m} if n = 0

{0} if m = 0

{0}∪N otherwise,

Again the languages that prove these results are not accepted by any PFA.

This subsection is structured as follows. First we will use the fact that K \ L = K ∩C(L) for all

finite languages K and L to show that all numbers in the range [0,m] are reachable and for all n,m ≥ 1

with α mod m = 0 the numbers α are reachable as well. The previously mentioned fact for the set

difference of two languages allows us to prove the first two statements by constructing A and B such that

the minimal DFA accepting the language of the direct product of A and B has the required size, for B

being equal to B except that its set of accepting states is complemented. Afterwards we prove that for

all n,m ≥ 1 with α mod m > 0 the numbers α are reachable, too.

Lemma 13. For m,n ≥ 1 we have [0,m]⊂ g
asc,u
\,PFA

(m,n).

Proof. Let A = Aw and B = Aw′ for w = (0n1)α(10n)m−α0n+1 and w′ = 1n01. That means L(A) \L(B)
is accepted by Aw′′ for w′′ = (0n1)α 0(n+1)·(m−α+1). We leave it to the reader to observe that the three in-

volved automata are minimal. The PFA Aw′′ has accepting state complexity α which proves the statement

of the lemma.

The next lemma shows that the every number α in the upper range N≥m+1 is obtainable if α ful-

fills α mod m = 0.

Lemma 14. For m,n ≥ 1 and α ∈ N≥m+1 with α mod m = 0 we have α ∈ g
asc,u
\,PFA

(m,n).

Proof. Let α = mx+(α mod m) and we set A = Aw and B = Aw′ for w = 1m0k and w′ = 0x1n, where k is

the smallest positive integer such that gcd(m+k,x+n) = 1. It is not hard to see that A and B are minimal

and that the cross product DFA of A and B = Aw′′ , for w′′ = 1x0n, has xm accepting states and is minimal,

too.

The next lemma shows that the upper interval N≥m+1 is also attainable for α mod m 6= 0 which

clearly proves the range to be reachable for all numbers in the interval.

Lemma 15. For m,n ≥ 1 and α ∈ N≥m+1 with α mod m 6= 0 we have α ∈ g
asc,u
\,PFA

(m,n).

By combining the Lemmata 13, 14, and 15 we obtain the following corollary.

184 Accepting State Complexity of Operations on Permutation Automata

Corollary 16. We have

g
asc,u
\ (m,n) = g

asc,u
\,PFA

(m,n) =











{m} if n = 0,

{0} if m = 0,

{0}∪N otherwise.

Proof. Since K \ /0 = K and /0 \ L = /0 for every languages K,L ⊆ Σ
∗ the first two statements follow

immediately. Additionally the last statement follows by the Lemmata 13, 14, and 15.

3.5 Intersection

We show that the left open unary case for the intersection operation for both PFAs and DFAs differs from

the solved general case. It is not hard to see that at most the numbers in the range [1,nm] can be reached.

We split this interval into three smaller ones, namely [0,max{n,m}], [max{n,m}+ 1,nm−min{n,m}]
and [nm−min{n,m}+1,nm].

Lemma 17. We have [0,max{n,m}] ⊆ g
asc,u
∩,PFA(m,n).

Proof. Since for the intersection operation the ordering of the input languages is irrelevant we as-

sume m ≥ n. Let A = Aw and B = Aw′ for w = (10n)α(0n1)m−α 0n+1 and w′ = 1n0, respectively. Both

PFAs are minimal since the last n+ 1 states of A do not contain an accepting state and the accepting

states of B form a sequence. The minimal DFA accepting the language L(A)∩ L(B) is the PFA Aw′′

for w′′ = (10n)α 0(n+1)·(m−α+1) which obviously has accepting state complexity α .

We found out by exhaustive search that for small m and n the following conjecture holds.

Conjecture 18. All numbers in [max{n,m}+1,nm−min{n,m}] which are not in

[max{n,m},n+m]∪

{tnxm | tn is a nonzero divisor of n and 0 ≤ xm ≤ (nm−min{n,m})÷ tn }∪

{tmxn | tm is a nonzero divisor of m and 0 ≤ xn ≤ (nm−min{n,m})÷ tm }

are magic.

Next we investigate the numbers in the range [nm−min{n,m}+1,nm]. For showing that all numbers

except nm are magic we prove the following structural property of the cross product for PFAs.

Lemma 19. Let q0,q1 and p0, p1 be states of the minimal unary PFAs A and B, respectively. If (q0, p0),
(q1, p0) and (q0, p1) are initially reachable in the cross product automaton C then (q1, p1) is initially

reachable, too.

Proof. Let Σ = {a} be the input alphabet of A, B, and C. Since (q0, p0), (q1, p0), and (q0, p1) are initially

reachable in C we know that there are words wq and wp which map (q0, p0), onto (q1, p0) and (q0, p0),
onto (q0, p1). Because A and B are unary we observe that wq and wp induce the identity on B and A,

respectively. This implies that (q0, p0) ·wqwp =(q1, p0) ·wp =(q1, p1) which proves the stated claim.

One may ask whether Lemma 19 holds for alphabets of arbitrary size. In general it is not true that wq

and wp induce the identity on B and A, respectively. Instead those words induce a cycle on B and A

that has a size that divides the order of the word. If the cycle of A and B contain q0, q1 and p0, p1,

respectively, the statement of the Lemma remains true. We leave it to the reader to prove or disprove the

lemma above for alphabets of at least two letters. As mentioned before we use Lemma 19 to prove that

a whole range of numbers in the upper interval cannot be reached.

C. RAUCH, M. HOLZER 185

Theorem 20. We have [nm−min{n,m}+1,nm−1]* g
asc,u
∩,PFA(m,n).

Proof. Let α ∈ [nm −min{n,m}+ 1,nm − 1]. Clearly Lemma 19 implies that for all PFAs A and B

their cross product automaton has either less than nm−min{n,m}+1 or nm initially reachable accepting

states. On the other hand a result from [5, Lemma 4] implies that if a PFA has nm accepting states and it

is not minimal then its minimal DFA has t accepting states for a divisor of nm. Since every divisor of nm

is less than nm−min{n,m}+1 the claim of the theorem follows.

If we look at the cross product automaton C of unary DFAs A and B we see that for every state q

that is in the tail of A or B there is exactly one initially reachable state in C which contains q as one of

its components. So we obtain that C contains at most nm−min{n,m}+ 1 initially reachable accepting

states. Together with Theorem 20 we obtain the following corollary.

Corollary 21. We have [nm−min{n,m}+2,nm−1]* g
asc,u
∩ (m,n).

As mentioned before the upper bound for g
asc,u
∩,PFA(m,n) is not a magic number which is proven in the

following lemma.

Lemma 22. We have nm ∈ g
asc,u
∩,PFA(m,n).

Proof. Let A = Aw and B = Aw′ for w = 1m0n and 1n0m+1, respectively. Since n+m and n+m+ 1 are

coprime it is obvious that length of their product automaton C is (n+m) · (n+m+ 1). So each pair of

accepting states is initially reachable. We observe that there are max{n,m}−min{n,m} sequences of

accepting states of length min{n,m}. All of those sequences follow each other, i.e., only non-accepting

states are between them. There are also shorter sequences of accepting states in C, e.g., an accepting

states which follows and is followed by a non-accepting state. This implies that C has to be minimal

which proves the stated claim.

3.6 Reversal

The results of this subsection are in contrast to the general case where arbitrary DFAs are considered.

Here the restriction for the input automaton to be a PFA provides magic numbers which are not magic if

the input automaton is not restricted. For deterministic finite automata with no restrictions the following

result was proven in [6]:

gasc
R (m,n) =

{

{0} if m = 0,

N otherwise.

We show that in the case of permutation automata the number α = 1 is magic for all m ≥ 2. Before we

do this we need a special PFA that plays an important role for the reversal operation. We want to mention

that for a unary language L its reversal LR is equal to L. So we will only consider languages with at least

two different letters. First we define
(

S
k

)

for a finite set S and a non-negative integer to be the set of all

subsets of S which have size k. For a PFA A = ({q0,q1, . . . ,qk−1,},Σ, ·A ,q0,FA), we define

AR = (

(

QA

|FA|

)

,Σ, ·AR
,FA,{R ∈

(

QA

|FA|

)

| q0 ∈ R}),

where R ·AR
w = {q ·A w−1 | q ∈ R,w ∈ Σ} for all R ∈

(

QA

|FA|

)

. We want to mention here that AR is a

well-defined DFA since for every word w the mapping w−1 is uniquely defined because A is a PFA.

Because w−1 applies the reverse transitions to every state of A and every state of AR that contains the

186 Accepting State Complexity of Operations on Permutation Automata

initial state of A is accepting so it is not hard to see that AR accepts the language L(A)R. Before we prove

our results for the accepting state complexity of the reversal operation of PFAs we derive two structural

properties of the DFA AR. First we count the number of initially reachable states in AR.

Lemma 23. Let A be a minimal PFA. Then there is an integer x ≥ 1 such that for every state q of A there

are x initially reachable states in AR containing q.

Proof. Let q be an arbitrary state of A. Assume there are x ≥ 1 states R0, R1, . . . ,Rx−1 in AR which

contain q. Since A is an PFA the images of those states are different regardless of the choice of the

mapping. If we apply the mapping which maps q onto q′ for any other state q′ of A it follows directly

that there are at least x states of AR which contain q′. Since this argument can be used symmetrically the

claim of the lemma follows.

Since the states of AR are in turn sets we prove the following property of AR which is the automata

theoretical interpretation of the fact that bijections on elements induce bijections on sets of those ele-

ments.

Lemma 24. For every PFA A the DFA AR is a PFA, too.

Proof. Since A is a PFA for every letter a the preimage of any state q of A is uniquely defined. By

applying this property to every state q in a state R of AR we directly obtain the unique preimage of R.

Now we will prove our magic number result for the PFA case of the reversal operation.

Lemma 25. Let m ≥ 2. Then there exists no PFA A with asc(A) = m such that asc(AR) = 1.

The result of the previous lemma proves the inequality statement of our main theorem for the ac-

cepting state complexity of the reversal operation of p-regular languages. Obviously we also prove that

for m equal two every number unequal one is not magic. We do this by constructing an automaton A such

that AR has α ·k÷m =
(

k
m

)

initially reachable states while every state of A appears in exactly α of them.

Theorem 26. We have

gasc
R,PFA(m) =











{0} if m = 0,

{1} if m = 1,

N≥2 if m = 2,

and gasc
R,PFA(m) 6= N if m ≥ 3. Therefore gasc

R,PFA(m) 6= gasc
R (m).

We note here that for m ≥ 3 the equation α · k÷m =
(

k
m

)

has no integer solution for many values

of α and m which can be easily confirmed. For those values of α and m for which the equation has an

integer solution we obtain α ∈ gasc
R,PFA(m) in similiar fashion like for m = 2. Nevertheless we conjecture

the following:

Conjecture 27. We have

gasc
R,PFA(m) =











{0} if m = 0,

{1} if m = 1,

N≥2 if m ≥ 2.

Clearly this would mean that α = 1 is the only number which is magic for the reversal of p-regular

languages and non-magic for arbitrary regular languages.

C. RAUCH, M. HOLZER 187

3.7 Quotient

For two DFAs A and B the right quotient L(A)L(B)−1 can be accepted by the DFA Ã which can be

obtained from A by exchanging its set of accepting states F by {q | q ·w ∈ F for some w in L(B)}, which

we denote by F̃ . It is obvious that Ã is a PFA if A is a PFA. Additionally, if s is the initial state of A,

then the automaton obtained from A by making all states in {s ·w | w ∈ L} initial accepts L(B)−1L(A).
Since for unary languages the left and right quotient coincide no distinction is made at this point and we

use the right quotient unless otherwise stated. For regular languages in general the following was shown

in [6]:

g
asc,u
−1 (m,n) = gasc

−1 (m,n) =

{

{0} if m = 0 or n = 0,

{0}∪N otherwise.

Clearly the first statement follows directly from the fact that K /0−1 = /0L−1 = /0 for all languages K

and L. But we show that last statement does not hold for the class of p-regular languages. For this we

distinguish whether n is equal one or at least equal to two. First we show which numbers are reachable

if n equals one.

Lemma 28. We have [1,m]⊆ g
asc,u
−1,PFA

(m,1).

Proof. Let α be in [1,m]. Define A=Aw and B=Aw′ for w= 1α 0m+1−α(10m)m−α 0m+1 and w′ = 010m−1.

We observe that A has length (m+1)(m−α +2) and B has length m+1. It is not hard to see that

L(A) = {ai+x(m+1)(m−α+2) | 0 ≤ i ≤ α −1,0 ≤ x}∪{a(m+1)i+x(m+1)(m−α+2) | 1 ≤ i ≤ m−α ,0 ≤ x}

and

L(B) = {a(m+1)i+1 | i ∈ N∪{0}},

for a being the letter of the input alphabet of A and B. We observe that the PFA Ã has the set of

accepting states F̃ that contains exactly the elements q(i−((m+1) j+1)) mod (m+1)(m−α+2), for 0 ≤ i ≤ α − 1

or i ∈ {(m+1)ℓ | 1 ≤ ℓ≤ m−α } and j ∈ N∪{0}. Alternatively we can write

F̃ = {q(i−((m+1) j+1)) mod (m+1)(m−α+2) | 0 ≤ i ≤ α −1, j ∈ N∪{0}}

because

0− ((m+1)(m−α +2− j)+1) mod (m+1)(m−α +2)

= (m+1) j− ((m+1) ·0)+1 mod (m+1)(m−α +2)

holds. One may observe that F̃ contains all accepting states of A but their index is decreased by one

modulo the length of A. If we shift those states again by an arbitrary multiple of (m + 1) we ob-

tain the remaining states in F̃ . Clearly F̃ does not contain other states. Therefore Ã = Aw′′ , for w′′ =
1α−10m+1−α(1α 0m+1−α)m−α+11. Indeed this PFA is not minimal, i.e., all of its sequences 1α−10m+1−α1

are equivalent. Thus the minimal PFA accepting the language L(A)L(B)−1 is Aw′′′ , for the word w′′′ =
1α−10m+1−α1 which has accepting state complexity α .

Next we prove that every number which is not reachable due to the previous lemma is magic.

Lemma 29. We have [1,m] = g
asc,u
−1,PFA

(m,1).

188 Accepting State Complexity of Operations on Permutation Automata

Proof. Due to the proof of Lemma 28 it remains to show that N≥m+1 is not in g
asc,u
−1,PFA

(m,1). Therefore

let A and B be unary minimal PFAs with m and n accepting states, respectively. Recall that Ã is the PFA

obtained from A by replacing its set of accepting states with F̃ = {q | q ·w ∈ F for some w in L(B)}. We

observe that the set of accepting states of Ã is equal

F̃ = {q(i−(jk′+ℓ)) mod k | i ∈ IA, j ∈N∪{0}}

for IA being the index set of the accepting states of A, qℓ being the accepting state of B and k,k′ being the

number of states of A and B, respectively. For an arbitrary but fixed i ∈ IA we see that each of the states

q(i−(0k′+ℓ)) mod k,q(i−(1k′+ℓ)) mod k,q(i−(2k′+ℓ)) mod k, . . .

can be mapped by ak′ onto its predecessor. Since this holds for every i ∈ IA those states have to be

equivalent which proves that Ã contains at most m inequivalent accepting states.

Now we generalize Lemma 28, for n ≥ 2.

Lemma 30. We have [1,mn]⊆ g
asc,u
−1,PFA

(m,n), for n ≥ 2.

Next we rule out every number that is not reachable by Lemma 30. Like in the proof of Lemma 29

one observes that the set of accepting states of the DFA accepting the quotient language of two p-regular

languages L1 and L2 of accepting state complexity m and n, respectively, is given by applying the follow-

ing two steps. First the accepting states of the minimal DFA accepting L1 are shifted onto n positions.

Afterwards these mn accepting states are cyclic replicated by the length of the DFA accepting L1. Since

the DFA accepting the quotient language is a PFA all cyclic replications are equivalent.

Lemma 31. We have [1,mn] = g
asc,u
−1,PFA

(m,n).

By using the previous four Lemmata 28, 29, 30, and 31 we deduce the following corollary.

Corollary 32. We have

g
asc,u
−1,PFA

(m,n) =

{

{0} if m = 0 or n = 0,

[1,mn] otherwise.

Therefore g
asc,u
−1,PFA

(m,n) 6= g
asc,u
−1 (m,n).

The accepting state complexity for the quotient operation on languages accepted by permutation

automata with larger input alphabets has to be left open and is subject to further research.

References

[1] J. Brzozowski (1980): Open Problems About Regular Languages. In R. V. Book, editor: Formal Language

Theory, Academic Press, pp. 23–47, doi:10.1016/B978-0-12-115350-2.50007-5.

[2] J. Dassow (2016): On the Number of Accepting States of Finite Automata. J. Autom., Lang. Comb. 21(1–2),

pp. 55–67, doi:10.25596/jalc-2016-055.

[3] Y. Gao, N. Moreira, R. Reis & S. Yu (2016): A Survey on Operational State Complexity. J. Autom., Lang.

Comb. 21(4), pp. 251–310, doi:10.25596/jalc-2016-251.

[4] M. A. Harrison (1978): Introduction to Formal Language Theory. Addison-Wesley.

[5] M. Holzer & C. Rauch (2021): The Range of State Complexities of Languages Resulting From the Cascade

Product—The Unary Case. In S. Maneth, editor: Proceedings of the 25th International Conference on Im-

plementation and Application of Automata, LNCS 12803, Springer, Bremen, Germany, pp. 90–101, doi:10.

1007/978-3-030-79121-6_8.

http://dx.doi.org/10.1016/B978-0-12-115350-2.50007-5
http://dx.doi.org/10.25596/jalc-2016-055
http://dx.doi.org/10.25596/jalc-2016-251
http://dx.doi.org/10.1007/978-3-030-79121-6_8
http://dx.doi.org/10.1007/978-3-030-79121-6_8

C. RAUCH, M. HOLZER 189

[6] M. Hospodár & M. Holzer (2018): The Ranges of Accepting State Complexities of Languages Resulting

From Some Operations. In C. Campeanu, editor: Proceedings of the 23th Conference on Implemenation

and Application of Automata, LNCS 10977, Springer, Charlottetown, Prince Edward Island, Canada, pp.

198–210, doi:10.1007/978-3-319-94812-6_17.

[7] M. Hospodár & P. Mlynárčik (2020): Operations on Permutation Automata. In N. Jonoska & D. Savchuk,

editors: Proceedings of the 24th International Conference on Developments in Language Theory, LNCS

12086, Springer, Tampa, Florida, USA, pp. 122–136, doi:10.1007/978-3-030-48516-0_10.

[8] K. Iwama, Y. Kambayashi & K. Takaki (2000): Tight bounds on the number of states of DFAs

that are equivalent to n-state NFAs. Theoret. Comput. Sci. 237(1–2), pp. 485–494, doi:10.1016/

S0304-3975(00)00029-3.

[9] I. Jecker, N. Mazzocchi & P. Wolf (2021): Decomposing Permutation Automata. In S. Haddad & D. Varacca,

editors: Proceedings of the 32nd International Conference on Concurrency Theory, LIPIcs 203, Schloss

Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany, Virtual Conference, pp. 18:1–18:19, doi:10.

4230/LIPIcs.CONCUR.2021.18.

[10] H. P. Zeiger (1967): Yet Another Proof of the Cascade Decomposition Theorem for Finite Automata. Math.

Syst. Theory 1(3), pp. 225–228, doi:10.1007/BF01703821.

http://dx.doi.org/10.1007/978-3-319-94812-6_17
http://dx.doi.org/10.1007/978-3-030-48516-0_10
http://dx.doi.org/10.1016/S0304-3975(00)00029-3
http://dx.doi.org/10.1016/S0304-3975(00)00029-3
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2021.18
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2021.18
http://dx.doi.org/10.1007/BF01703821

	1 Introduction
	2 Preliminaries
	3 Results
	3.1 Complementation
	3.2 Kleene Star and Kleene Plus
	3.3 Union
	3.4 Difference
	3.5 Intersection
	3.6 Reversal
	3.7 Quotient

