
H. Bordihn, G. Horváth, G. Vaszil (Eds.): 12th International Workshop on
Non-Classical Models of Automata and Applications (NCMA 2022)
EPTCS 367, 2022, pp. 160–176, doi:10.4204/EPTCS.367.11

© Benedek Nagy
This work is licensed under the
Creative Commons Attribution License.

Quasi-deterministic 5′→ 3′ Watson-Crick Automata

Benedek Nagy
Department of Mathematics, Faculty of Arts and Sciences,

Eastern Mediterranean University, Famagusta, North Cyprus, via Mersin-10, Turkey
nbenedek.inf@gmail.com

Watson-Crick (WK) finite automata are working on a Watson-Crick tape, that is, on a DNA molecule.
A double stranded DNA molecule contains two strands, each having a 5′ and a 3′ end, and these two
strands together form the molecule with the following properties. The strands have the same length,
their 5′ to 3′ directions are opposite, and in each position, the two strands have nucleotides that
are complement of each other (by the Watson-Crick complementary relation). Consequently, WK
automata have two reading heads, one for each strand. In traditional WK automata both heads read
the whole input in the same physical direction, but in 5′ → 3′ WK automata the heads start from
the two extremes and read the input in opposite direction. In sensing 5′ → 3′ WK automata, the
process on the input is finished when the heads meet, and the model is capable to accept the class of
linear context-free languages. Deterministic variants are weaker, the class named 2detLIN, a proper
subclass of linear languages is accepted by them. Recently, another specific variants, the state-
deterministic sensing 5′ → 3′ WK automata are investigated in which the graph of the automaton
has the special property that for each node of the graph, all out edges (if any) go to a sole node,
i.e., for each state there is (at most) one state that can be reached by a direct transition. It was
shown that this concept is somewhat orthogonal to the usual concept of determinism in case of
sensing 5′ → 3′ WK automata. In this paper a new concept, the quasi-determinism is investigated,
that is in each configuration of a computation (if it is not finished yet), the next state is uniquely
determined although the next configuration may not be, in case various transitions are enabled at the
same time. We show that this new concept is a common generalisation of the usual determinism
and the state-determinism, i.e., the class of quasi-deterministic sensing 5′ → 3′ WK automata is
a superclass of both of the mentioned other classes. There are various usual restrictions on WK
automata, e.g., stateless or 1-limited variants. We also prove some hierarchy results among language
classes accepted by various subclasses of quasi-deterministic sensing 5′→ 3′ WK automata and also
some other already known language classes.

1 Introduction

DNA computing [1, 9, 33] constitutes some of the most known natural computing paradigms. Some of
these models based on the very small size of DNA coding and processing the information at molecular
level. Some other paradigms heavily use the structure of the DNA molecules. Watson-Crick automata are
belonging to the latter DNA computing models. In fact, they are finite state machines that are working
on double stranded tape (like a DNA molecule). The symbols located in the same position of the double-
stranded tapes are related by the Watson-Crick complementarity relation. Watson-Crick automata are
abbreviated as WK automata for short based on the two extremes of the pair of names whom they are
named. There are various models of WK-automata, in the classical models [3, 6, 33, 36, 37], the two
heads belonging to the two strands are starting from the same end of the analysed DNA molecule and
moving to the same physical direction. However, the two strands of a DNA molecule have opposite
5′→ 3′ orientation, i.e., their biochemical direction is opposite. The reverse and the 5′→ 3′ variants of
WK automata are more realistic in the sense, that both heads use the same biochemical (that is opposite

http://dx.doi.org/10.4204/EPTCS.367.11
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

Benedek Nagy 161

physical) direction [6, 7, 13, 16, 17]. Some variants of the reverse Watson-Crick automaton with sensing
parameter which tells whether the upper and the lower heads are within a fixed distance (or meet at the
same position) are discussed in [17, 18, 19, 20]. As usual, automata are closely connected to formal
language theory. Later, it was shown that the sensing 5′→ 3′ WK automata with sensing parameter are
equivalent to a newer model without the sensing parameter [29, 30], moreover both models characterise
the class LIN of linear context-free languages.

There are three concepts of determinism introduced to WK-automata [4, 5, 34], due to the possible
properties of the used Watson-Crick complementary relations, each of those concepts differs from the
other two. According to the definition, in a weakly deterministic WK-automaton in any configuration
that could occur in any computation, there is at most one way to continue the computation. We believe
that this concept is the closest to the original idea of determinism. However, in traditional WK automata,
other related concepts may also be used. The second concept, the deterministic WK-automata, have a
stronger constraint than the former weakly deterministic ones, namely: (the formal description will be
explained in the next section) if there are two transitions from the same state, i.e., the automaton has both
p1 ∈ δ (q,u1,v1) and p2 ∈ δ (q,u2,v2) with some states q, p1, p2 and strings u1,u2,v1,v2, then none of u1
and u2 are prefix of each other and none of v1 and v2 are prefix of each other. Finally, the third concept is
defined as follows. A WK-automaton is strongly deterministic if it is deterministic (as above), moreover
the identity is used as Watson-Crick complementarity relation.

In sensing 5′→ 3′ WK automata the process on the input is finished when the heads meet, thus each
position of the Watson-Crick tape is read by only one of the heads. Due to this fact, the complementarity
relation does not really play importance in these models. On the other hand, the complementarity can
also be excluded from the classical models [12], however, as we have mentioned it may play an important
role in defining various types of determinism and also in complexity point of view. Deterministic variants
of 5′→ 3′ WK automata are described in detail in [28, 32], they accept the sublinear class of languages
2detLIN. (As, the sensing 5′→ 3′ WK automata are 2-head automata models, and they accept the linear
languages, the class 2detLIN is named in this way as it is the deterministic counterpart of the class
of linear languages by this accepting model. It should be noted that 2detLIN is incomparable with
detLIN, the class of linear languages accepted by deterministic one-turn pushdown automata, under set-
theoretic inclusion.) WK automata have restricted variants based on restrictions on the states and/or
on the transitions. These restrictions are orthogonal to the concept of determinism. Recently, a new
and related concept, the state-determinism, was also introduced (for finite and sensing 5′ → 3′ WK
automata, see [21]). Here, we present another new concept, the quasi-determinism. In these new models,
the state of the next configuration is determined, but the next configuration may not be. In the state-
deterministic automata, the state of the next configuration depends only on the actual state, while in the
quasi-deterministic automata (as we will define it formally), it may also depend on the part of the input
being read.

In this paper, we consider a new type of concept of determinism, namely the quasi-determinism,
which is closely related to the usual determinism in the case of finite automata. Actually, as we will see,
λ -transition free quasi-deterministic NFA = DFA. On the other hand, already for NFA with λ -transitions
we may allow some non-determinism that is similar to the earlier introduced state-determinism.

We also show that quasi-deterministic sensing 5′ → 3′ WK automata are strictly more powerful
than deterministic sensing 5′→ 3′ WK automata and state-deterministic sensing 5′→ 3′ WK automata.
However, they are not as powerful as nondeterministic sensing 5′→ 3′ WK automata. Some hierarchy
results among the language classes defined by the known restricted variations such as all-final, simple, 1-
limited, and stateless 5′→ 3′ Watson-Crick automata are shown together with some relations to REG of
regular, LIN of linear context-free languages, and 2detLIN of the class accepted by deterministic sensing

162 Quasi-deterministic 5′→ 3′ Watson-Crick Automata

5′→ 3′ WK automata.

2 Basic definitions

We assume that the reader is familiar with basic concepts of formal languages and automata theory, the
language classes of the Chomsky hierarchy and regular expressions, otherwise, she or he is referred to
[8, 35]. In this paper, we denote the alphabet by T and the empty word by λ .

We briefly recall the concepts of finite automata and sensing 5′→ 3′ Watson-Crick automata.
A finite automaton is a 5-tuple A = (T,Q,q0,F,δ), where:

• T is the (input) alphabet,

• Q is the finite set of states,

• q0 ∈ Q is the initial state,

• F ⊆ Q is the set of final (also called accepting) states and

• δ is the transition mapping.

If δ is written in the form δ : Q× (T ∪λ)→ 2Q, then A is a nondeterministic finite automaton with
(allowed) transitions by the empty word (NFA+λ , for short). If δ is also in the form δ : Q×T → 2Q, then
A is nondeterministic finite automaton without transitions by the empty word (NFA for short). Further, if
δ : Q×T → Q is a possibly partially defined function, then A is a deterministic finite automaton (DFA).

The initial configuration of a finite automaton A consists of the initial state and the input word w∈ T ∗

as a pair (q0,w). The computation on an input word goes by configurations according to the transition
mapping as follows: (q,au)⇒ (q′,u) if q′ ∈ δ (q,a). A word w is accepted if (q0,w)⇒∗ (qF ,λ) for a
state qF ∈ F , where⇒∗ is a reflexive and transitive closure of⇒. The set of accepted words form the
accepted language L(A).

Notice that, as usual, the finite automata can process the input from left to right and (at most) one
letter is being read in each transition (depending on the type, see above). However, in the literature there
are various cases, when string reading is allowed, i.e., from a state a finite set of words are given for
which transitions are allowed. It is well-known that this feature does not increase the “accepting power”
of finite automata, still exactly the class of regular languages can be accepted, however, it may have
some effects on complexity measures, etc. Also there are various finite state automata models, when
the automaton may read and process the input not in the strict left to right manner, e.g., automata with
translucent letters [14, 24, 25, 31] and jumping automata [2, 15].

Now we are turning to give our central concept, the sensing 5′ → 3′ WK automata a model that is
also capable to process the input not only in left to right manner.

The two strands of the DNA molecule have opposite 5′→ 3′ orientations, consequently, it is natural
to consider Watson-Crick finite automata that parse the two strands of the Watson-Crick tape in opposite
directions. Since in sensing 5′→ 3′ WK automaton the heads sense that they are meeting and the process
on the input is finished (at the latest) in this position of the heads, the complementarity relation does not
really play any role in this model, w.l.o.g., the identity can be used. Therefore we present a simplified
(but equivalent) model in which a normal tape is used for the input. Moreover, since the head starting
from the left extreme is always to the left of the other head, but the meeting final position, we may refer
to the heads as left and right heads, or alternatively, as first and second heads.

Formally, a Watson-Crick automaton is considered to be a 5-tuple A = (T,Q,q0,F,δ) similarly to the
finite automata, with

Benedek Nagy 163

• the (input) alphabet T , originally the letters standing for possible bases of the nucleotides,

• the finite set of states Q, the initial state q0 ∈ Q and the set of final states F ⊆ Q,

• the transition mapping δ is of the form δ : Q×T ∗×T ∗→ 2Q, such that it is non-empty only for
finitely many triplets (q,u,v),q ∈ Q,u,v ∈ T ∗.

Notice that there are two main differences between finite automata and Watson-Crick automata and both
of them are in their transition mappings: the Watson-Crick automata have two reading heads and, further,
a Watson-Crick automaton may read strings in a transition.

�(aa, λ) (b, λ)

Finite state control

i n p u t t a p e

q0

�(aa, λ) (b, λ)

Finite state control

i n p u t t a p e

q ∈ F

Figure 1: Schematic pictures of a sensing 5′→ 3′ WK automaton in the initial configuration (top) and in
an accepting configuration (bottom, with a final state q).

A configuration of a Watson-Crick automaton is a pair (q,w) where q is the current state of the
automaton and w is the part of the input word which has not been processed (read) yet. In sensing
5′ → 3′ WK automata, for any w′,x,y ∈ T ∗, q,q′ ∈ Q, we write a transition (step of the computation)
between two configurations as follows: (q,xw′y)⇒ (q′,w′) if and only if q′ ∈ δ (q,x,y). We denote
the reflexive and transitive closure of the relation ⇒ by ⇒∗. Therefore, for a given input w ∈ T ∗, an
accepting computation is a sequence of transitions (q0,w)⇒∗ (qF ,λ), starting from the initial state and
ending in a final state.

The language accepted by a WK automaton A is: L(A) = {w ∈ T ∗ | (q0,w)⇒∗ (qF ,λ),qF ∈ F}.
Figure 1 shows schematic representations of an initial configuration and an accepting configuration

of a sensing 5′→ 3′ WK automaton.
Since in DNA computing the empty word does not represent any molecule, in this paper, as usual

in this field, we do not care about if a language contains the empty word or not, that is, we call two
automata equivalent if they accept the same language modulo the empty word. Further, the class of
languages accepted by sensing 5′→ 3′ WK automata is exactly the class of linear context-free languages
of the Chomsky hierarchy ([17, 18, 20, 29, 30]).

There are restricted variants of WK automata which are defined as follows. We say that a WK
automaton is

• stateless, i.e., with only one state, if Q = F = {q0}. This class of WK automata is denoted by the
letter N, as No-state.

164 Quasi-deterministic 5′→ 3′ Watson-Crick Automata

• all-final, i.e., with only final states, if Q = F . This class of WK automata is denoted by the letter
F, as all-Final.

• simple, when at most one head moves in a step, formally: δ : (Q×((λ ,T ∗)∪(T ∗,λ)))→ 2Q. This
class of WK automata is denoted by the letter S, as Simple.

• 1-limited, when exactly one letter is being read in each step of the computations, i.e., δ : (Q×
((λ ,T)∪ (T,λ)))→ 2Q. This class of WK automata is denoted by 1, as 1-limited.

Obviously, by definition, every N sensing 5′→ 3′ WK automaton is an F sensing 5′→ 3′ WK automaton,
and also, every 1 sensing 5′→ 3′ WK automaton is an S sensing 5′→ 3′ WK automaton. There are also
independent restrictions; their combinations are the F1, N1, FS, NS WK automata.

There is one usual definition of (classical) determinism in the case of sensing 5′→ 3′ WK automata:
We say that a 5′ → 3′ WK automaton is deterministic, if there is at most one transition (computation
step) is applicable in each configuration. It is easy to see that this condition implies the fact that at
each possible configuration (q,w) in any computation (q ∈Q,w ∈ T ∗), there is at most one configuration
(p,u) such that (q,w)⇒ (p,u). Somewhat similarly, as at DFA, when deterministic WK automata are
mentioned, we may use the letter D to denote this fact. Remember that the language class accepted by
deterministic sensing 5′→ 3′ WK automata is a proper subset of LIN and denoted by 2detLIN [28, 32].

Now, we recall a related concept, the concept of state-determinism from [21]. An automaton (finite
or Watson-Crick) is state-deterministic if for each of its state q ∈ Q, if there is a transition from q and it
goes to state p (i.e., p ∈ δ (q,a) in the case of finite automata with a ∈ T ∪{λ} and p ∈ δ (q,u,v) in case
of WK-automata with u,v∈ T ∗), then every transition from q goes to p. We may say that if an automaton
(finite or Watson-Crick) has state q in its configuration, then, if the process continues, the state of the
next configuration is uniquely determined and it is p. State-deterministic automata will be denoted by
the prefix sD.

Now, we are ready to define our new concept that plays a central role in this paper. An automaton
(finite or Watson-Crick) is quasi-deterministic if the following condition holds. For each its possible
configuration (q,w) (with q ∈ Q,w ∈ T ∗), if (q,w)⇒ (p,u) and (q,w)⇒ (r,v) then p = r must hold. In
other words, there is a unique state p such that if there is a transition allowed in the configuration (q,w),
then it must go to a configuration in which the state is p. For quasi-deterministic automata, we use the
qD prefix in the sequel.

Automata are usually represented by their graphs, thus we may freely use graph theoretical concepts
here. Further, we assume that each state of the automaton appears in an accepting path of a word of the
accepted language. A transition from a state to itself is represented by a loop edge. Clearly, in a stateless
automaton, there are only loop edges (if any).

3 On quasi-deterministic finite automata

First, for analogy, we show how this new concept can be understood in the case of traditional finite state
automata.

The next proposition shows how quasi-determinism relates to determinism when finite automata are
considered.

Proposition 1. Let A be a λ -transition free NFA. If A is quasi-deterministic, then it is deterministic.
Moreover, each DFA is a λ -free NFA that is quasi-deterministic.

Benedek Nagy 165

Proof. Since λ -transition free NFA read exactly one input letter in each transition, for a quasi-determin-
istic NFA, the first letter of the remaining input in the configuration and the actual state together uniquely
determines the next state exactly in the same way as in a DFA by definition.

The new concept also relates to state-determinism in finite automata:

Proposition 2. Let A be a state-deterministic (NFA+λ) finite automaton, then A is also quasi-determin-
istic.

Proof. Obvious from the definitions of these models.

As we have seen, quasi-determinism is a close connection to determinism and also to state-deter-
minism. Now to show that they are not exactly the same, we present an example.

Example 1. Consider the finite automaton shown in Figure 2. It accepts the language of binary integers

 , +, − 1

 0 0,1

Figure 2: A finite automaton that is not deterministic, but quasi-deterministic.

over the alphabet {+,−,0,1}. On the one hand, it is not a DFA due to the transition by λ from its initial
state. Moreover, it is not state-deterministic, as there is a state for which reading 0 and 1 lead to different
states. On the other hand, it is easy to check that it is quasi-deterministic: from the initial state, all the
three possible transitions (including the one with λ) go to the same state. From the other states, the
transitions are deterministic transitions.

Now, let us give a technical result about quasi-deterministic finite automata. In fact, their states
behave similarly to the states of the deterministic or to the states of state-deterministic automata.

Lemma 1. Let A = (T,Q,q0,F,δ) be a quasi-deterministic finite NFA+λ automaton. Then, the set of
states can be partitioned into two sets as Q = Qd ∪Qs (Qd ∩Qs = /0) such that

Qd = {q | /0 = δ (q,λ) and for any a ∈ T, there is at most one state p such that p ∈ δ (q,a)}

and
Qs = {q | {p}= δ (q,λ) and if q′ ∈ δ (q,a) for some a ∈ T, then q′ = p}.

Proof. Let A be an NFA+λ automaton. Then, for any of its states q ∈ Q there are two options, either
/0 6= δ (q,λ) or /0 = δ (q,λ). In the latter case, there could be transitions from q only by reading an input
letter. If A is quasi-deterministic, then from any configuration (with state q having the first letter a of the
remaining input), the computation should go to a determined state (to p in this case), if any (otherwise,
the computation gets stuck and not accepting). In the former case, by not reading any input letter, A may
enter a configuration (p,w) from (q,w) if p ∈ δ (q,λ). Since A is quasi-deterministic, it may not happen
that there is a p′ ∈Q such that p′ ∈ δ (q,λ) and p 6= p′. Further, if there are transitions from q by reading
a letter, let us say a ∈ T , it must also go to state p.

166 Quasi-deterministic 5′→ 3′ Watson-Crick Automata

If Q = Qd in the previous lemma, then, in fact, the quasi-deterministic A is also deterministic. More-
over, if A is deterministic, then it is a quasi-deterministic finite automaton with the property Q = Qd . On
the other hand, if A is quasi-deterministic with Q = Qs, then A is also state-deterministic. However, for a
state-deterministic A, it may happen that it is quasi-deterministic, but Qd 6= /0. In this case, there are some
states q such that λ -transitions are not defined on those, but all the transitions from q go to a unique state
p of the automaton.

As both the classes of DFA and NFA+λ accept exactly the class of regular languages, it is straightfor-
ward to see that the class of quasi-deterministic finite automata, denoted by qDFA, is also characterizing
the same class of languages. From this point of view, the new model does not seem to give a new power.
However, from a complexity point of view, the classes of DFA and NFA have a remarkable difference,
as in some cases, exponentially more states are needed for a DFA to accept the same regular language
as an NFA needs. As qDFA allows a little non-determinism, it is an interesting challenge to see how
the descriptional complexities of DFA, qDFA, NFA and NFA+λ are related to each other. We leave
this topic for a future work and in this paper, we concentrate on 5′ → 3′ WK automata, in which the
quasi-determinism gives more freedom due to the two heads.

Observe that if a sensing 5′ → 3′ WK automaton has transitions only with its left head (the right
head is always reading λ), then, in fact, it is equivalent to a finite automaton. If this finite automaton is
quasi-deterministic, then so is the 5′→ 3′ WK automaton. We may use this link between finite automata
and WK automata in the next section.

4 On quasi-deterministic sensing 5′→ 3′ WK automata

We start this section by showing that quasi-determinism is a generalisation of both determinism and
state-determinism also in the case of sensing 5′→ 3′ WK automata. The following statements are con-
sequences of the definitions of the used types of determinism.

Proposition 3. Let A be a deterministic sensing 5′→ 3′ WK automaton, then A is quasi-deterministic.

Proof. In deterministic sensing 5′→ 3′ WK automata, for each possible configuration of a computation,
there is at most one next configuration, and, thus, its state is the only state that can be reached from the
given configuration in one computation step.

Proposition 4. Let A be a state-deterministic sensing 5′→ 3′ WK automaton, then A is quasi-determin-
istic.

Proof. In state-deterministic sensing 5′→ 3′ WK automata, for each possible configuration of a compu-
tation, there is at most one state that can appear in any of the next configurations, and, thus, this unique
state (if any) is the one that proves the quasi-determinism.

At this point, we can deduct that the language class accepted by quasi-deterministic sensing 5′ →
3′ WK automata contains 2detLIN, the language class accepted by deterministic sensing 5′ → 3′ WK
automata and also the language class accepted by state-deterministic sensing 5′ → 3′ WK automata.
Now we show that both of these inclusions are proper.

Example 2. Let us consider the language Lo = {ambn | m ≤ n ≤ 2m}. This language is accepted by a
5′→ 3′ WK automaton having only one state and two loop transitions with (a,b) and (a,bb). Obviously
this automaton is quasi-deterministic, always only its sole state can appear in any next configurations.
On the other hand, this language is not in 2detLIN, a deterministic sensing 5′→ 3′ WK automaton has

Benedek Nagy 167

no chance to guess how the numbers of a-s and b-s are related to each other. More formally, the proof
may go by contradiction. Let us assume that a deterministic sensing 5′ → 3′ WK automaton A with
initial state q accepts Lo. Let k be the number of states of A and let r be the maximal length of the
words A may read in a transition (radius of A). Let m = 3kr. Consider the words ambm and amb2m.
Both are in Lo, however their accepting computation must start exactly in the same way in the first
2k steps (A may read at most 2kr a-s by the first head and at most that many b-s by the second head
during this part of the computation). Thus there is a state which appears more than one configurations
in this part of the computation, let it be p (may be the same as q). This part of the computations on
the two above words can be written as (q,ambm)⇒∗ (p,am−i1bm− j1)⇒∗ (p,am−i2bm− j2)⇒∗ (f1,λ)
and (q,amb2m)⇒∗ (p,am−i1b2m− j1)⇒∗ (p,am−i2b2m− j2)⇒∗ (f2,λ) with accepting states f1, f2. Let us
analyse the relation of i2− i1 and j2− j1, i.e., the number of a-s and b-s read in the cycle.

• If i2− i1 > j2− j1, i.e., more a-s are read than b-s, then we also have the accepting computa-
tion (q,am+i2−i1bm+ j2− j1)⇒∗ (p,am+i2−2i1bm+ j2−2 j1)⇒∗ (p,am−i1bm− j1)⇒∗ (p,am−i2bm− j2)⇒∗
(f1,λ) contradicting to the fact that the word am+i2−i1bm+ j2− j1 is not in Lo.

• In the case i2− i1 = j2− j1, i.e., the computation reads the same number of a-s and b-s in the cy-
cle, we have the accepting computation (q,am−(i2−i1)b2m−(i2−i1))⇒∗ (p,am−i2b2m− j2)⇒∗ (f2,λ).
However, in this case, m−(i2− i1) =m− i2+ i1 is less than the half of 2m−(i2− i1) = 2m− i2+ i1,
and thus, am−(i2−i1)b2m−(i2−i1) is not in Lo.

• Finally, if i2− i1 < j2− j1, then there is an accepting computation (q,am−(i2−i1)bm−(j2− j1))⇒∗
(p,am−i2bm− j2) ⇒∗ (f1,λ), however, the word am−(i2−i1)bm−(j2− j1) contains more a-s than b-s
showing the contradiction in this case.

Example 3. Let us consider the regular language b∗ab∗+ b∗. We show that it is not accepted by any
state-deterministic sensing 5′ → 3′ WK automata. The proof goes by contradiction, thus, assume that
there is a state-deterministic sensing 5′→ 3′ WK automaton A accepting b∗ab∗+b∗. Since the language
is infinite, A must have a cycle. Definitely, A has a transition where letter a (or a string containing
letter a) is being read by either head and let us refer to this head by h. Considering this transition, it
cannot be in the cycle, since it would allow to read more than one a in an accepted word. However, in
a state-deterministic automaton, there are only finitely many states that are not in the cycle, and these
states can only be visited during a computation only before the computation enters to the cycle. Thus,
the mentioned transition must be from a state which can be visited before the computation enters into the
cycle, let us refer to this state by p. However, in the finitely many possible computations connecting the
initial state q0 to p, head h can read at most a given finite number, let us say j, of b-s (depending both
on the numbers of states in this path, and also on the length of the read words of the transitions of the
path). But, then it would be impossible for A to accept a word such that its prefix (if h is the left head) or
its suffix (in case h is the right head) has more b-s (before/after the a, respectively) than j. However, as
the language b∗ab∗+b∗ has such words, a contradiction is obtained, and the proof is finished.

Now, on the other hand, the language b∗ab∗+ b∗ is a regular language, and thus, it is accepted by
some DFA. And a DFA can also be seen as a specific quasi-deterministic sensing 5′→ 3′ WK automaton
obtaining the second part of the proof.

Based on the previous propositions and examples, we have proven the following result.

Theorem 1. The class of languages accepted by quasi-deterministic sensing 5′ → 3′ WK automata is
a proper superset of both 2detLIN and the class of languages accepted by state-deterministic sensing
5′→ 3′ WK automata.

168 Quasi-deterministic 5′→ 3′ Watson-Crick Automata

As we already mentioned, in the case of finite automata, quasi-determinism may play only a role in
complexity, as, in fact, the class REG of regular languages is characterized by DFA, NFA, NFA+λ and
also by qDFA. Contrary to this, we have seen that qD sensing 5′→ 3′ WK automata are more powerful
than deterministic sensing 5′→ 3′ WK automata. Now, we show that qD sensing 5′→ 3′ WK automata
are still not as powerful as the general nondeterministic sensing 5′→ 3′ WK automata.

Theorem 2. The class of languages accepted by quasi-deterministic sensing 5′→ 3′ WK automata is a
proper subset of LIN, the class of languages accepted by nondeterministic sensing 5′→ 3′ WK automata.

Proof. The inclusion is trivial from the definition; we need to show only properness. Let us consider the
language L = {anbn | n≥ 0}∪{anb2n | n≥ 0}. Clearly, it is a union of two linear context-free languages,
and it is also linear. The rest of the proof goes by contradiction. Thus, let us assume that there is a
quasi-deterministic sensing 5′ → 3′ WK automaton A that accepts L. (W.l.o.g., we assume that there
are no states in A such that the only transition is the one that reads no letters from the input.) Let the
number of states of A be k and let the longest string read by a possible transition have length `. Now let
us consider the words u = a(3k+2)`b(3k+2)` and v = a(3k+2)`b(6k+4)`, clearly both of them are in L, thus A
must accept both of them. On the other hand, A may read only the prefixes and suffixes of those words,
and thus cannot distinguish them. We shall show that by accepting both of these words by A we can
also accept some words that are not in L. Since the words are long enough, there must be a state during
the computation that is repeated, more precisely, we have the following. As one step of the computation
may process at most 2` letters (in fact, at most ` by the first head and at most ` by the second head), the
accepting computation on u (and also on v) must take more than 3k steps. By the pigeon-hole principle,
there must be a state that appears at least 3 times during such accepting computation (already in the first
2k+ 1 configurations, i.e., during or right after the first 2k steps). Now, in the first 3k steps, both in u
and v, the first head can only read a-s, i.e., in each step, a word from a∗ is read with length at most `.
Similarly, the second head can read only word of b∗ with length at most `. Since A is quasi-periodic,
in each of these first 3k steps, the computation goes through the same sequence of states. In this way,
if q is a state that is used in at least three different configurations in the first 3k steps (we already have
shown that such a state exists, maybe q = q0), then we have an accepting computation on u as (q0,u)⇒∗
(q,ai1b j1)⇒∗ (q,ai2b j2)⇒∗ (λ ,q f) with some accepting state q f ∈ F . By the cycle of the computation
made from state q to reach again state q, it is clear that the word u′ = a(3k+2)`+n(i2−i1)b(3k+2)`+n(j2− j1) is
also accepted for all positive integer n, which implies that i2− i1 = j2− j1. Let this number be denoted
by x, i.e., x = i2− i1. In such a cycle, A reads x a-s and x b-s, and x > 0. Now, considering the accepting
computation on v which also goes through on q more than once during the first 3k steps, i.e., it can be
written as (q0,v)⇒∗ (q,ai3b j3)⇒∗ (q,ai4b j4)⇒∗ (λ ,q′f) with an accepting state q′f . Here, there is also a
cycle in the computation determined by the above two configurations containing state q. However, if one
insert the previously studied cycle of the accepting computation on u, here, then we get a computation that
is also accepting on the word w = a(3k+2)`+xb(6k+4)`+x (q0,w)⇒∗ (q,ai3+xb j3+x)⇒∗ (q,ai4+xb j4+x)⇒∗
(q,ai4b j4)⇒∗ (λ ,q′f). However, the numbers of a-s and b-s in w are neither equal (as ` > 0), nor the
number of b-s is double than the number of a-s (as x > 0). This contradicts to the fact that A accepts
L.

From the proof of the previous result, we may also infer the following.

Corollary 1. The class of languages accepted by quasi-deterministic sensing 5′→ 3′ WK automata is
not closed under union.

Benedek Nagy 169

LIN

qD 5’→3’ WK languages

 2detLIN state-deterministic 5’→3’ WK languages

Figure 3: The place of language class of quasi-deterministic sensing 5′→ 3′ WK automata in the hierar-
chy of related classes of languages.

Based on the results presented so far, Figure 3 shows how the language class accepted by quasi-
deterministic sensing 5′ → 3′ WK automata relates to the language classes accepted by the previously
studied related models.

In the rest of the section, we consider some restricted variants of quasi-deterministic sensing 5′→ 3′

WK automata.

4.1 On stateless variants

We start this subsection with the following observation.
Proposition 5. Every stateless sensing 5′→ 3′ WK automaton is quasi-deterministic.

Proof. In a computation of a stateless automaton, the sole state appears in every configuration, thus the
automaton must be quasi-deterministic.

As the quasi-determinism is a condition that does not have any influence on the other usual restric-
tions, we can state the following consequences.
Corollary 2. The class of N sensing 5′ → 3′ WK automata is the same as the class of qDN sensing
5′→ 3′ WK automata.

The class of NS sensing 5′→ 3′ WK automata is the same as the class of qDNS sensing 5′→ 3′ WK
automata.

The class of N1 sensing 5′→ 3′ WK automata is the same as the class of qDN1 sensing 5′→ 3′ WK
automata.

Based on the results proven in [29, 30], we can establish the following hierarchy results.
Corollary 3. The class of languages accepted by qDN sensing 5′→ 3′ WK automata is a proper superset
of the class of languages accepted by qDNS sensing 5′→ 3′ WK automata.

Further, the class of languages accepted by qDNS sensing 5′→ 3′ WK automata is a proper superset
of the class of languages accepted by qDN1 sensing 5′→ 3′ WK automata.

Further, by observing that the language of Example 3 cannot be accepted by a quasi-deterministic
stateless sensing 5′ → 3′ WK automata), we state that to be stateless is stronger restriction than to be
quasi-deterministic.
Proposition 6. The class of languages accepted by qDN sensing 5′ → 3′ WK automata is properly
included in the set of languages accepted by quasi-deterministic sensing 5′→ 3′ WK automata.

170 Quasi-deterministic 5′→ 3′ Watson-Crick Automata

4.2 Relation to regular languages

In this section, we analyse the relation of the class REG of regular languages to variants of quasi-
deterministic sensing 5′→ 3′ WK automata.

On the one hand, we have:

Proposition 7. The language class accepted by qDNS sensing 5′→ 3′ WK automata is a proper subset
of the class REG of regular languages.

Proof. The qDNS sensing 5′ → 3′ WK automata can accept only special regular languages of the
form (v1 + · · ·+ vi)

∗(u1 + · · ·+ u j)
∗, where the transitions in which the first head can read are {q} =

δ (q,v1,λ) = · · · = δ (q,vi,λ) and the transitions with the second head are {q} = δ (q,λ ,u1) = · · · =
δ (q,λ ,u j). Furthermore, we have also shown a regular language in Example 3 that cannot be accepted
by any qD stateless sensing 5′→ 3′ WK automata.

On the other hand, there are non-regular languages that are accepted by qDN sensing 5′→ 3′ WK
automata:

Example 4. Let us consider the qDN sensing 5′ → 3′ WK automaton with only one transition, {q} =
δ (q,a,b). This automaton accept the non-regular language {anbn | n≥ 0}.

Corollary 4. The class of languages accepted by qDN sensing 5′→ 3′ WK automata and the class REG
of regular languages are incomparable under set-theoretic inclusion relation.

Further, we have that all regular languages are accepted by 1-limited variant:

Proposition 8. The class of languages accepted by qD1 sensing 5′→ 3′ WK automata properly includes
the class REG of regular languages.

Proof. First, the inclusion is obviously coming from the fact that all DFA can be seen as a special variant
of qD1 sensing 5′ → 3′ WK automata, where the second head does not read any input symbol in any
step.

To show that the inclusion is proper, let us consider the following qDF1 sensing 5′→ 3′ WK automa-
ton: ({q, p,r},{a,b},q,{q, p,r},δ) with transition function δ as follows:
{p}= δ (q,a,λ) {q}= δ (p,λ ,a) {r}= δ (q,b,λ) {q}= δ (r,λ ,b).
This automaton accepts the language of palindromes over {a,b}, i.e., exactly those words that are the
same if one reads them backward from the end. This is a well-known non-regular language.

Now, we have already seen some languages, e.g., Example 4 and in the previous proof, that are not
regular but accepted by quasi-deterministic all-final sensing 5′ → 3′ WK automata (maybe even by a
more restricted variant). Now we show another fact.

Lemma 2. The regular language L′ given by b∗ab∗ is not accepted by any qDF sensing 5′ → 3′ WK
automata.

Proof. The proof goes by contradiction. Let us assume that A is a qDF sensing 5′→ 3′ WK automaton
that accepts L′. Let k is the length of the longest string that can be read by a transition of A. Consider
the word w = b2k+1ab2k+1 which is in L′. Let us consider its accepting computation. The all-final A
reads k1 (at most k) b-s from the prefix and k2 (at most k) b-s from the suffix of w in the first step of the
computation. However, as all states are final, this leads that the input word bk1bk2 would also be accepted,
however it is not in L′. By this contradiction the lemma is proven.

Benedek Nagy 171

Based on examples mentioned and the previous lemma we have obtained the following result:

Corollary 5. The class of languages accepted by qDF sensing 5′→ 3′ WK automata and the class REG
of regular languages are incomparable under set-theoretic inclusion relation.

The class of languages accepted by qDFS sensing 5′→ 3′ WK automata and the class REG of regular
languages are incomparable under set-theoretic inclusion relation.

The class of languages accepted by qDF1 sensing 5′→ 3′ WK automata and the class REG of regular
languages are incomparable under set-theoretic inclusion relation.

4.3 Further hierarchy results

In this section, we show further hierarchy results among the analysed classes of languages.

Proposition 9. The class of languages accepted by qDF1 sensing 5′→ 3′WK automata properly includes
the class of languages accepted by qDN1 sensing 5′→ 3′ WK automata.

Proof. The inclusion comes directly from the definition. We need to prove the properness. Let us
consider the regular language ba∗+ a∗. A qDF1 sensing 5′→ 3′ WK automaton that accepts it can be
given as ({q, p},{a,b},q,{q, p},δ), with {q}= δ (q,λ ,a) and {q}= δ (q,λ ,b).

Now, we argue that no qD stateless sensing 5′→ 3′ WK automata can accept this language. In fact,
to accept the language by a stateless variant, there must be a transition from its sole state to itself that
allows to read a letter b (or a string that contains it). However, then by the iterative use of this transition,
words containing more than one b would also be accepted.

Proposition 10. The class of languages accepted by qDFS sensing 5′→ 3′ WK automata properly in-
cludes the class of languages accepted by qDF1 sensing 5′→ 3′ WK automata.

Proof. The inclusion is clear from the definition. To show its properness, let us consider the follow-
ing qDFS sensing 5′ → 3′ WK automaton: ({p,q},{a,b},q,{p,q},δ) with {p} = δ (q,aa,λ), {q} =
δ (p,λ ,bb). It accepts the language {a2nb2n | n≥ 0}∪{a2(n+1)b2n | n≥ 0}.

On the other hand, it is clear that if a qDF1 sensing 5′→ 3′ WK automaton accepts a word w of length
k, then its accepting computation contains exactly k steps, and there are words in the accepted language
by each positive integer length up to k based on the given accepting computation in w (composed by the
read prefix and read suffix of the input word). Since, e.g., in the previous language, there is a word with
length 2, but there is no word with length 1, clearly it cannot be accepted by any qDF1 sensing 5′→ 3′

WK automata.

Based on the automata, languages and arguments we used in the previous parts, the following result
can also be obtained.

Corollary 6. The class of languages accepted by qDF1 sensing 5′ → 3′ WK automata and the class
of languages accepted by qDN sensing 5′ → 3′ WK automata are incomparable under set-theoretic
inclusion relation.

Based on Proposition 8 and the previous argument about qDF1 sensing 5′ → 3′ WK automata, we
also infer the following inclusion:

Corollary 7. The class of languages accepted by qD1 sensing 5′→ 3′ WK automata properly includes
the class of languages accepted by qDF1 sensing 5′→ 3′ WK automata.

172 Quasi-deterministic 5′→ 3′ Watson-Crick Automata

Proposition 11. The class of languages accepted by qDFS sensing 5′→ 3′ WK automata properly in-
cludes the class of languages accepted by qDNS sensing 5′→ 3′ WK automata.

The class of languages accepted by qDF sensing 5′→ 3′ WK automata properly includes the class
of languages accepted by qDN sensing 5′→ 3′ WK automata.

Proof. The inclusions come from the definitions, we need to prove only their properness. The language
ba∗+a∗ used in the proof of Proposition 9 is accepted by a qDF1 sensing 5′→ 3′ WK automaton, which
is also a qDFS and a qDF sensing 5′→ 3′ WK automaton. On the other hand, this language cannot be
accepted by any qD stateless sensing 5′→ 3′ WK automaton by the argument used in the second part of
the proof of Proposition 9.

Proposition 12. The class of languages accepted by qDF sensing 5′→ 3′WK automata properly includes
the class of languages accepted by qDFS sensing 5′→ 3′ WK automata.

Proof. The inclusion is straightforwardly coming from the definition, we shall prove only its properness.
Consider the separating language aaa(ab)∗bbb. On the one hand, the qDF sensing 5′→ 3′WK automaton
({p,q},{a,b},q,{p,q},δ) with {p} = δ (q,aaa,bbb), {p} = δ (p,ab,λ) accepts it. On the other hand,
in a qDFS automaton, in a transition from the initial state only one of the heads can read some input
symbols. The shortest nonempty word of the language is aaabbb, thus either this is read by one of the
heads, or if shorter word is read, then the automaton will accept that prefix or suffix of aaabbb leading to
a contradiction. However, if the whole aaabbb is read by one of the heads, then this must be the prefix
(if the left head is used) or the suffix (if the right head is used) of the other words that are accepted. Since
this is not true for the language, there could not be any qDFS automaton that accepts it.

By definition of the restricted variants, we also know the following:

Corollary 8. The class of languages accepted by qDS sensing 5′→ 3′ WK automata includes the class
of languages accepted by qD1 sensing 5′→ 3′ WK automata.

We left open whether the inclusion in the above statement is proper.

Proposition 13. The class of languages accepted by qDS sensing 5′→ 3′WK automata properly includes
the class of languages accepted by qDFS sensing 5′→ 3′ WK automata.

Proof. The inclusion is a direct consequence of the definition, we shall prove only its properness. Let us
consider the language b∗ab∗. As, it is a regular language, on the one hand, it is easy to give a qD1 sensing
5′→ 3′ WK automaton that accepts it (and this automaton is also a qDS sensing 5′→ 3′ WK automaton
at the same time): ({p,q},{a,b},q,{p},δ) with {q}= δ (q,b,λ), {p}= δ (q,a,λ) and {p}= δ (p,b,λ).

However, on the other hand, the language b∗ab∗ cannot be accepted by any qDF sensing 5′→ 3′ WK
automata (and thus cannot be accepted by any qDFS sensing 5′→ 3′ WK automata) as we have seen in
Lemma 2.

Finally, we state a relation concerning 2detLIN, the class of languages accepted by deterministic
sensing 5′→ 3′ WK automata.

Theorem 3. The class of languages accepted by qD1 sensing 5′→ 3′ WK automata includes the class
2detLIN of languages.

Proof. It has been shown in [28] that 2detLIN is also accepted by the class of deterministic 1-limited
sensing 5′→ 3′ WK automata. On the other hand, as an implication of their definitions, each D1 sensing
5′→ 3′ WK automaton is a qD1 sensing 5′→ 3′ WK automaton.

Benedek Nagy 173

LIN

qD

 sD qD F

 qD S

 qD 1

 qD N

 2detLIN

 REG qD FS

 qD NS

 qD F1

 qD N1

Figure 4: A hierarchy of the language classes of quasi-deterministic sensing 5′→ 3′ WK automata in a
Hasse diagram. The abbreviations qD and sD refer to the language classes accepted by state-deterministic
and quasi-deterministic 5′→ 3′ WK automata; S, F, N, 1 and their combinations are used to abbreviate
the restricted variants of the qD sensing 5′→ 3′ WK automata. Arrows show proper inclusions, while
lines without arrow head show inclusions where the properness is left open. Blue color shows other
related language classes.

In fact, D1 sensing 5′ → 3′ WK automata are those qD1 sensing 5′ → 3′ WK automata in which
exactly one of the heads are allowed to read in each state. As one may easily design a qD1 sensing
5′→ 3′ WK automaton that does not satisfy this property, this latter model may be more powerful than
the deterministic sensing 5′→ 3′ WK automata. We leave this question open.

5 Conclusions

We have considered a kind of generalisation of determinism in the case of finite state machines. The
quasi-determinism may allow such nondeterminism that is based on the input being processed during a
computation step. In a quasi-deterministic automaton, the state of the next configuration in the compu-
tation is determined, but the next configuration itself may not be. This new type of determinism also
generalise the recently introduced state-determinism. We have shown that quasi-determinism is entirely

174 Quasi-deterministic 5′→ 3′ Watson-Crick Automata

the same as determinism in the case of λ -transition free NFA. On the other hand, for WK automata,
especially, for sensing 5′ → 3′ WK automata, because of the two heads and the string-reading feature,
it is more interesting. Knowing that the family of sensing 5′ → 3′ WK automata accept the family of
linear context-free languages, we have shown that a new sublinear language class is accepted by the new
model, that is a proper superclass of the class 2detLIN of languages accepted by deterministic sensing
5′ → 3′ WK automata. We have also studied various restricted classes, and proved various hierarchy
results among them, for their summary see Figure 4. The properness of some inclusions, as well as most
of the other properties of the defined language classes, including, e.g., closure properties, are left for
the future. The quasi-determinism may also be expanded to various other types of automata, including
models based on 5′ → 3′ WK automata, e.g., automata with multiple runs [13], jumping 5′ → 3′ WK
automata [10, 11], 2-head/linear automata with translucent letters [26, 27] and 5′→ 3′ WK transducers
[22, 23].

Acknowledgements

Comments of the anonymous reviewers are gratefully acknowledged.

References

[1] Leonard M. Adleman (1994): Molecular computation of solutions to combinatorial problems. Science
226(5187), pp. 1021–1024, doi:10.1126/science.7973651.

[2] Hiroyuki Chigahara, Szilárd Zsolt Fazekas & Akihiro Yamamura (2016): One-Way Jumping Finite Automata.
Int. J. Found. Comput. Sci. 27(3), pp. 391–405, doi:10.1142/S0129054116400165.

[3] Elena Czeizler & Eugen Czeizler (2006): A Short Survey on Watson-Crick Automata. Bulletin of the EATCS
88, pp. 104–119.

[4] Elena Czeizler, Eugen Czeizler, Lila Kari & Kai Salomaa (2008): Watson-Crick automata: determinism
and state complexity. In Cezar Campeanu & Giovanni Pighizzini, editors: 10th International Workshop on
Desciptional Complexity of Formal Systems, DCFS 2008, University of Prince Edward Island, pp. 121–133.

[5] Elena Czeizler, Eugen Czeizler, Lila Kari & Kai Salomaa (2009): On the descriptional complexity of Watson-
Crick automata. Theor. Comput. Sci. 410(35) pp. 3250–3260, doi:10.1016/j.tcs.2009.05.001.

[6] Rudolf Freund, Gheorghe Păun, Grzegorz Rozenberg & Arto Salomaa (1997): Watson-Crick finite automata.
In 3rd DIMACS Sympozium On DNA Based Computers, Philadelphia, pp. 305–317.

[7] László Hegedüs, Benedek Nagy & Ömer Egecioglu (2012): Stateless multicounter 5′ → 3′ Watson-Crick
automata: the deterministic case. Natural Computing 11(3), pp. 361–368, doi:10.1007/s11047-011-9290-9.

[8] John E. Hopcroft & Jeffrey D. Ullman (1979): Introduction to Automata Theory, Languages and Computa-
tion. Addison-Wesley.

[9] Richard J. Lipton (1995): DNA solution of hard computational problems. Science 268(5210), pp. 542–545,
doi:10.1126/science.7725098.

[10] Radim Kocman, Benedek Nagy, Zbynek Krivka & Alexander Meduna (2018): A jumping 5′ → 3′

Watson-Crick finite automata model. In Rudolf Freund, Michal Hospodár, Galina Jirásková & Giovanni
Pighizzini, editors: Tenth Workshop on Non-Classical Models of Automata and Applications, NCMA 2018,
Österreichische Computer Gesellschaft, pp. 117–132.

[11] Radim Kocman, Zbynek Krivka, Alexander Meduna & Benedek Nagy (2022): A jumping 5′→ 3′ Watson-
Crick finite automata model. Acta Informatica, online first, doi:10.1007/s00236-021-00413-x.

http://dx.doi.org/10.1126/science.7973651
http://dx.doi.org/10.1142/S0129054116400165
http://dx.doi.org/10.1016/j.tcs.2009.05.001
http://dx.doi.org/10.1007/s11047-011-9290-9
http://dx.doi.org/10.1126/science.7725098
http://dx.doi.org/10.1007/s00236-021-00413-x

Benedek Nagy 175

[12] Dietrich Kuske & Peter Weigel (2004): The role of the complementarity relation in Watson-Crick automata
and sticker systems. In Cristian S. Calude, Elena Calude & Michael J. Dinneen, editors: Developments in
Language Theory, DLT 2004, Lecture Notes in Computer Science, LNCS 3340, Springer, Berlin, Heidelberg,
pp. 272—283, doi:10.1007/978-3-540-30550-7 23.

[13] Peter Leupold & Benedek Nagy (2010): 5′ → 3′ Watson-Crick automata with several runs. Fundamenta
Informaticae 104, pp. 71-–91, doi:10.3233/FI-2010-336.

[14] Madeeha Fatima & Benedek Nagy (2020): Transduced-input automata with translucent letters. Comptes
Rendus de l’Académie Bulgare des Sciences 73(1), pp. 33–39, doi:10.7546/CRABS.2020.01.04.

[15] Alexander Meduna & Petr Zemek (2012): Jumping finite automata. International Journal of Foundations of
Computer Science 23, pp. 1555–1578, doi:10.1142/S0129054112500244.

[16] Benedek Nagy (2007): On 5′ → 3′ sensing Watson-Crick finite automata. In Garzon M.H. & Yan H., edi-
tors: Preliminary proceedings of DNA13: The 13th International Meeting on DNA computing, Memphis,
Tennessee, USA, pp. 327–336.

[17] Benedek Nagy (2008): On 5′→ 3′ sensing Watson-Crick finite automata. In: Garzon M.H. & Yan H., editors:
DNA Computing. DNA 2007: Selected revised papers, Lecture Notes in Computer Science, LNCS 4848,
Springer, Berlin, Heidelberg, pp. 256—262, doi:10.1007/978-3-540-77962-9 27.

[18] Benedek Nagy (2009): On a hierarchy of 5′→ 3′ sensing WK finite automata languages. In: Klaus Ambos-
Spies, Benedikt Löve & Wolfgang Merkle, editors: Computaility in Europe, CiE 2009: Mathematical Theory
and Computational Practice, Abstract Booklet, Heidelberg, pp. 266—275.

[19] Benedek Nagy (2010): 5′→ 3′ Sensing Watson-Crick Finite Automata, In: Gabriel Fung, editor: Sequence
and Genome Analysis II - Methods and Applications, iConcept Press, pp. 39—56.

[20] Benedek Nagy (2013): On a hierarchy of 5′→ 3′ sensing Watson-Crick finite automata languages. Journal
of Logic and Computation 23(4), pp. 855—872, doi:10.1093/logcom/exr049.

[21] Benedek Nagy (2021): State-deterministic 5′ → 3′ Watson-Crick automata. Natural Computing 20(4), pp.
725–737, doi:10.1007/s11047-021-09865-z.

[22] Benedek Nagy & Zita Kovács (2019): On simple 5′ → 3′ sensing Watson-Crick finite-state transducers. In
Rudolf Freund, Markus Holzer & José M. Sempere, editors: Eleventh Workshop on Non-Classical Models
of Automata and Applications, NCMA 2019, Österreichische Computer Gesellschaft, pp. 155–170.

[23] Benedek Nagy & Zita Kovács (2021): On deterministic 1-limited 5′→ 3′ sensing Watson-Crick finite-state
transducers. RAIRO Theor. Informatics Appl. 55:5, doi:10.1051/ita/2021007.

[24] Benedek Nagy & Friedrich Otto (2011): Finite-state acceptors with translucent letters. In G. Bel-Enguix, V.
Dahl & A.O. De La Puente, editors: BILC 2011: AI Methods for Interdisciplinary Research in Language and
Biology, Proc., SciTePress, Portugal, pp. 3–13.

[25] Benedek Nagy & Friedrich Otto (2012): On CD-systems of stateless deterministic R-automata with window
size one. Journal of Computer and System Sciences 78, pp. 780–806, doi:10.1016/j.jcss.2011.12.009.

[26] Benedek Nagy & Friedrich Otto (2019): Two-Head Finite-State Acceptors with Translucent Letters. In Bar-
bara Catania, Rastislav Královic, Jerzy Nawrocki & Giovanni Pighizzini, editors: SOFSEM 2019: Theory
and Practice of Computer Science, LNCS 11376, Springer, pp. 406–418, doi:10.1007/978-3-030-10801-4 -
32.

[27] Benedek Nagy & Friedrich Otto (2020): Linear automata with translucent letters and linear context-free
trace languages. RAIRO Theor. Informatics Appl. 54:3, doi:10.1051/ita/2020002.

[28] Benedek Nagy & Shaghayegh Parchami (2021): On deterministic sensing 5′ → 3′ Watson–Crick finite au-
tomata: a full hierarchy in 2detLIN, Acta Informatica 58 pp. 153–175, doi:10.1007/s00236-019-00362-6.

[29] Benedek Nagy & Shaghayegh Parchami (2022): 5′ → 3′ Watson-Crick automata languages – without the
sensing parameter. Natural Computing, online first, doi:10.1007/s11047-021-09869-9.

http://dx.doi.org/10.1007/978-3-540-30550-7_23
http://dx.doi.org/10.3233/FI-2010-336
http://dx.doi.org/10.7546/CRABS.2020.01.04
http://dx.doi.org/10.1142/S0129054112500244
http://dx.doi.org/10.1007/978-3-540-77962-9_27
http://dx.doi.org/10.1093/logcom/exr049
http://dx.doi.org/10.1007/s11047-021-09865-z
http://dx.doi.org/10.1051/ita/2021007
http://dx.doi.org/10.1016/j.jcss.2011.12.009
http://dx.doi.org/10.1007/978-3-030-10801-4_32
http://dx.doi.org/10.1007/978-3-030-10801-4_32
http://dx.doi.org/10.1051/ita/2020002
http://dx.doi.org/10.1007/s00236-019-00362-6
http://dx.doi.org/10.1007/s11047-021-09869-9

176 Quasi-deterministic 5′→ 3′ Watson-Crick Automata

[30] Benedek Nagy, Shaghayegh Parchami, Hamid Mir Mohammad Sadeghi (2017): A new sensing 5′ → 3′

Watson-Crick automata concept. In Erzsébet Csuhaj-Varjú, Pál Dömösi & György Vaszil, editors: Proceed-
ings 15th International Conference on Automata and Formal Languages, AFL 2017, Electronic Proceedings
in Theoretical Computer Science, EPTCS 252, pp. 195–204, doi:10.4204/EPTCS.252.19.

[31] Friedrich Otto & Frantisek Mráz (2022): Non-returning finite automata with translucent letters. 12th In-
ternational Workshop on Non-Classical Models of Automata and Applications, NCMA 2022, Electronic
Proceedings in Theoretical Computer Science, EPTCS, in the present volume.

[32] Shaghayegh Parchami & Benedek Nagy (2018): Deterministic Sensing 5′→ 3′ Watson-Crick Automata With-
out Sensing Parameter. In Susan Stepney & Sergey Verlan, editors: Unconventional Computation and Natural
Computation, UCNC 2018 LNCS 10867, Springer, pp. 173–187, doi:10.1007/978-3-319-92435-9 13.

[33] Gheorghe Păun, Grzegorz Rozenberg & Arto Salomaa (2002): DNA Computing: New Computing Paradigms.
Springer-Verlag, doi:10.1007/978-3-662-03563-4.

[34] Kumar Sankar Ray, Kingshuk Chatterjee & Debayan Ganguly (2015): State complexity of deterministic
Watson-Crick automata and time varying Watson-Crick automata. Natural Computing 14(4), pp. 691–699,
doi:10.1007/s11047-015-9494-5.

[35] Grzegorz Rozenberg & Arto Salomaa, editors (1997): Handbook of Formal Languages. Springer,
doi:10.1007/978-3-642-59136-5.

[36] José M. Sempere (2004): A Representation Theorem for Languages Accepted by Watson-Crick Finite Au-
tomata. Bulletin of the EATCS 83, pp. 187–191.

[37] José M. Sempere (2018): On the application of Watson-Crick finite automata for the resolution of bioinfor-
matic problems. In Rudolf Freund, Michal Hospodár, Galina Jirásková & Giovanni Pighizzini, editors: Tenth
Workshop on Non-Classical Models of Automata and Applications, NCMA 2018, Österreichische Computer
Gesellschaft, pp. 29–30. Invited talk.

http://dx.doi.org/10.4204/EPTCS.252.19
http://dx.doi.org/10.1007/978-3-319-92435-9_13
http://dx.doi.org/10.1007/978-3-662-03563-4
http://dx.doi.org/10.1007/s11047-015-9494-5
http://dx.doi.org/10.1007/978-3-642-59136-5

	1 Introduction
	2 Basic definitions
	3 On quasi-deterministic finite automata
	4 On quasi-deterministic sensing 5'3' WK automata
	4.1 On stateless variants
	4.2 Relation to regular languages
	4.3 Further hierarchy results

	5 Conclusions

