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Here we propose a variant of the nondeterministic finite automaton with translucent letters (NFAwtl)
which, after reading and deleting a letter, does not return to the left end of its tape, but rather continues
from the position of the letter just deleted. When the end-of-tape marker is reached, our automaton
can decide whether to accept, to reject, or to continue, which means that it again reads the remaining
tape contents from the beginning. This type of automaton, called a non-returning finite automaton
with translucent letters or an nrNFAwtl, is strictly more expressive than the NFAwtl. We study the
expressive capacity of this type of automaton and that of its deterministic variant. Also we are
interested in closure properties of the resulting classes of languages and in decision problems.

1 Introduction

While a (deterministic or nondeterministic) finite automaton reads its input strictly from left to right,
letter by letter, by now many types of automata have been considered in the literature that process their
inputs in a different, more involved way. Under this aspect, the most extreme is the jumping finite
automaton of Meduna and Zemek [7] (see also [4]), which, after reading a letter, jumps to an arbitrary
position of the remaining input. It is known that the jumping finite automaton accepts languages that are
not even context-free, like the language {w ∈ {a,b,c}∗ | |w|a = |w|b = |w|c }, but at the same time, it
does not even accept the finite language {ab}.

Another example is the nondeterministic linear automaton (or NLA) studied by Loukanova in [6],
which is a nondeterministic finite automaton with two heads, one reading the input from left to right, the
other reading the input from right to left. This model can be simulated by a model with one head that
reads alternatingly the first and the last letter. It is easily seen that this model characterizes the class LIN
of linear context-free languages. Actually, the NLA corresponds to the 5′ → 3′-sensing Watson-Crick
automaton defined by Nagy in [9].

Moreover, there is the restarting automaton as introduced by Jančar, Mráz, Plátek, and Vogel in [5],
which processes a given input in cycles, in each cycle scanning the remaining input from left to right until
it deletes one or more letters, returns its head to the left end of the remaining input, and reenters its initial
state. If using a head of size larger than one, these so-called R-automata accept a proper superclass of the
regular languages that is incomparable to the context-free and the growing context-sensitive languages
(see, e.g., [16]), while with a head of size one, they accept exactly the regular languages [8].

Finally, there is the (deterministic and nondeterministic) finite automaton with translucent letters (or
DFAwtl and NFAwtl) of Nagy and Otto [12], which is equivalent to a cooperating distributed system
of stateless deterministic R-automata with heads of size one. For each state q of an NFAwtl, there is
a set τ(q) of translucent letters, which is a subset of the input alphabet that contains those letters that
the automaton cannot see when it is in state q. Accordingly, in each step, the NFAwtl just reads (and
deletes) the first letter from the left that it can see, that is, that is not translucent for the current state.
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It has been proved that the NFAwtl accepts a class of semi-linear languages that properly contains all
rational trace languages, while its deterministic variant, the DFAwtl, is properly less expressive. In fact,
the DFAwtl just accepts a class of languages that is incomparable to the rational trace languages with
respect to inclusion [11, 13, 14, 15]. In addition, while the obvious upper bound for the time complexity
of the membership problem for a DFAwtl is DTIME(n2), a better upper bound of DTIME(n · logn) is
derived in [10].

Here we propose a variant of the nondeterministic finite automaton with translucent letters which,
after reading and deleting a letter, does not return to the left end of its tape, but that rather continues
from the position of the letter just deleted. When the end-of-tape marker is reached, our automaton can
decide whether to accept, reject or continue, which means that it again reads the remaining tape contents
from the beginning. We prove that this type of automaton, called a non-returning finite automaton with
translucent letters or an nrNFAwtl, is strictly more expressive than the NFAwtl. However, as we shall see,
its deterministic variant, the nrDFAwtl, which is more expressive than the DFAwtl, is still not powerful
enough to accept all rational trace languages. In this paper, we concentrate on the problem of determining
just how expressive these types of automata are and on the complexity of their membership problems,
but we are also interested in closure and non-closure properties of the resulting classes of languages.

This paper is structured as follows. In Section 2, we present the formal definition of the non-returning
finite automaton with translucent letters, we explain its workings by a detailed example, and we derive a
kind of normalized form for this type of automaton. In the next section, which is the main part of the pa-
per, we compare the classes of languages that are accepted by the nondeterministic and the deterministic
non-returning finite automaton with translucent letters to the language classes accepted by the DFAwtl
and the NFAwtl, to the rational trace languages, and to the classes of the Chomsky hierarchy, establishing
some proper inclusion results and some incomparability results. Then, in Section 4, we present a few
closure and non-closure properties for the classes of languages that are accepted by the nondeterministic
and the deterministic non-returning finite automaton with translucent letters. Finally, in Section 5, we
study the complexity of the membership problem for the nrDFAwtl, showing that it is decidable in time
O(n · (logn)2) whether a word of length n is accepted by a given nrDFAwtl. In the concluding section,
we summarize our results and state a number of open problems for future work.

2 Definitions

In order to use it as a reference, we restate the definition of the nondeterministic finite automaton with
translucent letters from [12].

Definition 1 A finite automaton with translucent letters, an NFAwtl for short, is defined as a 7-tuple
A = (Q,Σ,C,τ, I,F,δ ), where Q is a finite set of internal states, Σ is a finite alphabet of input letters,
C 6∈Σ is a special symbol that is used as an end-of-tape marker, τ : Q→P(Σ) is a translucency mapping,
I ⊆Q is a set of initial states, F ⊆Q is a set of final states, and δ : Q×Σ→P(Q) is a transition relation.
Here it is required that, for each state q ∈Q and each letter a ∈ Σ, if a ∈ τ(q), then δ (q,a) = /0. For each
state q ∈Q, the letters from the set τ(q) are translucent for q, that is, in state q the automaton A does not
see these letters.

An NFAwtl A = (Q,Σ,C,τ, I,F,δ ) works as follows. For an input word w ∈ Σ∗, it starts in a nonde-
terministically chosen initial state q0 ∈ I with the word w ·C on its tape. Assume that w = a1a2 · · ·an for
some n ≥ 1 and a1,a2, . . . ,an ∈ Σ, and assume that A is in state q ∈ Q. Then A looks for the first occur-
rence from the left of a letter that is not translucent for state q, that is, if w = uav such that u ∈ (τ(q))∗
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and a 6∈ τ(q), then A nondeterministically chooses a state q1 ∈ δ (q,a), erases the letter a from the tape,
thus producing the tape contents uv ·C, its internal state is set to q1, the head returns to the first letter
on the tape, and the computation continues. In case δ (q,a) = /0, A halts without accepting. Finally, if
w ∈ (τ(q))∗, then A reaches the end-of-tape marker C and the computation halts. In this case, A accepts
if q is a final state; otherwise, it does not accept. Thus, A executes the following computation relation on
its set Q ·Σ∗ ·C ∪ {Accept,Reject} of configurations:

qw ·C `A


q′uv ·C, if w = uav, u ∈ (τ(q))∗, a 6∈ τ(q), and q′ ∈ δ (q,a),
Reject, if w = uav, u ∈ (τ(q))∗, a 6∈ τ(q0), and δ (q,a) = /0,
Accept, if w ∈ (τ(q))∗ and q ∈ F,
Reject, if w ∈ (τ(q))∗ and q 6∈ F.

A word w∈ Σ∗ is accepted by A if there exists an initial state q0 ∈ I and a computation q0w ·C `∗A Accept,
where `∗A denotes the reflexive transitive closure of the above single-step computation relation `A. Now
L(A) = {w ∈ Σ∗ | w is accepted by A} is the language accepted by A and L (NFAwtl) denotes the class
of all languages that are accepted by NFAwtls.

Definition 2 An NFAwtl A = (Q,Σ,C,τ, I,F,δ ) is a deterministic finite automaton with translucent let-
ters, abbreviated as DFAwtl, if |I|= 1 and if |δ (q,a)| ≤ 1 for all q ∈ Q and all a ∈ Σ. Then L (DFAwtl)
denotes the class of all languages that are accepted by DFAwtls.

For future reference, we present an example of a DFAwtl.

Example 3 Let Ac = (Q,Σ,C,τ,q0,F,δ ) be the DFAwtl that is given through Q = {q0,qa,q′a,qb,q′b},
Σ = {a,b,a′,b′}, F = {q0} and the functions τ and δ that are defined as follows:

τ(q0) = /0, τ(qa) = {a′,b′}, τ(q′a) = {a,b},
τ(qb) = {a′,b′}, τ(q′b) = {a,b},

δ (q0,a) = q′a, δ (q0,b) = q′b, δ (q0,a′) = qa, δ (q0,b′) = qb,
δ (qa,a) = q0, δ (qb,b) = q0, δ (q′a,a

′) = q0, δ (q′b,b
′) = q0,

and δ (qa,b),δ (qb,a),δ (q′a,b
′), and δ (q′b,a

′) are undefined. For the word abba′b′ab′a′, Ac executes the
following accepting computation:

q0abba′b′ab′a′C `Ac q′abba′b′ab′a′C `Ac q0bbb′ab′a′C `Ac q′bbb′ab′a′C
`Ac q0bab′a′C `Ac q′bab′a′C `Ac q0aa′C
`Ac q′aa′C `Ac q0C `Ac Accept.

In fact, if ϕ denotes the morphism that is defined through ϕ(a) = a′ and ϕ(b) = b′, then it is easily
checked that L(Ac) = {sh(w,ϕ(w)) | w ∈ {a,b}∗ }, where sh denotes the shuffle operation. �

The above language L(Ac) is not context-free. In fact, it is not even a growing context-sensitive
language. Let π : {a,b,a′,b′}∗→{a,b}∗ be the morphism that is defined through a 7→ a, b 7→ b, a′ 7→ a,
and b′ 7→ b. Then

π(L(Ac) ∩ ({a,b}∗ · {a′,b′}∗)) = π({wϕ(w) | w ∈ {a,b}∗ }) = {ww | w ∈ {a,b}∗ },

which is the copy language on {a,b}∗ that is not growing context-sensitive [2]. As the class GCSL
of growing context-sensitive languages is closed under the operations of intersection with regular sets
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and non-erasing morphisms, this implies that the language L(Ac) is not growing context-sensitive, ei-
ther. Thus, Example 3 shows that already DFAwtls accept quite some complicated languages in com-
parison to the Chomsky hierarchy. On the other hand, the language L(Ac) is the rational trace lan-
guage that is obtained from the regular language {aa′,bb′}∗ through the dependency relation D =
{(a,b),(b,a),(a′,b′),(b′,a′)} (see, e.g., [11, 14]).

As defined above, an NFAwtl performs each step of its computation starting from the first letter on its
tape: it looks for the first letter that is not translucent for the current state, deletes it, changes its state, and
returns to the first letter. Here we propose a variant of this type of automaton that does not necessarily
return to the first letter, but that continues from the position of the letter deleted, returning to the first
letter only after the tape contents has been scanned completely. Next, we present the formal definition
of this type of automaton, which is called the non-returning finite automaton with translucent letters or
nrNFAwtl for short.

Definition 4 An nrNFAwtl is defined by a 6-tuple A = (Q,Σ,C,τ, I,δ ), where Q is a finite set of internal
states, Σ is a finite alphabet of input letters, C 6∈ Σ is a special symbol that is used as an end-of-tape
marker, τ : Q→P(Σ) is a translucency mapping, I ⊆ Q is a set of initial states, and

δ : Q× (Σ∪{C})→ (P(Q)∪{Accept})

is a transition relation. Here it is required that, for each state q ∈ Q and each letter a ∈ Σ, δ (q,a)⊆ Q,
and if a ∈ τ(q), then δ (q,a) = /0. For each state q ∈Q, the letters from the set τ(q) are translucent for q,
that is, in state q the automaton A does not see these letters.

From the above definition, we see that δ (q,C) is either a subset of Q or the operation Accept, that
is, on seeing the end-of-tape marker C in state q, the nrNFAwtl A has either the option to change its
state or to accept. The nrNFAwtl A = (Q,Σ,C,τ, I,δ ) works as follows. For an input word w ∈ Σ∗, A
starts in a nondeterministically chosen initial state q0 ∈ I with the word w ·C on its tape. This situation
is described by the configuration q0w ·C. Now assume that A is in a configuration of the form xq1w ·C,
where q1 ∈ Q and x,w ∈ Σ∗, that is, A is in state q1, the tape contains the word xw ·C, and the head of
A is on the first letter of the suffix w ·C. Then A looks for the first occurrence from the left of a letter
in w that is not translucent for state q1, that is, if w = uav such that u ∈ (τ(q1))

∗ and a 6∈ τ(q1), then A
nondeterministically chooses a state q2 ∈ δ (q1,a), erases the letter a from the tape, thus producing the
tape contents xuv ·C, sets its internal state to q2, and continues the computation from the configuration
xuq2v ·C. In case δ (q1,a) = /0, A halts without accepting. Finally, if w ∈ (τ(q1))

∗, then A reaches the
end-of-tape marker C and a transition from the set δ (q1,C) is applied. This transition is either an accept
step or a state q2 from Q. In the former case, A halts and accepts, while in the latter case, it continues
the computation in state q2 by reading its tape again from left to right, that is, from the configuration
q2xw ·C. Finally, if δ (q1,C) is undefined, then A halts and rejects. Thus, the computation relation `A

that A induces on its set of configurations Σ∗ ·Q ·Σ∗ ·C ∪ {Accept,Reject} is the reflexive and transitive
closure `∗A of the single-step computation relation `A that is specified as follows:

xqw ·C `A


xuq′v ·C, if w = uav, u ∈ (τ(q))∗, a 6∈ τ(q), and q′ ∈ δ (q,a),
Reject, if w = uav, u ∈ (τ(q))∗, a 6∈ τ(q0), and δ (q,a) = /0,
q′xw ·C if w ∈ (τ(q))∗ and q′ ∈ δ (q,C),
Accept, if w ∈ (τ(q))∗ and δ (q,C) = Accept,
Reject, if w ∈ (τ(q))∗ and δ (q,C) = /0.

To describe computations of nrNFAwtls in a compact way, we introduce the notions of a sweep and
a cycle.
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Definition 5 Let A = (Q,Σ,C,τ, I,δ ) be an nrNFAwtl.

(a) A sweep is a part of a computation of A in which the head moves from left to right across the
complete tape contents. Thus, a sweep has the form q1wu ·C `∗A w′q2u ·C, where q1,q2 ∈ Q,
u ∈ (τ(q2))

∗, the word w′ is obtained from w by deleting some letters or w = w′ = λ and q1 = q2,
and the end-of-tape marker C is not visited during this partial computation. We use the notation

q1wu ·C `s
A w′uq2C

to denote the above sweep. Observe that the configurations w′q2u ·C and w′uq2C have exactly the
same immediate successor configurations, as the word u only contains letters that are translucent
for the state q2.

(b) A cycle is a part of a computation of A that consists of a sweep q1wu ·C `s
A w′uq2C together

with the next transitional step q3 ∈ δ (q2,C). Thus, a cycle has the form q1wu ·C `∗A w′q2u ·C `A

q3w′u ·C. We use the notation
q1wu ·C `c

A q3w′u ·C

for this cycle.

A word w ∈ Σ∗ is accepted by the nrNFAwtl A = (Q,Σ,C,τ, I,δ ) if there exists an initial state q0 ∈ I
such that A has an accepting computation of the form q0w ·C `∗A Accept. Then

L(A) = {w ∈ Σ
∗ | w is accepted by A}

is the language accepted by A. We use L (nrNFAwtl) to denote the class of languages that are accepted
by nrNFAwtls.

Definition 6 An nrNFAwtl A= (Q,Σ,C,τ, I,δ ) is a non-returning deterministic finite-state acceptor with
translucent letters, abbreviated as nrDFAwtl, if |I| = 1 and if |δ (q,a)| ≤ 1 for all q ∈ Q and all a ∈
Σ∪{C}. Then L (nrDFAwtl) denotes the class of all languages that are accepted by nrDFAwtls.

We illustrate these definitions by an example.

Example 7 Let A = (Q,{a,b,c},C,τ,{qa},δ ) be the nrDFAwtl that is defined by taking Q =
{qa,qb,qc,qr}, τ(qa) = /0, τ(qb) = {a}, τ(qc) = {b}, τ(qr) = {c}, and δ (qa,a) = qb, δ (qb,b) = qc,
δ (qc,c) = qr, δ (qr,C) = qa, δ (qa,C) = Accept. Given the word w = aabbcc as input, the automaton A
executes the following accepting computation:

qaaabbcc ·C `A qbabbcc ·C `A aqcbcc ·C `A abqrc ·C
`A qaabc ·C `A qbbc ·C `A qcc ·C
`A qrC `A qaC `A Accept,

that is, A accepts on input w = aabbcc. In fact, qaaabbcc ·C `s
A abcqrC is a sweep and qaaabbcc ·C `c

A
qaabc ·C is a cycle of A. Actually, it is easily seen that L(A) = {anbncn | n≥ 0}. �

Recall from [12] that the language {anbncn | n≥ 0} is not accepted by any NFAwtl.

As defined above, an nrNFAwtl A = (Q,Σ,C,τ, I,δ ) may run into an infinite computation. Just
assume that q is a state of A, w ∈ (τ(q))∗, and q ∈ δ (q,C). Then qw ·C `A qw ·C `A qw ·C, and so forth.
However, we can avoid this by converting A into an equivalent nrNFAwtl B as follows.
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Let B = (Q′,Σ,C,τ ′, I′,δ ′), where Q′ = {(q,S) | q ∈ Q and S ⊆ Q}, I′ = {(q, /0) | q ∈ I }, τ ′(q,S) =
τ(q) for all q ∈ Q and all S ⊆ Q, δ ′((q,S),a) = {(p, /0) | p ∈ δ (q,a)} for all q ∈ Q, S ⊆ Q, and all
a ∈ Σ, and δ ′((q,S),C) = {(p,S∪{q}) | p ∈ δ (q,C) and q 6∈ S} for all q ∈ Q and all S ⊆ Q. Finally,
take δ ′((q,S),C) = Accept if δ (q,C) = Accept. The set S is used to record those states in which the
end-of-tape marker has been reached and the computation has continued. In the next cycle, when a non-
translucent letter is read, then this set is emptied, otherwise, the next state is added to it. This process
continues until either a letter is read and deleted, or until no new state can be added to the current set S,
in which case the computation fails. We illustrate this construction through a simple example.

Example 8 Let A = (Q,{a,b},C,τ,{p},δ ), where Q = {p,q,r}, τ(p) = τ(q) = τ(r) = {a}, and

δ (p,b) = q,δ (p,C) = {q,r},δ (q,C) = p,δ (r,C) = Accept,

and let w = aabaa. On input w, A can execute the following infinite computation:

pw ·C= paabaa ·C `A aaqaa ·C `A paaaa ·C `A qaaaa ·C `A paaaa ·C `A · · ·

The automaton B = (Q′,{a,b},C,τ ′,{p},δ ′) that is obtained from A through the construction presented
above simulates this computation as follows:

(p, /0)aabaa ·C `B aa(q, /0)aa ·C `B (p,{q})aaaa ·C `B (q,{p,q})aaaa ·C `B Reject,

that is, it recognizes the repetition and aborts the computation. Of course, using the transition r∈ δ (p,C)
or (r,{p,q}) ∈ δ ′((p,{q}),C), both A and B can accept. �

In general, an nrNFAwtl A = (Q,Σ,C,τ, I,δ ) may accept without having read and deleted its in-
put completely. This happens for the automata in Example 8 as τ(p) = τ(r) = {a}, r ∈ δ (p,C), and
δ (r,C) = Accept. However, we can easily convert the nrNFAwtl A into an equivalent nrNFAwtl C that
always reads and deletes its input completely before it accepts. Just take C = (Q∪{qe},Σ,C,τ ′, I,δ ′),
where qe is a new state, τ ′(q) = τ(q) for all q ∈ Q and τ ′(qe) = /0, and δ ′ is defined as follows:

− δ ′(q,a) = δ (q,a) for all q ∈ Q and all a ∈ Σ,

− δ ′(q,C) =

{
δ (q,C), if δ (q,C) 6= Accept,
{qe}, if δ (q,C) = Accept,

− δ ′(qe,a) = {qe} for all a ∈ Σ,
− δ ′(qe,C) = Accept.

Given a word w ∈ Σ∗ as input, the nrNFAwtl C will execute exactly the same steps as the nrNFAwtl A
until A accepts. Now the accept step of A is simulated by C through changing into state qe. As τ ′(qe) = /0
and as δ ′(qe,a) = {qe} for all a ∈ Σ, C will now read and delete the remaining tape contents and accept
on reaching the end-of-tape markerC. It follows easily that L(C) = L(A). Together the two constructions
considered yield the following technical result.

Proposition 9 Each nrNFAwtl A can effectively be converted into an equivalent nrNFAwtl C that never
gets into an infinite computation and that accepts only after reading and deleting its tape contents com-
pletely. In addition, if A is deterministic, then so is C.
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3 Proper Inclusion Results and Incomparability Results

First we show that the nrNFAwtl is indeed an extension of the NFAwtl.

Theorem 10 From a given NFAwtl A, one can construct an nrNFAwtl B such that L(B) = L(A). In
addition, if A is deterministic, then so is B.

Proof. Let A = (Q,Σ,C,τ, I,F,δ ) be an NFAwtl. We define a simulating nrNFAwtl B =
(QB,Σ,C,τB, IB,δB) as follows:

• QB = Q∪{q′ | q ∈ Q}, where for each state q ∈ Q, q′ is an additional auxiliary state, and IB = I,

• for each state q ∈ Q, τB(q) = τ(q) and τB(q′) = Σ,

• for each state q∈Q and each letter a∈Σ, δB(q,a)= { p′ | p∈ δ (q,a)} and δB(q′,a)= /0. Moreover,
δB(q,C) = Accept, if q ∈ F , and δB(q′,C) = {q}.

It remains to verify that B just simulates the computations of A.
Assume that qw ·C is a configuration of A, that is, q ∈ Q and w ∈ Σ∗. From the definition of the

computation relation `A, we see that there are two cases that we must consider.

• First assume that w = uav for some word u ∈ (τ(q))∗ and a letter a 6∈ τ(q). If p ∈ δ (q,a), then
qw ·C `A puv ·C is a possible step of A. In this case, B can execute the following sequence of
steps:

qw ·C= quav ·C `B up′v ·C `B puv ·C.

If δ (q,a) = /0, then A halts and rejects. However, in this case, also δB(q,a) = /0, and hence, B halts
and rejects as well.

• If w ∈ (τ(q))∗, then A accepts, if q ∈ F , otherwise, it rejects. In this case, B just acts likewise.

Thus, it follows that L(A)⊆ L(B).

Conversely, if w ∈ L(B), then it is easily verified that each accepting computation of B on input w is
just a simulation of an accepting computation of A on input w. It follows that L(B) = L(A).

Finally, the above definition of B shows that B is deterministic, if A is. This completes the proof of
Theorem 10. �

Together with Example 7, this theorem has the following consequence.

Corollary 11 L (NFAwtl)( L (nrNFAwtl) and L (DFAwtl)( L (nrDFAwtl).

It is known that all languages accepted by NFAwtls are necessarily semi-linear, that is, their images
with respect to the Parikh mapping are semi-linear subsets of Nm, where m is the cardinality of the un-
derlying alphabet. Does a corresponding result also hold for nrNFAwtls? First we consider this question
for the special case of a unary alphabet.

Proposition 12 A language L⊆ {a}∗ is accepted by an nrNFAwtl if and only if it is a regular language.

Proof. If L⊆ {a}∗ is a regular language, then it is accepted by an NFA and therewith also by an NFAwtl.
Theorem 10 then shows that L is accepted by an nrNFAwtl.

Conversely, assume that a language L ⊆ {a}∗ is accepted by an nrNFAwtl A = (Q,{a},C,τ, I,δ ).
By Proposition 9, we can assume that the nrNFAwtl A never gets into an infinite computation and that it
accepts only after reading and deleting its tape contents completely. From A we now construct an NFA
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with λ -transitions B = (Q,{a}, I,F,δB) by taking F = {q ∈ Q | δ (q,C) = Accept} and by defining the
transition relation δB as follows:

(1) δB(q,a) = δ (q,a) for all q ∈ Q,
(2) δB(q,λ ) = δ (q,C), if τ(q) = {a} and δ (q,C)⊆ Q.

We claim that L(B) = L(A) = L holds, which then implies that L is a regular language.
For each state q ∈ Q, if τ(q) 6= /0, then τ(q) = {a} and δ (q,a) is undefined. Hence,

xqw ·C `A


q′xw ·C, if q′ ∈ δ (q,C),
Accept, if δ (q,C) = Accept,
Reject, if δ (q,C) = /0.

On the other hand, for each state q ∈ Q for which τ(q) = /0,

qaw ·C `A

{
q′w ·C, if q′ ∈ δ (q,a),
Reject, if δ (q,a) = /0.

Hence, if am is accepted by the nrNFAwtl A, then a corresponding accepting computation of A reads
(and deletes) the word am simply letter by letter from left to right, where this sequence of computational
steps may be interspersed with steps that change the state without reading (and deleting) a letter a. Now
it is easily seen that the NFA B can execute the very same computation. Conversely, each accepting
computation of the NFA B just mirrors an accepting computation of the nrNFAwtl A. This completes the
proof of Proposition 12. �

Thus, all unary languages that are accepted by nrNFAwtls are semi-linear. For non-unary alphabets,
the corresponding question is still open. To illustrate this problem, we consider the following detailed
example.

Example 13 We define the nrDFAwtl Aex3 = (Q,Σ,C,τ, I,δ ) as follows:

• Q = {q0,q1,q2,q3,q4,q5,q6,q7,q8}, Σ = {a,b,c}, and I = {q0},
• τ(q0) = {a}, τ(q1) = τ(q2) = /0,

τ(q3) = {b}, τ(q4) = τ(q5) = /0,
τ(q6) = {a,c}, τ(q7) = τ(q8) = /0,

• and the transition function δ is defined through

(1) δ (q0,b) = q1, (4) δ (q2,C) = q7, (7) δ (q5,b) = q6, (10) δ (q7,a) = q8,
(2) δ (q1,c) = q2, (5) δ (q3,c) = q4, (8) δ (q6,b) = q1, (11) δ (q8,C) = Accept.
(3) δ (q2,a) = q3, (6) δ (q4,a) = q5, (9) δ (q6,C) = q0,

We can actually describe the nrDFAwtl Aex3 through the diagram given in Figure 1. In this diagram,
the vertices correspond to the states of A, an edge of the form qi

x // q j denotes a transition from qi

to q j that simply reads an occurrence of the letter x, and an edge of the form qi
(Y ∗,x) // q j denotes a

transition from qi to q j in which a factor from Y ∗ is skipped and a subsequent occurrence of the letter x
is read. Finally, an edge the label of which contains the end-of-tape marker C corresponds to a restart
or an accept operation.

From this diagram, we can easily extract the following information on computations of Aex3:
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q6

({a,c}∗,C)

{{
({a,c}∗,b)
��

q5
boo q4

aoo

// q0
(a∗,b) // q1

c // q2
a //

C

��

q3

(b∗,c)

OO

q7
a // q8

C // Accept

Figure 1: The diagram describing the nrDFAwtl Aex3

1. The shortest path from q0 to Accept removes a single occurrence of each of the letters a, b, and c.

2. A sweep of the automaton A starts in q0 and ends in q2 or in q6, or it starts in q7.

3. A sweep may contain one or more repetitions of the cycle q6→ q1→ q2→ q3→ q4→ q5→ q6,
during which two occurrences of each of the letters a, b, and c are removed.

4. During a sweep that ends at q6, the same even number of occurrences of each of the letters a, b,
and c are removed.

5. The last part of an accepting computation leads from q0 or from q6 to q1, then to q2, then to q7, and
on to q8. Thus, during this part, a single occurrence of each of the letters a, b, and c is removed.

Together these observations imply that during each accepting computation, Aex3 removes the same un-
even number of occurrences of the letters a, b, and c. This implies that the Parikh image π(L(Aex3)) of
the language L(Aex3) satisfies the inclusion π(L(Aex3))⊆ {(2n+1,2n+1,2n+1) | n≥ 0}.

We now consider an input of the form (abc)3n for some n ≥ 1. This input yields the following com-
putation:

q0(abc)3n ·C = q0abc(abc)3n−1 ·C `Aex3 aq1c(abc)3n−1 ·C `Aex3 aq2abc(abc)3n−2 ·C
`Aex3 aq3bc(abc)3n−2 ·C `Aex3 abq4abc(abc)3n−3 ·C `Aex3 abq5bc(abc)3n−3 ·C
`Aex3 abq6cabc(abc)3n−4 ·C `Aex3 abcaq1c(abc)3n−4 ·C `Aex3 abcaq2abc(abc)3n−5 ·C
`∗Aex3

(abc)n−1aq2abc(abc) ·C`Aex3 (abc)n−1aq3bc(abc) ·C`Aex3 (abc)n−1abq4abc ·C
`Aex3 (abc)n−1abq5bc ·C `Aex3 (abc)n−1abq6c ·C `Aex3 q0(abc)n−1abc ·C
= q0(abc)n ·C.

Finally, as
q0abc ·C `Aex3 aq1c ·C `Aex3 aq2C `Aex3 q7a ·C `Aex3 q8C `Aex3 Accept,

it follows that Lexp3 = {(abc)3n | n≥ 0} ⊆ L(Aex3). Unfortunately, Aex3 also accepts some words that do
not belong to the language Lexp3. In fact, it can be shown that L′ = {ab(cacabb)nc | n ≥ 0} ⊆ L(Aex3).
Indeed, for n = 0, we have ab(cacabb)nc = abc ∈ L(Aex3). Now, proceeding by induction on n,

q0ab(cacabb)n+1c ·C = q0abcacabb(cacabb)nc ·C `Aex3 aq1cacabb(cacabb)nc ·C
`6

Aex3
aq1(cacabb)nc ·C `∗Aex3

Accept.

As π(ab(cacabb)nc) = (2n+1,2n+1,2n+1), we see that

π(L(Aex3)) = {(2n+1,2n+1,2n+1) | n≥ 0},
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which shows that the language L(Aex3) is in fact semi-linear.

On the other hand, we have the following fact.

Claim. L(Aex3)∩ (abc)∗ = Lexp3.

Proof. If w = (abc)3n+1, then

q0w ·C `∗Aex3
(abc)n−1abq6cabc ·C `Aex3 (abc)naq1c ·C `Aex3 (abc)naq2C `Aex3 q7(abc)na ·C,

and from the configuration q7(abc)na ·C, Aex3 accepts only if n = 0. Analogously, if w = (abc)3n+2, then

q0w ·C `Aex3 (abc)naq1cabc ·C `Aex3 (abc)naq2abc ·C `Aex3 (abc)naq3bc ·C
`Aex3 (abc)nabq4C `Aex3 Reject.

Hence, the only powers of abc that Aex3 accepts are those of the form (abc)m for which m is a power of
three. �

Hence, our example shows that the intersection of a language that is accepted by an nrDFAwtl and a
regular set is not necessarily semi-linear. �

At this point, it remains open whether the class L (nrDFAwtl) contains any non-unary languages that
are not semi-linear.

As all rational trace languages are accepted by NFAwtls, Corollary 11 implies that all rational trace
languages are accepted by nrNFAwtls. However, as shown in [15], the rational trace language

L∨ = {w ∈ {a,b}∗ | ∃n≥ 0 : |w|a = n and |w|b ∈ {n,2n}}

is not accepted by any DFAwtl. Our next result shows that this language is not even accepted by any
nrDFAwtl.

Proposition 14 L∨ 6∈L (nrDFAwtl).

Proof. We prove this result by contradiction. So assume that A = (Q,Σ,C,τ, I,δ ) is an nrDFAwtl that
accepts the language L∨, where Q = {q0,q1, . . . ,qm−1}, Σ = {a,b}, and I = {q0}.

Claim. If qiarbs ·C `s
A ar−r1bs−s1q jC is a sweep within an accepting computation of A on input anbn or

anb2n, then r1 ≤ m and s1 ≤ m.

Proof. As L(A)= L∨, and as an nrDFAwtl only deletes letters during its computation, we see that w= arbs

is converted into ar−r1bs−s1 for some 0 ≤ r1 ≤ r and 0 ≤ s1 ≤ s. Thus, during the above sweep, A first
reads (and deletes) r1 copies of the letter a and then it reads (and deletes) s1 copies of the letter b. If
r1 > m, then some state of A appears at least twice while the head of A is still inside the prefix ar. This
implies that by using pumping, A can also execute the sweeps of the form

qiar+µ·tbs ·C `s
A ar−r1bs−s1q jC

for all µ ≥ 1 and some value 1≤ t ≤ m. But then, together with anbn or anb2n, A would also accept the
words an+µ·tbn or an+µ·tb2n, a contradiction. It follows that r1 ≤ m, and analogously, it can be shown
that s1 ≤ m. �
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Now let n > 3m2. Then anbn ∈ L∨, and the computation of A on input anbn is accepting. It consists
of a sequence of sweeps and an accept step, that is, we have

q0anbn ·C `s
A an−r1bn−s1qi1 ·C `A q j1an−r1bn−s1 ·C
`s

A an−r1−r2bn−s1−s2qi2 ·C `A q j2an−r1−r2bn−s1−s2 ·C
`s

A . . . `s
A an−r1−r2−···−rk bn−s1−s2−···−sk qik ·C

`A Accept,

where k ≥ 1 and ri,si ≤ m for all i = 1,2, . . . ,k. If n > r1 + r2 + · · ·+ rk, then A would also accept the
word an+1bn 6∈ L∨, and if n > s1 + s2 + · · ·+ sk, then A would also accept the word anbn+1 6∈ L∨. It
follows that n = r1 + r2 + · · ·+ rk = s1 + s2 + · · ·+ sk, that is, A erases its input anbn completely before it
accepts. Because of the above claim, this means in particular that the number of sweeps k in the above
computation satisfies the inequality k > 3m.

As A has only m states, it follows that there are indices 1 ≤ α < β ≤ m+ 1 such that the states q jα
and q jβ are identical. Hence, the above computation can be written as follows:

q0anbn ·C `∗A q jα an−r1−r2−···−rα bn−s1−s2−···−sα ·C
`∗A q jβ an−r1−r2−···−rα−rα+1−···−rβ bn−s1−s2−···−sα−sα+1−···−sβ ·C
= q jα an−r1−r2−···−rα−rα+1−···−rβ bn−s1−s2−···−sα−sα+1−···−sβ ·C
`∗A qikC `A Accept.

To simplify the notation, we take nα = n− r1− r2−·· ·− rα , c = rα+1 + · · ·+ rβ , c′ = sα+1 + · · ·+ sβ ,
and n′α = n− s1− s2−·· ·− sα . Then we also have the following accepting computation:

q0an+cbn+c′ ·C `∗A q jα anα+cbn′α+c′ ·C `∗A q jα anα−c+cbn′α−c′+c′ ·C = q jα anα bn′α ·C `∗A Accept.

Thus, an+cbn+c′ ∈ L∨. As c≤m2 and c′ ≤m2, while n > 3m2, it follows that n+c = n+c′, which in turn
implies that c = c′.

Now we consider the accepting computation of A for the input anb2n ∈ L∨. As A is deterministic, this
computation looks as follows:

q0anb2n ·C `∗A q jα anα bn+n′α ·C `∗A q jα anα−cbn+n′α−c ·C `∗A Accept.

However, A can then also execute the following accepting computation:

q0an+cb2n+c ·C `∗A q jα anα+cbn+n′α+c ·C `∗A q jα anα−c+cbn+n′α−c+c ·C = q jα anα bn+n′α ·C `∗A Accept.

Thus, an+cb2n+c ∈ L∨. However, n+ c < 2n+ c < 2(n+ c), which means that an+cb2n+c 6∈ L∨, a contra-
diction. This shows that L∨ is not accepted by any nrDFAwtl. �

It thus follows that the class of rational trace languages is not contained in the language class
L (nrDFAwtl). Finally, we consider the subset P2 of the semi-Dyck language D2 that is defined by
the context-free grammar

G = ({S},{a,b,c,d},S,{(S→ λ ),(S→ aSc),(S→ bSd)}.

Thus, P2 consists of all fully bracketed expressions over Σ= {a,b,c,d}, where the letters a and b are seen
as opening brackets, the letters c and d are the corresponding closing brackets, and all opening brackets
come before all closing brackets.. Hence, P2 consists of all words of the form

w = ai1b j1ai2b j2 · · ·aik b jk d jk cik · · ·d j2ci2d j1ci1 ,
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where k≥ 0, i1, jk ≥ 0, i2, i3, . . . , ik > 0, and j1, j2, . . . , jk−1 > 0. It is easily seen that P2 is a deterministic
linear language, that is, it is accepted by a deterministic one-turn pushdown automaton (see, e.g., [1]).
For this language we have the following negative result.

Theorem 15 P2 6∈L (nrNFAwtl).

Proof outline. We prove this result by contradiction. So assume that A= (Q,Σ,C,τ, I,δ ) is an nrNFAwtl
such that L(A) = P2, where Q = {q0,q1, . . . ,qm−1} and Σ = {a,b,c,d}.

Let w ∈ Σ∗ be an input word. A factor of w of maximum length that only consists of occurrences
of the letter a is called an a-block of w, and analogously, we have b-blocks, c-blocks, and d-blocks. As
observed above, w consists of an alternating sequence of a- and b-blocks that is followed by an alternating
sequence of c- and d-blocks. It is important to notice that the language P2 contains words that consist
of arbitrarily many blocks of arbitrary size. Based on this observation the following technical results
concerning accepting computations of A on inputs of sufficient size can be derived:

(1) During a sweep within an accepting computation of A on an input w, at most m letters can be
deleted from any block of size larger than m.

(2) During a sweep within an accepting computation on an input w, A deletes letters from adjacent
blocks from the {a,b}∗-prefix of w starting with the first a-block or the first b-block, and analo-
gously, it deletes letters from adjacent blocks of the {c,d}∗-suffix, starting with the first d-block
or the first c-block.

(3) Within an accepting computation of A, the number of blocks that are modified within a given
sweep is bounded from above by a fixed multiple of the number of sweeps already executed.

(4) For any word of the form w= ai1b j1 · · ·aik b jk d jk cik · · ·d j1ci1 ∈P2, where k > 6m2+2 and iν , jν >m2

for all ν = 1,2, . . . ,k, any accepting computation of A on input w consists of at most m cycles.

These statements are proved in a similar way as Proposition 14. However, more involved arguments
based on pumping are needed. Based on these statements, we can now complete the proof as follows.

If w ∈ P2 is a word of the form described in (4), then an accepting computation of A on input w
consists of at most m cycles. During each cycle, at most m letters are deleted from at most 4m · (m+1) =
4m2 + 4m blocks, and so, the word obtained through these cycles still consists of 4k > 24m2 + 8 non-
empty blocks. As A now accepts, it is obvious that together with the word w, A also accepts words that do
not belong to the language P2. This contradiction shows that there is no nrNFAwtl A such that L(A) = P2.
This completes the proof of Theorem 15. �

Thus, the nrNFAwtl does not even accept all deterministic linear languages. The diagram in Figure 2
summarizes the relationships between the classes of languages that are accepted by the various types of
finite automata with translucent letters and the classes of the Chomsky hierarchy.

4 Closure and Non-Closure Properties

Here we present some closure and non-closure properties for the classes of languages that are accepted
by nrNFAwtls and by nrDFAwtls.

Theorem 16 The language class L (nrNFAwtl) is closed under union and disjoint shuffle.
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L (nrNFAwtl)
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CFL

OO

L (nrDFAwtl)
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LIN

OO

L (NFAwtl)

OO

DLIN

OO

LRAT

OO

L (DFAwtl)

OO

ii

REG

OO 77

L (NFA) L (DFA)

OO

¸

Figure 2: Hierarchy of language classes accepted by the various types of finite automata with translucent
letters. Here LRAT denotes the class of all rational trace languages. Each arrow represents a proper
inclusion, and classes that are not connected by a sequence of arrows are incomparable under inclusion.

Proof. Let A1 = (Q1,Σ,C,τ1, I1,δ1) and A2 = (Q2,Σ,C,τ2, I2,δ2) be two nrNFAwtls. Without loss of
generality we may assume that the sets Q1 and Q2 are disjoint. Let A = (Q1 ∪Q2,Σ,C,τ, I1 ∪ I2,δ ) be
the nrNFAwtl that is defined by taking

τ(q) =
{

τ1(q), if q ∈ Q1
τ2(q), if q ∈ Q2

}
and δ (q,a) =

{
δ1(q,a), if q ∈ Q1
δ2(q,a), if q ∈ Q2

}
for all a ∈ Σ∪{C}. Then L(A) = L(A1)∪L(A2), which proves that the class L (nrNFAwtl) is closed
under union.

Let L1⊆ Σ∗1 and L2⊆ Σ∗2, where the alphabets Σ1 and Σ2 are disjoint. If A1 = (Q1,Σ1,C,τ1, I1,δ1) and
A2 = (Q2,Σ2,C,τ2, I2,δ2) are nrNFAwtls with disjoint sets of states such that L(A1) = L1 and L(A2) = L2,
then we obtain an nrNFAwtl A = (Q1∪Q2,Σ1∪Σ2,C,τ, I1,δ ) for the shuffle sh(L1,L2) by taking

τ(q) =
{

τ1(q)∪Σ2, if q ∈ Q1
τ2(q)∪Σ1, if q ∈ Q2

}
,δ (q,a) =

{
δ1(q,a), if q ∈ Q1 and a ∈ Σ1
δ2(q,a), if q ∈ Q2 and a ∈ Σ2

}
,

and δ (q,C) =


δ1(q,C), if q ∈ Q1 and δ1(q,C)⊆ Q1,
I2, if q ∈ Q1 and δ1(q,C) = Accept,
δ2(q,C), if q ∈ Q2.

Given a word w ∈ (Σ1∪Σ2)
∗ as input, A starts in a state from I1 and it behaves just like the automa-

ton A1, ignoring all letters from Σ2. If and when the end-of-tape marker C is reached in a state q ∈ Q1
for which δ1(q,C) = Accept, then A enters a state from the set I2 and continues its computation by sim-
ulating A2, this time ignoring all letters from Σ1 that may still be on its tape. Finally, A accepts if and
when the computation of A2 accepts. It follows that L(A) = sh(L(A1),L(A2)) = sh(L1,L2). Thus, the
class L (nrNFAwtl) is closed under disjoint shuffle. �

For the nrDFAwtl, we have the following results.

Theorem 17 The language class L (nrDFAwtl) is closed under complementation and disjoint shuffle,
but it is neither closed under union nor under intersection. Moreover, this class is not closed under
alphabetic morphisms.
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Proof. The language L1 = {w ∈ {a,b}∗ | |w|a = |w|b } and the language L2 = {w ∈ {a,b}∗ | |w|b =
2 · |w|a } are accepted by DFAwtls. However, L1∪L2 = L∨, which is not even accepted by any nrDFAwtl
by Proposition 14. This shows that the class L (nrDFAwtl) is not closed under union.

Next we prove that the class L (nrDFAwtl) is closed under complementation. Let A =
(Q,Σ,C,τ, I,δ ) be an nrDFAwtl. We define an nrDFAwtl Ac = (Q∪ {q+},Σ,C,τc, I,δ c), where q+
is a new state, by taking

τc(q) =

{
τ(q), if q ∈ Q
Σ, if q = q+

}
,

and by defining, for all q ∈ Q and all a ∈ Σ ∪ {C},

δ c(q,a) =


δ (q,a), if δ (q,a) ∈ Q
q+, if a 6∈ τ(q) and δ (q,a) is undefined
/0, if a =C and δ (q,C) = Accept

 , and

δ c(q+,C) = Accept.

Given a word w∈ Σ∗ as input, the automaton Ac simulates the computation of the automaton A on input w
step by step until A either accepts or gets stuck. In the former case, Ac reaches the end-of-tape marker C
and gets stuck, while in the latter case it enters the state q+ and accepts. It follows that L(Ac) =Σ∗rL(A),
which shows that the class L (nrDFAwtl) is closed under complementation.

Closure under complementation and non-closure under union imply that the class L (nrDFAwtl) is
not closed under intersection. Furthermore, closure under disjoint shuffle is proved in the same way as
for nrNFAwtls.

Finally, let Σ = {a,b,c}, let

L = {w ∈ {a,b}∗ | |w|a = |w|b }∪{w ∈ {a,c}∗ | |w|c = 2 · |w|a },

and let ϕ : Σ∗→ {a,b}∗ be the alphabetic morphism that is defined through a 7→ a, b 7→ b, and c 7→ b.
It is easily verified that the language L is accepted by a DFAwtl. However, ϕ(L) = L∨, which is not
accepted by any nrDFAwtl by Proposition 14. This proves that the class L (nrDFAwtl) is not closed
under alphabetic morphisms. �

5 Decision Problems

The membership problem for each nrNFAwtl is solvable in linear space. Moreover, it is straightforward
to see that L (nrNFAwtl) ⊆ NTIME(n2). In particular, the membership problem for a nrDFAwtl is
decidable in quadratic time. However, by associating, for each letter a ∈ Σ, a balanced binary search
tree (see, e.g., [3]) Ta to a word of length n over Σ such that Ta contains those indices i ∈ {1,2, . . . , |w|}
at which the letter a occurs in the word w, it can be shown that the computation of a nrDFAwtl A on a
word of length n can be simulated by a random access machine (a RAM) in O(n · logn) steps. As each
operation involves only logn many bits, we obtain the following result.

Theorem 18 The membership problem for a nrDFAwtl is decidable in time O(n · (logn)2).

The construction shows that each operation of a non-returning NFAwtl can be simulated nondeter-
ministically by a RAM in logn many steps. Hence, we obtain the following obvious corollary.
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Corollary 19 The membership problem for an nrNFAwtl is in NTIME(n · (logn)2).

In fact, by using an extension of the technique presented by Nagy and Kovács in [10], it can be shown
that the membership problem for a nrDFAwtl is even decidable in time O(n · logn) if the underlying
alphabet is only of cardinality two. However, it remains open whether a corresponding result can also be
obtained for the case of larger alphabets.

By Proposition 12, a unary language is accepted by an nrNFAwtl if and only if it is a regular lan-
guage. This implies immediately that the emptiness problem (and the finiteness problem) is decidable
for nrNFAwtls that accept unary languages. Concerning non-unary languages, the situation is more com-
plicated.

From the diagram describing a given nrNFAwtl A, we can immediately extract information on the
patterns of the words that A can scan during a single sweep (or cycle). Of course, if there is a sweep
that starts in an initial state and that reaches a state in which A accepts at the end-of-tape marker, then
the corresponding words are accepted by A, which means that they are witnesses for the fact that the
language L(A) is non-empty. In general, however, A may not have any accepting computations that just
consist of single sweeps. In this case, each accepting computation consists of a sequence of sweeps.
Now the words that A scans during these sweeps form a sequence that can be combined into an accepted
word. However, it is not clear whether this can always be done. To illustrate this problem, we consider a
simple example.

Example 20 Let A = (Q,Σ,C,τ,q0,δ ) be the nrDFAwtl that is defined by taking Q =
{q0,q1,q2,q3,q4,q5}, Σ = {a,b,c}, and by defining the functions τ and δ as follows:

τ(q0) = {b}, τ(q2) = {c}, τ(q4) = {a},
τ(q1) = {c}, τ(q3) = /0, τ(q5) = /0,
δ (q0,a) = q1, δ (q2,b) = q3, δ (q4,c) = q5,
δ (q1,C) = q2, δ (q3,C) = q4, δ (q5,C) = Accept.

This nrDFAwtl is depicted by the diagram in Figure 3.

// q0
(b∗,a) // q1

(c∗,C) // q2
(c∗,b) // q3

C // q4
(a∗,c) // q5

C // Accept

Figure 3: The nrDFAwtl A from Example 20

From this diagram, we can immediately extract three sweeps (or rather cycles):

(1) q0b∗ac∗ ·C `A b∗q1c∗ ·C `A q2b∗c∗ ·C,
(2) q2c∗b ·C `A c∗q3C `A q4c∗ ·C,
(3) q4a∗c ·C `A a∗q5C `A Accept.

However, these three sweeps (or cycles) cannot be combined into an accepting computation of A. The
third sweep requires that there is an occurrence of the letter c which may only be preceded by occurrences
of the letter a. The second sweep requires that there is an occurrence of the letter b, which may only be
preceded by occurrences of the letter c. Finally, the first sweep requires that there is an occurrence of
the letter a that may only be preceded by occurrences of the letter b and that may only be followed by an
occurrence of the letter c. Together these requirements imply that there is no word that A accepts, that
is, L(A) = /0. �
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Thus, it remains to determine whether, from a given finite set of patterns of words that are accepted
by an nrNFAwtl A in different sweeps (or cycles), one can extract sufficient information for deciding
whether there exists a word that is accepted by A, that is, whether from the various patterns a word can
be obtained that is compatible with all these patterns.

6 Conclusion

We have extended the NFAwtl and its deterministic variant, the DFAwtl, to the non-returning NFAwtl
and the non-returning DFAwtl by abandoning the requirement that, in each step, the automaton reads and
deletes the first letter from the beginning of the current word on its tape that is not translucent for the
current state. The non-returning types of automata are indeed more expressive than the original types. In
fact, we presented a complete classification of the resulting language classes in relation to the Chomsky
hierarchy. Also we derived some closure and non-closure properties for these language classes and
proved that the membership problem for a non-returning DFAwtl is of time complexity O(n · (logn)2).

However, many questions concerning the nrNFAwtl and the nrDFAwtl are still open. Here we stress
only four of them.

1. Are all languages accepted by nrNFAwtls necessarily semi-linear? While for unary languages this
is indeed the case, the question remains open for non-unary languages.

2. Is the language class L (nrNFAwtl) closed under intersection with regular sets? If it is, then we
see from Example 13 that L (nrNFAwtl) contains languages that are not semi-linear. However, we
conjecture that L (nrNFAwtl) is not closed under this operation, as we expect that the language
Lexp3 is not accepted by any nrNFAwtl.

3. Can the upper bound of O(n · (logn)2) for the time complexity of the membership problem for a
nrDFAwtl be improved to O(n · logn) also for alphabets of cardinality larger than two?

4. Is emptiness decidable for nrNFAwtls or for nrDFAwtls?

Currently, pumping techniques as used in the proofs of Proposition 14 and Theorem 15 are our only
means for proving that a given language is not accepted by any nrNFAwtl. In order to solve the open
problems above, it appears to be necessary to develop other techniques for this task.
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