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The syntactic calculus of Lambek is a deductive system for the multiplicative fragment of intuition-

istic non-commutative linear logic. As a fine-grained calculus of resources, it has many applications,

mostly in formal computational investigations of natural languages.

This paper introduces a calculus of β η-long normal forms for derivations in the Lambek calculus

with multiplicative unit and conjunction among its logical connectives. Reduction to normal form

follows the normalization by evaluation (NbE) strategy: (i) evaluate a derivation in a Kripke model

of Lambek calculus; (ii) extract normal forms from the obtained semantic values. The implemen-

tation of the NbE algorithm requires the presence of a strong monad in the Kripke interpretation of

positive formulae, in analogy with the extension of intuitionistic propositional logic with falsity and

disjunction. The NbE algorithm can also be instantiated with minor variations to calculi for related

substructural logics, such as multiplicative and dual intuitionistic linear logic (MILL and DILL).

1 Introduction

The syntactic calculus L of Lambek [17] is a deductive system which is primarily employed in mathe-

matical studies of sentence structure in natural language. From a logical perspective, it provides a proof

system for the multiplicative fragment of intuitionistic non-commutative linear logic [2, 21], comprising

only of two ordered linear implications (or residuals) � and �, tensor product ⊗ and (often but not

always) a unit I as logical connectives.

The metatheory of the Lambek calculus has been thoroughly developed in the past decades, in par-

ticular its categorical semantics by Lambek himself [18, 19]. The Lambek calculus enjoys cut elimina-

tion [17] and various normalization procedures, e.g. by Hepple for the implicational fragment [14] or

more recently by Amblard and Retoré [6], aimed at the reduction of the proof search space and conse-

quently the number of possible derivation of a given sequent. Various diagrammatic calculi and proof

nets for the Lambek calculus have also been proposed [22, 16].

In this work, we study the natural deduction presentation of the Lambek calculus L, together with a

calculus Lβη consisting of βη-long normal forms, i.e. derivations that do not contain any redexes, and

no further η-expansion is applicable. Sequents in Lβη have two shapes: Γ ⇑ A, consisting of deriva-

tions in βη-long normal form, and Γ ⇓ A, consisting of neutral derivations, i.e. (under Curry-Howard

correspondence with a non-commutative linear variant of typed λ -calculus) a variable applied to other

normal forms. The design of Lβη is inspired by the intercalation calculus for (non-commutative) linear

logic [11]. It appears in particular as a fragment of the calculus of normal forms for ordered linear logic

introduced by Polakov and Pfenning [21].

The normalization algorithm, sending each derivation in L to its βη-normal form in Lβη , is an

instance of normalization by evaluation (NbE) [10, 4]. NbE is a well-established normalization pro-

cedure for many variants of (typed and untyped) λ -calculus. The main idea behind NbE is that the

effective normalization procedure factors through a categorical model of the syntactic calculus, usually

a Kripke/presheaf model. Each formula A can be interpreted as an object JAK of the model, and this
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interpretation can be extended to contexts JΓK as well. Moreover, each derivation t of a sequent Γ ⊢ A in

L, for which we employ the syntax t : Γ ⊢ A, is evaluated to a map JtK : JΓK
·
→ JAK. The Kripke model

is precisely chosen so that the semantic value JtK contains enough information to allow the extraction of

a normal form in Lβη . This extraction process, sending semantic values to normal forms, is typically

called reification. The presence of mixed-variance connectives, such as the ordered implications � and

�, requires the construction of the reification function to be defined simultaneously with a reflection

function, embedding neutrals in the Kripke model. The NbE procedure consists in the implementation

of a function nbe : Γ ⊢ A → Γ ⇑ A whose construction can be schematized as follows:

(syntactic derivation) (Kripke semantic value) (βη-long normal form)

t : Γ ⊢ A 7−→ JtK : JΓK
·
→ JAK 7−→ nbe t : Γ ⇑ A

evaluation reification

Normalization by evaluation for the implicational fragment of L, not including unit and tensor, can

be extrapolated from the normalization algorithm for the implicational fragment of ordered linear logic

investigated by Polakov in his PhD thesis [21, 20]. Similarly, this could also be reconstructed from

the recently developed NbE procedure for the natural deduction calculus of skew prounital closed cate-

gories [23].

Nevertheless, the presence of positive logical connectives I and ⊗ in combination with the negative

implications � and � does not make the NbE procedure for the implicational fragment of L directly

extensible to the full calculus including also rules for I and ⊗. This situation sheds many similarities

with the case of intuitionistic propositional logic with falsity and disjunction (or, equivalently, typed λ -

calculus with empty type and sum types), where the standard Kripke semantics proves itself to be too

weak for the extraction of normal forms. In the literature, the situation has been fixed in two different

ways: employing a strong monad in the presheaf model for the interpretation of sums [5, 1, 24] or

switching to more convoluted sheaf-theoretic models [3, 7]. In this paper we follow the first solution and

similarly extend our presheaf model with a strong monad for recovering the reification procedure. This

solution only helps with the implementation of NbE wrt. to a βη-conversion that does not include all

possible permutative conversions, e.g. in the calculus Lβη the ⊗-introduction and ⊗-elimination rules do

not commute. Defining NbE for a stronger conversion, removing all possible nondeterministic choices

during proof search, is left to future work (more discussion on this in the conclusive section).

The main difference between NbE for the Lambek calculus L and intuitionistic propositional logic

(or typed λ -calculus) is the extra bureaucracy that the substructural system L, in which all the structural

rules of weakening, contraction and exchange are absent, requires wrt. hypotheses/resources in context.

Nevertheless, the presence or absence of the exchange rule does not seem to play a fundamental role.

In fact, in the final part of the paper, we briefly discuss how to adapt NbE to the case of multiplicative

intuitionistic linear logic (MILL) [9]. We also see a further extension to dual intuitionistic linear logic

(DILL), which is a particular presentation of MILL extended with a linear exponential modality ! [8].

The material in the paper is organized as follows. Section 2 introduces the Lambek calculus L in

natural deduction. Section 3 presents the calculus Lβη of βη-long normal forms. Section 4 discusses

the NbE procedure: the construction of the Kripke model and the strong monad on it (Section 4.1), the

interpretation of syntactic constructs (Section 4.2) and the reification/reflection algorithms for computing

normal forms (Section 4.3). Section 5 proves the correctness of NbE using logical relations. Section 6

discusses extensions of NbE to MILL and DILL.
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Γ,A ⊢ B

Γ ⊢ B�A
I�

A,Γ ⊢ B

Γ ⊢ A�B
I�

Γ ⊢ B�A ∆ ⊢ A

Γ,∆ ⊢ B
E�

Γ ⊢ A ∆ ⊢ A�B

Γ,∆ ⊢ B
E�

A ⊢ A
ax

⊢ I
II

Γ ⊢ I ∆0,∆1 ⊢C

∆0,Γ,∆1 ⊢C
EI

Γ ⊢ A ∆ ⊢ B
Γ,∆ ⊢ A⊗B

I⊗
Γ ⊢ A⊗B ∆0,A,B,∆1 ⊢C

∆0,Γ,∆1 ⊢C
E⊗

Figure 1: Inference rules of the Lambek calculus L in natural deduction

2 The Lambek Calculus in Natural Deduction

The Lambek calculus L has formulae generated by the grammar A,B ::= p | I | A⊗B | B�A | A�B,

where p comes from a given set At of atomic formulae, I is the multiplicative unit, ⊗ is a multiplicative

conjunction (a.k.a. tensor product), while � and � are left and right implications (a.k.a. left and right

residuals). Sequents in L are pairs Γ ⊢ A, where Γ is an ordered (possibly empty) list of formulae, that

we call context, and A is a single formula. The sets of formulae and contexts are called Fma and Cxt,

respectively. Derivations in L are generated by the inference rules in Figure 1. We write t : Γ ⊢ A to

indicate that t is a particular derivation of Γ ⊢ A.

Substitution, i.e. the cut rule, is admissible in L [17]. As is common in the NbE literature, our cut

rule allows the simultaneous substitution of multiple variables in context:

Γ⊲∆ ∆ ⊢ A
Γ ⊢ A

cut
(1)

where Γ ⊲∆ denotes a set containing lists of derivations, called environments: given Γ = Γ1, . . . ,Γn and

∆ = 〈A1, . . . ,An〉, an element of Γ⊲∆ consists of derivations of sequents Γi ⊢ Ai, for all i = 1, . . . ,n. The

relation ⊲ can be defined inductively by the rules:

〈〉⊲ 〈〉
〈〉 Γ ⊢ A Γ′

⊲∆
Γ,Γ′

⊲A,∆
cons

In other words, the only environment in 〈〉⊲ 〈〉 is the empty list of terms, denoted also by 〈〉. An environ-

ment in Γ,Γ′
⊲A,∆ is a pair of a term t : Γ ⊢ A and another environment σ : Γ′

⊲∆. We always write the

pair as (t,σ) instead of the more verbose cons t σ . More generally, given two environments σ1 : Γ1 ⊲∆1

and σ2 : Γ2 ⊲∆2, we write (σ1,σ2) : Γ1,Γ2 ⊲∆1,∆2 for their concatenation. Given a context Γ, recursively

define the lists of variables idsΓ : Γ ⊲Γ by induction on Γ: ids〈〉=df 〈〉 and idsA,Γ =df (ax, idsΓ). A more

familiar-looking cut rule is derivable from (1) as follows:

t : Γ ⊢C u : ∆0,C,∆1 ⊢ A

∆0,Γ,∆1 ⊢ A
sub =df

(ids∆0
, t, ids∆1

) : ∆0,Γ,∆1 ⊲∆0,C,∆1 u : ∆0,C,∆1 ⊢ A

∆0,Γ,∆1 ⊢ A
cut

The employment of cut in place of sub in NbE facilitates the statement and proof of correctness discussed

in Section 5.

Derivations in L can be identified modulo a certain βη-equivalence relation ∼, which is the least

congruence generated by the pairs of derivations in Figure 2. Equations include β - and η-conversions

for all the logical connectives. Due to space limitations, derivations in these equations are displayed

using an inline, term-like notation, but hopefully the reader will not struggle too hard in reconstructing
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(β -CONVERSIONS)

E� (I� t) u ∼ sub u t (t : Γ,A ⊢ B, u : ∆ ⊢ A)
E� u (I� t) ∼ sub u t (u : Γ ⊢ A, t : A,∆ ⊢ B)

EI II t ∼ t (t : ∆0,∆1 ⊢C)
E⊗ (I⊗ s1 s2) t ∼ sub s1 (sub s2 t) (si : Γi ⊢ Ai, t : ∆0,A1,A2,∆1 ⊢C)

(η -CONVERSIONS)

t ∼ I� (E� t ax) (t : Γ ⊢ B�A)
t ∼ I� (E� ax t) (t : Γ ⊢ A�B)
s ∼ EI s II (s : Γ ⊢ I)
s ∼ E⊗ s (I⊗ ax ax) (s : Γ ⊢ A⊗B)

(PERMUTATIVE CONVERSIONS)

EI s (I� t) ∼ I� (EI s t) (s : Γ ⊢ I, t : ∆0,∆1,A ⊢ B)
EI s (I� t) ∼ I� (EI s t) (s : Γ ⊢ I, t : A,∆0,∆1 ⊢ B)

E� (EI s t) u ∼ EI s (E� t u) (s : Γ ⊢ I, t : ∆0,∆1 ⊢ B�A, u : Ω ⊢ A)
E� t (EI s u) ∼ EI s (E� t u) (s : Γ ⊢ I, t : Ω ⊢ B�A, u : ∆0,∆1 ⊢ A)
E� (EI s t) u ∼ EI s (E� t u) (s : Γ ⊢ I, t : ∆0,∆1 ⊢ A, u : Ω ⊢ A�B)
E� t (EI s u) ∼ EI s (E� t u) (s : Γ ⊢ I, t : Ω ⊢ A, u : ∆0,∆1 ⊢ A�B)

EI (EI s1 s2) t ∼ EI s1 (EI s2 t) (s1 : Γ ⊢ I, s2 : ∆0,∆1 ⊢ I, t : Ω0,Ω1 ⊢C)
E⊗ s (I� t) ∼ I� (E⊗ s t) (s : Γ ⊢ A′⊗B′

, t : ∆0,A
′
,B′

,∆1,A ⊢ B)
E⊗ s (I� t) ∼ I� (E⊗ s t) (s : Γ ⊢ A′⊗B′

, t : A,∆0,A
′
,B′

,∆1 ⊢ B)
E� (E⊗ s t) u ∼ E⊗ s (E� t u) (s : Γ ⊢ A′⊗B′

, t : ∆0,A
′
,B′

,∆1 ⊢ B�A, u : Ω ⊢ A)
E� t (E⊗ s u) ∼ E⊗ s (E� t u) (s : Γ ⊢ A′⊗B′

, t : Ω ⊢ B�A, u : ∆0,A
′
,B′

,∆1 ⊢ A)
E� (E⊗ s t) u ∼ E⊗ s (E� t u) (s : Γ ⊢ A′⊗B′

, t : ∆0,A
′
,B′

,∆1 ⊢ A, u : Ω ⊢ A�B)
E� t (E⊗ s u) ∼ E⊗ s (E� t u) (s : Γ ⊢ A′⊗B′

, t : Ω ⊢ A, u : ∆0,A
′
,B′

,∆1 ⊢ A�B)
E⊗ (E⊗ s1 s2) t ∼ E⊗ s1 (E⊗ s2 t) (s1 : Γ ⊢ A⊗B, s2 : ∆0,A,B,∆1 ⊢ A′⊗B′

, t : Ω0,A
′
,B′

,Ω1 ⊢C)

Figure 2: The βη-equivalence of derivations in L

the associated proof trees. E.g. the reconstructed β -rules for right implication � and multiplicative

conjunction ⊗ look are:

t : Γ,A ⊢ B

Γ ⊢ B�A
I�

u : ∆ ⊢ A

Γ,∆ ⊢ B
E�

∼
u : ∆ ⊢ A t : Γ,A ⊢ B

Γ,∆ ⊢ B
sub

s1 : Γ1 ⊢ A1 s2 : Γ2 ⊢ A2

Γ1,Γ2 ⊢ A1 ⊗A2
I⊗

t : ∆0,A1,A2,∆1 ⊢C

∆0,Γ1,Γ2,∆1 ⊢C
E⊗

∼ s1 : Γ1 ⊢ A1

s2 : Γ2 ⊢ A2 t : ∆0,A1,A2,∆1 ⊢C

∆0,A1,Γ2,∆1 ⊢C
sub

∆0,Γ1,Γ2,∆1 ⊢C
sub

Equations in Figure 2 include also many permutative conversions, but not all of them. For example, the

following equations are missing, stating that ⊗-introduction commutes with ⊗-elimination, and that two

⊗-eliminations can be swapped if they are independent, i.e. they act on disjoint collections of formulae
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Γ,A ⇑ B

Γ ⇑ B�A
I�

A,Γ ⇑ B

Γ ⇑ A�B
I�

Γ ⇓ B�A ∆ ⇑ A

Γ,∆ ⇓ B
E�

Γ ⇑ A ∆ ⇓ A�B

Γ,∆ ⇓ B
E�

A ⇓ A
ax

⇑ I
II

Γ ⇓ I ∆0,∆1 ⇑ γ+

∆0,Γ,∆1 ⇑ γ+
EI

Γ ⇑ A ∆ ⇑ B

Γ,∆ ⇑ A⊗B
I⊗

Γ ⇓ A⊗B ∆0,A,B,∆1 ⇑ γ+

∆0,Γ,∆1 ⇑ γ+
E⊗

Γ ⇓ p

Γ ⇑ p
sw⇓

Figure 3: Inference rules of the calculus Lβη of βη-long normal forms

in the context:

I⊗ (E⊗ s t) u ∼ E⊗ s (I⊗ t u) (s : Γ ⊢ A′⊗B′
, t : ∆0,A

′
,B′

,∆1 ⊢ A, u : Ω ⊢ B)
I⊗ t (E⊗ s u) ∼ E⊗ s (I⊗ t u) (s : Γ ⊢ A′⊗B′

, t : Ω ⊢ A, u : ∆0,A
′
,B′

,∆1 ⊢ B)
E⊗ s (E⊗ s′ t) ∼ E⊗ s′ (E⊗ s t) (s : Γ ⊢ A⊗B, s′ : Γ′ ⊢ A′⊗B′

, t : ∆0,A,B,∆1,A
′
,B′

,∆2 ⊢C)
(2)

E.g. the proof trees in the first equation of (2) are:

s : Γ ⊢ A′⊗B′ t : ∆0,A
′
,B′

,∆1 ⊢ A

∆0,Γ,∆1 ⊢ A
E⊗

u : Ω ⊢ B

∆0,Γ,∆1,Ω ⊢ A⊗B
I⊗

∼ s : Γ ⊢ A′⊗B′

t : ∆0,A
′
,B′

,∆1 ⊢ A u : Γ′ ⊢ B

∆0,A
′
,B′

,∆1,Ω ⊢ A⊗B
I⊗

∆0,Γ,∆1,Ω ⊢ A⊗B
E⊗

Analogous permutative conversions involving I⊗ and EI, two independent applications of EI, and an ap-

plication of EI independent from an application of E⊗, are missing as well. The study of the Lambek

calculus with derivations identified by a richer system of equations, including the missing axioms dis-

cussed above, such as the ones in (2), is left for future work. Categorically speaking, the equational

theory resulting from adding all the missing axioms corresponds to the one of monoidal biclosed cate-

gories. The Lambek calculus L, with derivations quotiented by the resulting richer congruence relation,

would therefore be a presentation of the free monoidal biclosed category on the set At.

3 A Calculus of Normal Forms

Canonical representatives of equivalence classes for the congruence ∼, i.e. βη-long normal forms, can

be organized in a calculus called Lβη . Sequents in Lβη have two shapes, Γ ⇑ A and Γ ⇓ A. We employ

the notation using ⇑ and ⇓ from [21], which is more generally used in focused sequent calculi for linear

logic [11]. In the literature on intuitionistic propositional logic (i.e. typed λ -calculus, via Curry-Howard

correspondence), derivations of Γ ⇑ A are called normal forms, while derivations of Γ ⇓ A are called

neutrals. A calculus with similar backward- and forward-chaining phases is also typically called an

intercalation calculus.

Derivations in Lβη are generated by the inference rules in Figure 3. The metavariable γ+ indicates a

non-negative formula, i.e. a formula which is not of the form A�B nor B�A. Elimination rules EI and

E⊗ are only applicable when the goal formula γ+ in the conclusion is non-negative.

When restricting the attention on the implicational fragment of Lβη , with only one implication �, it

is possible to recognize in the rules of Figure 3 a goal-directed proof search strategy attempting to build

a derivation in L. The construction of a valid derivation would proceed as follows: first eagerly apply the

�-introduction rule, until the succedent becomes atomic; then switch to the neutral phase ⇓ and apply a

sequence of �-eliminations rules to arguments in normal form, ultimately closing the derivation using
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the ax rule. Under the Curry-Howard correspondence between L and a non-commutative linear (some

people might say “planar” [23]) variant of λ -calculus, the derivations in this implicational fragment of

Lβη correspond to weak head normal forms. The rules for the other implication � have analogous roles.

The introduction and elimination rules of ⊗ and I both produce normal forms, but the first premises

of E⊗ and EI are neutrals. The fact that all the rules involving the positive connectives ⊗ and I are in the

same phase ⇑ shows that permutative conversions such as those in (2) do not hold (as syntactic equalities)

in Lβη . The formula γ+ appearing in the rules E⊗ and EI is required to be different from an implication,

which fixes the relative position of �- and �-introduction wrt. the elimination rules for the positive

connectives ⊗ and I.

Soundness of Lβη wrt. L is evident: each Lβη -derivation can be embedded into L via functions

emb⇑ : Γ ⇑ A → Γ ⊢ A and emb⇓ : Γ ⇓ A → Γ ⊢ A, which simply change ⇑ and ⇓ to ⊢ and erase all uses

of the rule sw⇓.

4 Normalization by Evaluation

Lβη is also complete wrt. L. The proof of completeness corresponds to the construction of a normaliza-

tion algorithm nbe, taking a derivation of Γ ⊢ A and returning a derivation of Γ ⇑ A, satisfying the three

following properties, for all derivations t,u : Γ ⊢ A and n : Γ ⇑ A:

1. t ∼ u → nbe t = nbe u, which means that the normalization algorithm sends ∼-related derivations

in L to syntactically equal derivations in Lβη ;

2. t ∼ emb⇑ (nbe t), which means that each derivation in L is ∼-related to (the embedding of) its

normal form;

3. nbe (emb⇑ n) = n, which implies that each derivation in Lβη corresponds uniquely to an equiva-

lence class of the relation ∼ in L.

The procedure nbe is defined following the normalization by evaluation (NbE) methodology [10, 4],

consisting in the following steps: (i) Find a model of L and its equational theory ∼, in our case (and in

the majority of applications of NbE) a Kripke/presheaf model. This provides the existence of an element

JtK in the model, for each derivation t in L, such that JtK = JuK whenever t ∼ u; (ii) Define a reification

function, sending a semantic value in the Kripke model to a normal form in Lβη , so that nbe t is defined

as the reification of JtK.

4.1 The Kripke Model

The model is defined as the presheaf category Set
Cxt. Explicitly, an object P of the category Set

Cxt is a

Cxt-indexed family of sets, i.e. a presheaf: for any context Γ, P Γ is a set1. A map f between P and Q

in Set
Cxt is a Cxt-indexed family of functions, i.e. a natural transformation: for any context Γ, f Γ is a

function between P Γ and Q Γ. We typically omit the index Γ, and simply write f : P Γ → Q Γ. The set

of maps between P and Q is denoted P
·
→ Q.

The category Set
Cxt is monoidal biclosed (or, using Lambek terminology, residual) [18], with unit,

1We think of Cxt as a discrete category, which is why there is no mention of P’s action of maps.
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tensor and internal homs given by

Î Γ =df (Γ = 〈〉)

(P ⊗̂Q) Γ =df {Γ0,Γ1 : Cxt}×{Γ = Γ0,Γ1}×P Γ0 ×Q Γ1

(P �̂Q) Γ =df {∆ : Cxt}→ Q ∆ → P (Γ,∆)

(Q �̂P) Γ =df {∆ : Cxt}→ Q ∆ → P (∆,Γ)

(3)

The unit Î Γ is the singleton set which contains an element if and only if Γ is empty. The tensor (P⊗̂Q) Γ

consists of pairs of an element of P Γ0 and an element of Q Γ1, for some contexts Γ0 and Γ1 such

that Γ = Γ0,Γ1. The tensor product ⊗̂ is often called Day convolution. The left (resp. right) internal

hom (Q �̂P) Γ (resp. (P �̂Q) Γ) consists of functions from Q ∆, for a given context ∆, to P (∆,Γ)
(resp. P (Γ,∆)). The tensor and internal homs in Set

Cxt form two adjunctions: there are natural bijective

correspondences between the set of maps P ⊗̂Q
·
→ R and the sets of maps P

·
→ R �̂Q and Q

·
→ P �̂R.

In (3) we have employed notation from Agda/Martin Löf type theory for the dependent sum and

dependent product operations: (x : A)×B x and (x : A)→ B x stand for ∑x:A B x and ∏x:A B x respectively,

where A is a set and B is a family of sets indexed by A. Curly brackets indicate implicit arguments,

e.g. when giving an element of {x : A}×B x it is sufficient to give an element y : B x for some implicit

x : A. For the readers more familiar with set-theoretic notation, the definitions in (3) can be rephrased as

follows, where for clarity all the appearing arguments have been made explicit:

Î Γ =df {∗ | Γ is empty}

(P ⊗̂Q) Γ =df {(Γ0,Γ1,x,y) | Γ0,Γ1 : Cxt such that Γ = Γ0,Γ1, and x : P Γ0 and y : Q Γ1}

(P �̂Q) Γ =df ∏∆:Cxt Q ∆ → P (Γ,∆)

(Q �̂P) Γ =df ∏∆:Cxt Q ∆ → P (∆,Γ)

The tensor ⊗̂ is associative and unital wrt. Î only up to natural isomorphism, i.e. (P ⊗̂Q) ⊗̂ S ∼=
P ⊗̂ (Q ⊗̂ S) and Î ⊗̂P ∼= P ∼= P ⊗̂ Î, and the same is not true if we replace ∼= with =. To ease the read-

ability of the forthcoming constructions, we leave implicit all applications of the natural isomorphisms

of associativity and unitality in the paper.

The monoidal biclosed category Set
Cxt is not completely suitable for the construction of an algorithm

satisfying the NbE specification (more on this in Section 4.3). In analogy with the case of intuitionistic

propositional logic with falsity and disjunction [1], we introduce a monad T on Set
Cxt. For each presheaf

P and context Γ, the elements of the set T P Γ are inductively generated by the following constructors:

P Γ
T P Γ

η
Γ ⇓ I T P (∆0,∆1)

T P (∆0,Γ,∆1)
ET
I

Γ ⇓ A⊗B T P (∆0,A,B,∆1)

T P (∆0,Γ,∆1)
ET
⊗ (4)

Notice the similarity of the ET
I

and ET
⊗ constructors with the elimination rules EI and E⊗ of Lβη . In other

words, elements of T P Γ are lists of neutral terms with a positive formula (i.e. unit or tensor) in the

succedent, ending with an element of P Γ. As it is usual in category theory, we also write T : P
·
→ Q →

T P
·
→ T Q for the action on maps of T , and µ : T (T P)

·
→ T P for the monad multiplication. The monad

T is left- and right-strong wrt. the monoidal structure (̂I,⊗̂). Left strength is defined by recursion:

lmst : P ⊗̂T Q
·
→ T (P ⊗̂Q)

lmst (x,η y) =df η (x,y)
lmst (x,ET

I
t y) =df ET

I
t (lmst (x,y))

lmst (x,ET
⊗ t y) =df ET

⊗ t (lmst (x,y))

(5)
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Right-monoidal strength rmst : T P ⊗̂Q
·
→ T (P ⊗̂Q) is defined analogously. The monoidal strengths

are interdefinable with closed strengths lcst� : P�̂Q
·
→ T P�̂T Q and rcst� : T (P�̂Q)

·
→ T P�̂Q,

and also lcst� and rcst� obtained by turning �̂ into �̂.

lcst� : P �̂Q
·
→ T P �̂T Q

lcst� f (η x) =df η ( f x)
lcst� f (ET

I
t x) =df ET

I
t (lcst� f x)

lcst� f (ET
⊗ t x) =df ET

⊗ t (lcst� f x)

rcst� : T (P �̂Q)
·
→ T P �̂Q

rcst� (η f ) x =df η ( f x)
rcst� (ET

I
t f ) x =df ET

I
t (rcst� f x)

rcst� (ET
⊗ t f ) x =df ET

⊗ t (rcst� f x)

The monad T is reminiscent of a proof-relevant variant of the closure operator employed in phase se-

mantics of non-commutative intuitionistic linear logic, appearing in the definition of non-commutative

intuitionistic phase space [2].

4.2 Interpretation of Syntax

Each formula A is interpreted as a presheaf JAK:

JpK=df − ⇑ p JIK=df T Î JA⊗BK=df T (JAK ⊗̂ JBK)

JB�AK=df JBK �̂ JAK JA�BK=df JAK �̂JBK
(6)

Notice the presence of the monad T in the interpretation of the positive formulae I and ⊗. The inter-

pretation of formulae extends to contexts via the monoidal structure of SetCxt: J〈〉K=df Î and JA,ΓK=df

JAK ⊗̂ JΓK. We use the same notation J−K for the interpretation of formulae and contexts (and later for

the interpretation of derivations and environments), but it should always be clear which interpretation

function is employed in each situation.

The interpretation of derivations of L in the Kripke model requires the monad T to be runnable on

each interpreted formula JAK, i.e. we want a natural transformation runA : T JAK
·
→ JAK. In turn, this

requires the monad T to be runnable on presheaves of the form − ⇑ A. The function runA is defined by

induction on A, the interesting cases are � and �, which figure an application of right closed strengths

rcst� and rcst�.

run⇑ : T (− ⇑ A)
·
→−⇑ A

run⇑ (η t) =df t

run⇑ (ET
I

t u) =df EI t (run⇑ u)
run⇑ (ET

⊗ t u) =df E⊗ t (run⇑ u)

runA : T JAK
·
→ JAK

runp t =df run⇑ t

runI t =df µ t

runA⊗B t =df µ t

runB�A t =df λx. runB (rcst� t x)
runA�B t =df λx. runB (rcst� t x)

(7)

Each derivation t : Γ⊢A in L is interpreted as a natural transformation JtK : JΓK
·
→ JAK. The evaluation

function is defined by recursion on the argument t. The interesting cases are: II and I⊗, where an extra

application of the monad unit η is required; EI and E⊗, which involves both monoidal strengths lmst and
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rmst, and the run function.

JaxK a =df a

JI� tK γ =df λx.JtK (γ ,x)
JI� tK γ =df λx.JtK (x,γ)
JIIK γ =df η γ

JI⊗ t uK (γ ,δ ) =df η (JtK γ ,JuK δ )
JE� t uK (γ ,δ ) =df JtK γ (JuK δ )
JE� t uK (γ ,δ ) =df JuK δ (JtK γ)
JEI t uK (δ0,γ ,δ1) =df run (T JuK (rmst (lmst (δ0,JtK γ),δ1)))
JE⊗ t uK (δ0,γ ,δ1) =df run (T JuK (rmst (lmst (δ0,JtK γ),δ1)))

(8)

Pictorially, JE⊗ t uK is the following composite natural transformation (remember that in our definitions,

and in particular in the definition of JE⊗ t uK above, applications of the associativity natural isomorphism

of ⊗̂ are omitted):

J∆0,Γ,∆1K
∼=

// (J∆0K ⊗̂ JΓK) ⊗̂ J∆1K
(id⊗̂JtK)⊗̂id

// (J∆0K ⊗̂T (JAK ⊗̂JBK)) ⊗̂ J∆1K
lmst⊗̂id

// T (J∆0K ⊗̂ (JAK ⊗̂JBK)) ⊗̂ J∆1K

rmst
// T ((J∆0K ⊗̂ (JAK ⊗̂JBK)) ⊗̂ J∆1K)

∼=
// T (J∆0,A,B,∆1K)

T JuK
// T JCK

runC
// JCK

The evaluation function J−K is well-defined on ∼-equivalence classes: given two derivations t,u :

Γ ⊢ A, if t ∼ u then JtK = JuK. The proof of this fact relies on T being a strong monad and run being an

algebra for the monad T . For example runA (η x) = x, for all x : JAK Γ.

The interpretation of derivations can be readily extended to environments JσK : JΓK
·
→ J∆K, for each

σ : Γ ⊲∆: J〈〉K x=df x and J(t,σ)K (γ ,γ ′)=df (JtK γ ,JσK γ ′). The evaluation function behaves well wrt.

substitution: Jcut σ tK = JtK ◦ JσK, i.e. the cut rule is interpreted as function composition in the Kripke

model.

4.3 The Normalization Function

The last phase of the NbE procedure is the extraction of normal forms from elements of the Kripke model.

Concretely, this corresponds to the construction of a reification function ↓A: JAK
·
→ − ⇑ A. In order to

deal with the cases of mixed-variance connectives � and �, it is necessary to simultaneously define a

reflection procedure ↑A: − ⇓ A
·
→ JAK, embedding neutrals in the presheaf model. This is the crucial

point were the interpretation of the unit JIK=df T Î and the tensor product JA⊗BK=df T (JAK ⊗̂ JBK) in

(6) works, while naı̈ve interpretations JIK=df Î and JA⊗BK=df JAK ⊗̂ JBK without the application of the

monad T would fail. With the latter interpretation, ↑I t would be required to have type Î Γ, which in turn

will force us to show that the context Γ is empty. But this is generally false, e.g. when t is of the form

ax : I ⇓ I. Analogously, ↑A⊗B t would be required to have type (JAK ⊗̂ JBK) Γ, which in turn will force us

to split the context Γ = Γ0,Γ1 and provide elements of type JAK Γ0 and JBK Γ1. But this split is generally

impossible to achieve, e.g. for t of the form ax : A⊗B⇓ A⊗B. This problematic splitting in the definition

of reflection ↑A is avoided by the use of the monad T , and the cases of A being unit or tensor are dealt via

the application of the constructors ET
I

and ET
⊗. The employment of a strong monad seems to be a general
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pattern in NbE for calculi including positive logical connectives, e.g. consider falsity and disjunction in

intuitionistic propositional logic [5, 1].

↓p t =df t

↓B�A t =df I� (↓B (t (↑A ax)))
↓A�B t =df I� (↓B (t (↑A ax)))

↓I t =df run⇑ (T (λ refl. II) t)
↓A⊗B t =df run⇑ (T (λ (x,y). I⊗ (↓A x) (↓B y)) t)

↑p t =df sw⇓t

↑B�A t =df λx. ↑B (E� t (↓A x))
↑A�B t =df λx. ↑B (E� (↓A x) t)
↑I t =df ET

I
t (η refl)

↑A⊗B t =df ET
⊗ t (η (↑A ax,↑B ax))

(9)

The reflection function ↑A can also be used for the definition of an element freshΓ : JΓK Γ, for each

context Γ: fresh〈〉 =df refl and freshA,Γ =df (↑A ax, freshΓ). When Γ = 〈〉, the element fresh〈〉 has type

J〈〉K 〈〉, which reduces to 〈〉= 〈〉, and refl is the proof of reflexivity of equality.

The normalization function nbe : Γ ⊢ A → Γ ⇑ A is then definable as the reification of the evaluation

of a derivation t : Γ ⊢ A in the Kripke model:

nbe t =df ↓A (JtK freshΓ)

Here we consider the interpretation JtK : JΓK Γ → JAK Γ, which can be applied to freshΓ : JΓK Γ. Since

JtK= JuK for all t ∼ u, then the function nbe sends ∼-related derivations in L to equal derivations in Lβη ,

i.e. nbe t = nbe u whenever t ∼ u.

Example. Let p,q,r be atomic formulae and let t : p⊗q,r ⊢ p⊗ (q⊗ r) be the following derivation:

p⊗q ⊢ p⊗q
ax

p ⊢ p
ax

q ⊢ q
ax

p,q ⊢ p⊗q
I⊗

p ⊢ p
ax

q ⊢ q
ax

r ⊢ r
ax

q,r ⊢ q⊗ r
I⊗

p,q,r ⊢ p⊗ (q⊗ r)
I⊗

p,q ⊢ (p⊗ (q⊗ r))� r
I�

p,q ⊢ (p⊗ (q⊗ r))� r
E⊗

r ⊢ r
ax

p,q,r ⊢ p⊗ (q⊗ r)
E�

p⊗q,r ⊢ p⊗ (q⊗ r)
E⊗

It is possible to check that the evaluation JtK, when applied to the element freshp⊗q,r : Jp⊗q,rK (p⊗q,r),
returns the following element of T (JpK ⊗̂ (T (JqK ⊗̂ JrK)) (p⊗q,r):

JtK (freshp⊗q,r) =

p⊗q ⇓ p⊗q
ax

p ⇓ p
ax

p ⇑ p
sw⇓

q ⇓ q
ax

q ⇑ q
sw⇓

r ⇓ r
ax

r ⇑ r
sw⇓

T (JqK ⊗̂ JrK) (q,r)
η

T (JpK ⊗̂ (T (JqK ⊗̂ JrK))) (p,q,r)
η

T (JpK ⊗̂ (T (JqK ⊗̂ JrK))) (p⊗q,r)
ET
⊗

(10)

(In the applications of the monad unit η above, the definition of ⊗̂ is automatically unfolded). The

application of the function nbe to t, corresponding to the application of the reification map ↓p⊗(q⊗r) to

the element in (10), returns the following βη-long normal form in Lβη :

nbe t =

p⊗q ⇓ p⊗q
ax

p ⇓ p
ax

p ⇑ p
sw⇓

q ⇓ q
ax

q ⇑ q
sw⇓

r ⇓ r
ax

r ⇑ r
sw⇓

q,r ⇑ q⊗ r
I⊗

p,q,r ⇑ p⊗ (q⊗ r)
I⊗

p⊗q,r ⇑ p⊗ (q⊗ r)
E⊗
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5 Correctness of NbE

So far we have constructed an effective normalization procedure sending βη-related derivations in L to

the same normal form in Lβη . It remains to show that this procedure is correct, which is to say that nbe is

a bijective function with emb⇑ as its inverse, up to the equivalence of derivations ∼. This in turn implies

that each derivation in L is βη-equivalent to (the embedding of) its normal form, and each derivation in

Lβη is the unique representative of a ∼-equivalence class in L.

The latter property of the normalization function, corresponding to the surjectivity of nbe, is straight-

forward. Formally, it is possible to prove the following statements by structural induction on the input

normal forms and neutrals.

(surjectivity of nbe) For any neutral n : Γ ⇓ A, we have ↑A n = Jemb⇓ nK freshΓ.

For any normal form n : Γ ⇑ A, we have n = nbe (emb⇑n).

The injectivity of the normalization function nbe can be proved employing a logical relation ≈A,

which relates each derivation of a sequent Γ ⊢ A in L with the corresponding denoting values of JAK Γ in

the Kripke model. It is mutually-inductively defined together with another relation ≈⊗, whose definition

is given below. The generating inference rules of ≈A are:

t ∼ emb⇑ n

t ≈p n

t (T≈I)v

t ≈I v

t (T≈⊗)v

t ≈A⊗B v

{∆ : Cxt} (u : ∆ ⊢ A) (a : JAK ∆)→ u ≈A a → E� t u ≈B f a

t ≈B�A f

{∆ : Cxt} (u : ∆ ⊢ A) (a : JAK ∆)→ u ≈A a → E� u t ≈B f a

t ≈A�B f

(11)

The definition of the logical relation is very similar to the one used to prove correctness of normalization

for (the implicational fragment of) ordered linear logic [20], but the cases of the positive connectives I

and ⊗ require additional care because of the presence of the monad T in the interpretation of formulae.

To this end, the rules in (11) make use of the following auxiliary notions:

• Given a relation R ⊆ (Γ ⊢C)× (P Γ) between syntactic derivations and semantic values, the lifting

of R to the monad T is a relation T R ⊆ (Γ ⊢C)× (T P Γ), whose validity is specified inductively

by the following rules:

t Rx

t (T R)(η x)

t ′ : ∆0,∆1 ⊢C t ∼ EI (emb⇓u) t ′ t ′ (T R)v

t (T R)ET
I

u v

t ′ : ∆0,A,B,∆1 ⊢C t ∼ E⊗ (emb⇓u) t ′ t ′ (T R)v

t (T R)ET
⊗ u v

The second rule should be read as: a derivation t : ∆0,Γ,∆1 ⊢ C is (T R)-related to ET
I

u v, for

some neutral u : Γ ⇓ I and monadic value v : T P (∆0,∆1), if and only if t is βη-equivalent to a

unit-elimination EI (emb⇓u) t ′, for some derivation t ′ : ∆0,∆1 ⊢ C, such that t ′ (T R)v. The third

rule should be read analogously.

• The relation ≈I⊆ (Γ ⊢ I)× (̂I Γ) is defined as follows: t ≈I v if and only if t ≈ II (notice that v : Î Γ

forces Γ to be empty).
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• The relation ≈⊗⊆ (Γ ⊢ A⊗B)× ((JAK ⊗̂ JBK)Γ) is defined as follows: t ≈⊗ (a,b) if and only if

u ≈A a and v ≈B b for some derivations u : Γ0 ⊢ A and v : Γ1 ⊢ B such that t ∼ I⊗ u v (notice that

by assumption Γ is of the form Γ0,Γ1, so that a : JAK Γ0 and b : JBK Γ1). In particular, the relation

≈⊗ is defined simultaneously with ≈.

The logical relation ≈ is invariant under βη-conversion, formally:

(fundamental theorem of logical relations) For any derivations t,u : Γ ⊢ A and value v : JAK Γ, if t ∼ u

and u ≈A v, then also t ≈A v.

This fact can be proved by induction on the proof of u ≈A v, together with similar closure properties of

the relation lifting T and the auxiliary relations ≈I and ≈⊗.

It is possible to define a relation ≈⊲

Γ⊆ (Γ⊲∆)× (JΓK ∆) which naturally extends the logical relation

≈ to environments and their interpretations. Using the fundamental theorem, one can show that the

syntactic notion of substitution given by the admissible cut rule is ≈-related to the semantic notion of

substitution performed during the interpretation of a formula in the Kripke model. Formally:

(correctness of evaluation) Given a derivation t : Γ⊢A, a syntactic environment σ : Γ⊲∆ and a semantic

environment γ : JΓK ∆ such that σ ≈⊲

Γ γ , we have cut σ t ≈A JtK γ .

From the fundamental theorem it follows that the reification and reflection functions behave correctly:

(correctness of reification) For any derivation t : Γ ⊢ C and semantic value v : JAK Γ, if t ≈ v then

t ∼ emb⇑ (↓A v). This means that whenever v denotes t, then the reification of v (seen as a derivation

in L via emb⇑) is correctly βη-related to t.

(correctness of reflection) For any neutral n : Γ ⇓ A, we have emb⇓ n ≈ ↑A n. This means that the

reflected neutral n correctly denotes n (seen as a derivation in L via emb⇓).

The desired correctness property of nbe can therefore be formally stated as:

(injectivity of nbe) For all derivations t : Γ ⊢ A, we have t ∼ emb⇑ (nbe t).

This can be proved by connecting all the correctness results obtained so far:

t ∼ emb⇑ (nbe t) iff t ∼ emb⇑(↓A (JtK freshΓ)) (unfolding the definition of nbe)
true if t ≈A JtK freshΓ (correctness of reification)
true if cut idsΓ t ≈A JtK freshΓ (fundamental theorem applied to t ∼ cut idsΓ t)
true if idsΓ ≈⊲

Γ freshΓ (correctness of evaluation)

and idsΓ ≈⊲

Γ freshΓ is a simple consequence of the correctness of reflection.

6 NbE for Fragments of Intuitionistic Linear Logic

The NbE strategy described so far for the Lambek calculus works also for other related substructural sys-

tems, such as multiplicative intuitionistic linear logic (MILL) and dual intuitionistic linear logic (DILL).

6.1 Multiplicative Intuitionistic Linear Logic

A natural deduction calculus for MILL [9] is obtained from L by adding an explicit exchange rule allow-

ing to swap the positions of any two formulae in the context. Alternatively, and this is the modification

we choose, one could also change the definition of a sequent Γ ⊢ A by requiring the context Γ to be a

finite multiset of formulae instead of an ordered list. In particular, the comma notation in Γ,∆ now stands
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for multiset concatenation. The change of nature of antecedents makes the presence of two implications

� and � redundant, since they become equivalent connectives. The two ordered implications are then

replaced by a unique linear implication ⊸, and only one occurrence of the two implication introduc-

tion and elimination rules is preserved, similarly for the equations in Figure 2. All the other rules and

equations are the same. Similar modifications occur in the calculus of normal forms Lβη .

The construction of the Kripke model and the implementation of the NbE procedure for L can then

be directly adapted to the case of MILL. The main difference is that the presheaf model SetCxt is now

symmetric monoidal closed, which means that there is a natural isomorphism P ⊗̂Q ∼= Q ⊗̂P.

6.2 Dual Intuitionistic Linear Logic

Our NbE strategy extends with some modifications also to the case of dual intuitionistic linear logic

(DILL) [8], which is a particular presentation of MILL with the exponential modality !. Its peculiarity

comes from the design of sequents, which are triples of the form Γ;∆ ⊢ A, where Γ is a list of formulae

(the intuitionistic context) and ∆ is a finite multiset of formulae (the linear context). The rules of DILL

are listed in Figure 4 (the βη-equivalence on DILL derivations is omitted from the paper). The rules for

βη-long normal forms and neutrals are presented in Figure 5.

The presence of the intuitionistic context makes the construction of the Kripke model slightly more

involved. Let LCxt be the set of linear contexts and ICxt be the category with intuitionistic contexts

as objects and renamings as maps, i.e. injective functions f : Γ → Γ′ sending each occurrence of a

formula in Γ to a distinct occurrence of a formula in Γ′. The Kripke model for DILL is the (covariant)

presheaf category Set
ICxt×LCxt. This category has again a (symmetric) monoidal closed structure, which

is defined analogously to (3). For example, the (action on objects of the) semantics tensor product is (P⊗̂
Q) (Γ;∆)=df {∆0,∆1 : LCxt}×{∆ = ∆0,∆1}×P (Γ;∆0)×Q (Γ;∆1). This category has an exponential

modality !̂ whose action on objects is given by

!̂ P (Γ;∆)=df (∆ = 〈〉)×P (Γ; )

The definition of the monad T on Set
ICxt×LCxt is analogous to the one in (4) with the following addition

Γ;∆ ⇓!A T P (Γ,A;∆′)

T P (Γ;∆,∆′)
ET

!

and the interpretation J!AK is given by T (̂! JAK). The interpretation of formulae extends to contexts

JΓ;∆K(Γ′;∆′) =df JΓK×Γ′ × J∆K⊗(Γ′;∆′), where the interpretation of linear contexts J∆K⊗ is as before

(i.e. defined using tensor ⊗̂) and the interpretation of intuitionistic contexts is defined using the Cartesian

product of the Kripke model, i.e. JA1, . . . ,AnK
× Γ′=df JA1K (Γ

′; )×·· ·× JAnK (Γ
′; ).

The definition of evaluation JtK : JΓ;∆K
·
→ JAK in (8) needs to take into account the three new rules

JaxIntK (γ ,a,γ
′) =df a

JI! tK (γ ,δ ) =df η (JtK (γ ,δ ))
JE! t uK (γ ,δ0,δ1) =df run (T JuK (rmst (lmst (γ ,JtK (γ ,δ0)),δ1)))

where the function run is as in (7), with the extra case of ET
! dealt similarly to ET

I
and ET

⊗. The left

strength lmst (and the equivalent right strength rmst) is defined as in (5), but the case of ET
! requires

some extra care: lmst (x,ET
! t y)=df ET

! t (lmst (P ι x,y)), where P ι : P (Γ;∆)→ P (Γ,A;∆) is the action
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Γ;∆,A ⊢ B

Γ;∆ ⊢ A ⊸ B
I
⊸

Γ;∆ ⊢ A ⊸ B Γ;∆′ ⊢ A

Γ;∆,∆′ ⊢ B
E
⊸

Γ; ⊢ A

Γ; ⊢!A
I!

Γ;∆ ⊢!A Γ,A;∆′ ⊢C

Γ;∆,∆′ ⊢C
E!

Γ;A ⊢ A
axLin

Γ0,A,Γ1; ⊢ A
axInt

Γ; ⊢ I
II

Γ;∆ ⊢ I Γ;∆′ ⊢C

Γ;∆,∆′ ⊢C
EI

Γ;∆ ⊢ A Γ;∆′ ⊢ B

Γ;∆,∆′ ⊢ A⊗B
I⊗

Γ;∆ ⊢ A⊗B Γ;∆′
,A,B ⊢C

Γ;∆,∆′ ⊢C
E⊗

Figure 4: Inference rules of DILL

Γ;∆,A ⇑ B

Γ;∆ ⇑ A ⊸ B
I
⊸

Γ;∆ ⇓ A ⊸ B Γ;∆′ ⇑ A

Γ;∆,∆′ ⇓ B
E
⊸

Γ; ⇑ A

Γ; ⇑!A
I!

Γ;∆ ⇓!A Γ,A;∆′ ⇑C

Γ;∆,∆′ ⇑C
E!

Γ;A ⇓ A
axLin

Γ,A,Γ′; ⇓ A
axInt

Γ; ⇑ I
II

Γ;∆ ⇓ I Γ;∆′ ⇑ γ+

Γ;∆,∆′ ⇑ γ+
EI

Γ;∆ ⇑ A Γ;∆′ ⇑ B

Γ;∆,∆′ ⇑ A⊗B
I⊗

Γ;∆ ⇓ A⊗B Γ;∆′
,A,B ⇑ γ+

Γ;∆,∆′ ⇑ γ+
E⊗

Γ;∆ ⇓ p

Γ;∆ ⇑ p
sw⇓

Figure 5: Normal forms and neutrals of DILL

of the presheaf P on the renaming ι : Γ → Γ,A, which is the inclusion of Γ into Γ,A. Reflection ↑A and

reification ↓A in (9) also need to cover the extra case of the modality !:

↓!A t =df run⇑ (T (λ (refl,y). I! (↓A y)) t) ↑!A t =df ET
! t (η (refl,↑A axInt))

This implies that the nbe function can also be defined on DILL derivations. Similarly to the case of L,

the correctness of nbe can be proved via logical relations. A thorough description of the NbE procedure

for DILL, together with a proof of its correctness, will appear in a future extended version of this paper.

7 Conclusions

We have studied normalization by evaluation for the Lambek calculus and other related substructural

logics such as MILL and DILL. The presence of positive connectives, i.e. the multiplicative unit I and

tensor ⊗ (and exponential ! in DILL), requires a modification of the NbE technique for typed λ -calculus

employing a strong monad on the Kripke model, a situation sharing many similarities with the extension

of typed λ -calculus with empty and sum types [5, 1].

The normalization algorithm developed in this paper works for “weak” unit and tensor, in the sense

that the equational theory ∼ does not satisfy equations of the form (2). In other words, Lβη is not a

presentation of the free monoidal biclosed category on the set of atomic formulae At. The extension of

NbE to “strong” unit and tensor is left for future work. We should take inspiration from the methodolo-

gies adopted in the NbE literature to deal with strong sums in typed λ -calculus [3, 7], which require a

modification of the Kripke semantics using sheaves on a particularly chosen site instead of presheaves.

The normal forms for the stronger equational theory would also serve as the target calculus of the nor-

malization procedure of Amblard and Retoré [6]
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This paper should be considered as a starting point in understanding the NbE methodology in the

realm of substructural logics. We are especially interested in the connection between Kripke logical

relations for linear logic [13, 15] and categorical reformulations of normalization by evaluation [4, 12].
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