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On the one hand, classical logic is an extremely successful theory, even if not being perfect. On the

other hand, intuitionistic logic is, without a doubt, one of the most important non-classical logics.

But, how can proponents of one logic view the other logic? In this paper, we focus on one of

the directions, namely how classicists can view intuitionistic logic. To this end, we introduce an

expansion of positive intuitionistic logic, both semantically and proof-theoretically, and establish

soundness and strong completeness. Moreover, we discuss the interesting status of disjunction, and

the possibility of combining classical logic and minimal logic. We also compare our system with the

system of Caleiro and Ramos.

1 Introduction

Intuitionistic logic is, without a doubt, one of the most important non-classical logics. For the purpose

of illustrating our motivation, let us refer to those who, for whatever reasons they may have, endorse in-

tuitionistic logic and classical logic, as intuitionists and classicists, respectively. Then, we are interested

in how one camp views the logic endorsed by the other camp. In other words, we are interested in the

following two questions.

(Q1) how do/can intuitionists view classical logic?

(Q2) how do/can classicists view intuitionistic logic?

In what follows, we will somewhat naively refer to intuitionistic logic and classical logic as ⊢IL and ⊢CL,

respectively, and also to intuitionistic conditional and classical conditional as → and ⊃, respectively.

Moreover, we will assume that the conditionals → and ⊃ internalize the consequence relations ⊢IL and

⊢CL, respectively. That is, we assume that the Deduction Theorem, namely Γ,A ⊢IL B iff Γ ⊢IL A→B

and Γ,A ⊢CL B iff Γ ⊢CL A⊃B both hold in the appropriate language.

Let us begin with (Q1). Given the basic assumption concerning the Deduction Theorem, how can

intuitionists accommodate classical conditional? If intuitionists accept both that (i) everything provable

for → is also provable for ⊃ (i.e. if ⊢IL A→B, then ⊢IL A⊃B) and that (ii) modus ponens holds for

⊃ (i.e. A,A⊃B ⊢IL B), then it follows that ⊢IL A→B iff ⊢IL A⊃B. This might be seen as a collapse,

as observed in [7] by Dov Gabbay, and thus intuitionists may need to give up one of the assumptions

in viewing classical conditional. One option is to give up modus ponens with respect to ⊃, and this is

pursued by Dag Prawiz in [24], followed by Luiz Carlos Pereira and Ricardo Oscar Rodriguez in [21]
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as well as by Elaine Pimentel, L.C. Pereira and Valeria de Paiva in [22, 23]. Another option might be

to rely on negative translations. This is the way that seems to be endorsed, for example, by Helmut

Schwichtenberg and Stanley S. Wainer (cf. [27, pp.4-15]), but there are also some worries summarized

with further references by Lloyd Humberstone (cf. [11, p.305]).

For the other question, namely (Q2), this may seem to be fairly straightforward since there is Kripke

semantics for intuitionistic logic. However, note that the classical conditional ⊃ is not present in the

standard semantics as a primitive or defined connective. Moreover, a straightforward attempt of adding

classical conditional, which is equivalent to the addition of classical negation, will face a difficulty.

Indeed, as observed by Luis Fariñas del Cerro and Andreas Herzig in [3, pp.93–94] and Paqui Lucio

in [15], the heredity condition will be in conflict with the classical conditional/negation. Accepting this

conflict is the approach taken in [3, 15] and more recently by Masanobu Toyooka and Katsuhiko Sano in

[29]. To the best of our knowledge, previous attempts so far in the literature are facing troubles, in many

cases adding ad hoc restrictions, such as the atoms being divided into classical ones and intuitionistic

ones. Therefore, it seems to be difficult to conclude that these systems, designed for different goals, offer

a way to view intuitionistic logic from classicists’ perspective.

Based on these, our aim in this paper is to present a new combination of classical logic and intu-

itionistic logic for the purpose of addressing (Q2). Given that there are worries raised for the absurdity

constant among the constructivists’ camp, we will focus on the positive fragment without negation, al-

though we can restore the absurdity constant, if desired. This will have a nice and surprising byproduct

of allowing us to consider a combination of classical logic and minimal logic, a topic that seems to have

never discussed so far in the literature.

2 Semantics and proof system

The basic languages L and L − consist of sets {∧,∨,→} and {∧,→}, respectively, of propositional

connectives and a countable set Prop of propositional variables which we denote by p, q, etc. Further-

more, we denote by Form and Form− the set of formulas defined as usual in L and L −, respectively.

We denote a formula of the given language by A, B, C, etc. and a set of formulas by Γ, ∆, Σ, etc. We will

use A ↔ B as an abbreviation for (A → B)∧ (B → A).
Moreover, we consider a few expansions of both languages L and L −. The additional connectives

will be made explicit by subscripts. The additional connectives in this paper include ⊥, �, and ⊃. For

example, we refer to the language obtained by adding ⊃ to L as L⊃, and the set of formulas as Form⊃.

Let us now state the semantics.

Definition 1. An S-model for L⊃ is a quadruple 〈g,W,≤,V 〉, where W is a set of states with g ∈ W

(the base state); ≤ is a reflexive and transitive relation on W with g being the least element; and V :

W ×Prop −→ {0,1} is an assignment of truth values to state-variable pairs with the condition that

V (w1, p) = 1 and w1 ≤ w2 only if V (w2, p) = 1 for all p ∈ Prop, all w1,w2 ∈W . Valuations V are then

extended to interpretations I of state-formula pairs by the following conditions:

• I(w, p) =V (w, p);
• I(w,A∧B) = 1 iff I(w,A) = 1 and I(w,B) = 1;

• I(w,A∨B) = 1 iff I(w,A) = 1 or I(w,B) = 1;

• I(w,A⊃B) = 1 iff I(g,A) 6= 1 or I(w,B) = 1;

• I(w,A→B) = 1 iff for all x ∈W : if w ≤ x and I(x,A) = 1 then I(x,B) = 1.

Finally, semantic consequence is now defined as follows: Σ |=A iff for all S-models 〈g,W,≤, I〉, I(g,A) =
1 if I(g,B) = 1 for all B ∈ Σ.
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Remark 2. Since we assume our meta-theory to be classical, the clause for ⊃ is equivalent to ‘if I(g,A)=
1 then I(w,B) = 1’ as well as to ‘for all x ∈W : if w ≤ x and I(g,A) = 1 then I(x,B) = 1’.

Then, by induction on the complexity of formulas, we obtain the following.

Lemma 3 (Persistence). Let 〈g,W,≤,V 〉 be an S-model for L⊃. Then, if I(w1,A)=1 and w1≤w2 then

I(w2,A)=1 for all A ∈ Form⊃ and for all w1,w2 ∈W .

Remark 4. Unlike the system considered by del Cerro and Herzig in [3] in which the persistence condi-

tion is restricted, we have the full persistence.

Let us turn to relate ⊃ to the notions of empirical negation (cf. [4, 5, 6]) and actuality operator (cf.

[10, 18]), which are defined as follows.

Definition 5. Empirical negation ∼ and actuality operator @ are semantically defined by truth conditions

I(w,∼A) = 1 iff I(g,A) 6= 1 and I(w,@A) = 1 iff I(g,A) = 1, respectively.

One can easily observe that A⊃B can be defined as ∼A∨B, if empirical negation is available in the

language. Note, however, that ∼ is not definable in our model, as observed in the next lemma.

Lemma 6. For any 〈g,W,≤〉, there is an S-model 〈g,W,≤,V 〉 such that for any formula B[p] it is not the

case that I(w,B[p/A]) = 1 iff I(g,A) = 0 for all w ∈ W . Similarly, For any 〈g,W,≤〉 with #W ≥ 2 (i.e.

more than one world), there is an S-model 〈g,W,≤,V 〉 such that for any formula B[p] it is not the case

that I(w,B[p/A]) = 1 iff I(g,A) = 1 for all w ∈W .

Proof. For the former, consider the model in which V (g, p) = 1 for all p ∈ Prop. Then, we obtain

I(g,A) = 1 for all A ∈ Form⊃. On the other hand, if ∼ were definable in the model, then I(g,∼(p →
p)) = 0, a contradiction. For the latter, consider an S-model with W = {g,w}. We assign values 1, i and

0 to a formula A when I(g,A) = 1, I(g,A) = 0 but I(w,A) = 1 and I(w,A) 6= 0, respectively. We shall

write I(A) for such an assignment. Then we obtain the following truth table:

A∧B 1 i 0

1 1 i 0

i i i 0

0 0 0 0

A∨B 1 i 0

1 1 1 1

i 1 i i

0 1 i 0

A⊃B 1 i 0

1 1 i 0

i 1 1 1

0 1 1 1

A→B 1 i 0

1 1 i 0

i 1 1 0

0 1 1 1

Then, if @ is definable in S-models with #W ≥ 2, then it is also definable in the above three-valued

semantics. In particular, we need I(@A) = 0 when I(A) = i. However, this is not possible since in the

above three-valued semantics, we obtain that I(A) 6= 0 for all A ∈ Form⊃ if we consider models with

I(p) 6= 0 (in other words, {1, i} is closed under the given four truth functions).

We now turn to the proof system.

Definition 7. The system S consists of the following axiom schemata and a rule of inference:

A→(B→A)(Ax1)

(A→(B→C))→((A→B)→(A→C))(Ax2)

(A∧B)→A(Ax3)

(A∧B)→B(Ax4)

(C→A)→((C→B)→(C→(A∧B)))(Ax5)

A→(A∨B)(Ax6)

B→(A∨B)(Ax7)

(A→C)→((B→C)→((A∨B)→C))(Ax8)

(A→B)⊃(A⊃B)(AxM1)

(A⊃(B⊃C))→((A⊃B)⊃(A⊃C))(AxM2)

(A⊃(B→C))→(B→(A⊃C))(AxM3)

(A→(B⊃C))→(B⊃(A→C))(AxM4)

((A⊃B)⊃C)→((A⊃C)→C)(AxM5)

(A⊃C)→((B⊃C)→((A∨B)⊃C))(AxM6)

A A⊃B

B
(MP)
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Finally, we write Γ ⊢ A if there is a sequence of formulas B1, . . . ,Bn,A, n ≥ 0, such that every formula in

the sequence B1, . . . ,Bn,A either (i) belongs to Γ; (ii) is an instance of an axiom of S; (iii) is obtained by

(MP) from formulas preceding it.

Proposition 8. The following rule and formulas are derivable in S.

A A→B

B
(MP2)

A⊃((A⊃B)→B)(MP3)

A → (B ⊃ A)(Kmix)

A⊃(B⊃A)(K⊃)

(A⊃(B⊃C))⊃((A⊃B)⊃(A⊃C))(S⊃)

A∨ (A ⊃ B)(C)

Proof. (MP2) follows from (AxM1) and (MP). Then (MP3) follows from (A⊃B)→(A⊃B), (AxM4) and

(MP2). For (Kmix), first we deduce B⊃(A→A) from B→(A→A), (AxM1) and (MP); then use (AxM3)

and (MP2). (K⊃) and (S⊃) follow from (AxM1), (MP) and (Kmix) or (AxM2), respectively. Finally, (C)

is derived from (AxM5) with (A⊃B)⊃(A∨(A⊃B)) and A⊃(A∨(A⊃B)), which follow from (AxM1).

(K⊃), (S⊃) and (C) show that ⊃ does represent classical implication. Moreover, given that we have

(K⊃) and (S⊃), and that (MP) is the only rule of inference, we obtain the following Deduction theorem.

Proposition 9 (Deduction theorem). For all Γ∪{A,B} ⊆ Form⊃, Γ,A ⊢ B iff Γ ⊢ A⊃B.

Remark 10. Given that we are interested in (Q2) of the introduction, namely how classicists can capture

intuitionistic logic, the consequence relation is the one for classicists, and the above result shows that the

consequence relation is nicely internalized by the classical conditional ⊃, as it should be the case.

Remark 11. Note that the deduction theorem with respect to → fails. Indeed, suppose we have the

theorem. Then, by applying the deduction theorem twice, we obtain that ⊢ (A⊃B)→(A→B). However,

in view of the three-valued model of Lemma 6 and the soundness of S with respect to it, we obtain that

6⊢ (A⊃B)→(A→B).

We conclude this section with corollaries of the deduction theorem that will turn out to be crucial for

the completeness theorem.

Lemma 12. The following rule is derivable in S.

A⊃B B⊃C

A ⊃C
(Trans)

Proposition 13. For all Γ∪{A,B,C} ⊆ Form⊃, if Γ,A ⊢C and Γ,B ⊢C then Γ,A∨B ⊢C.

3 Soundness and completeness

For the present system, soundness is straightforward by induction on the length of the proof.

Theorem 1 (Soundness). For Γ∪{A} ⊆ Form⊃, if Γ ⊢ A then Γ |= A.

For completeness, we first introduce some notions due to Greg Restall in [26].

(i) Σ ⊢Π A iff Σ∪Π ⊢ A.

(ii) Σ is a Π-theory iff:

(a) if A,B ∈ Σ then A∧B ∈ Σ.

(b) if ⊢Π A → B then (if A ∈ Σ then B ∈ Σ).

(iii) Σ is prime iff A ∈ Σ or B ∈ Σ if A∨B ∈ Σ.

(iv) Σ ⊢Π ∆ iff Σ ⊢Π D1 ∨ ·· ·∨Dn

for some D1, . . . ,Dn ∈ ∆.

(v) ⊢Π Σ → ∆ iff ⊢Π C1∧·· ·∧Cn→D1∨·· ·∨Dm

for some C1, . . . ,Cn ∈ Σ and D1, . . . ,Dm ∈ ∆.

(vi) Σ is Π-deductively closed iff A ∈ Σ if Σ ⊢Π A.

(vii) 〈Σ,∆〉 is a Π-partition iff:

(a) Σ∪∆ = Form⊃

(b) 0Π Σ → ∆

(viii) Σ is non-trivial iff A /∈ Σ for some formula A.
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Lemma 14. If Γ is a non-empty Π-theory, then Π ⊆ Γ.

Proof. Take A ∈ Π. Then, we have Π ⊢ A. Since Γ is non-empty, take any C ∈ Γ. Then, by (Ax1), we

obtain Π⊢C →A. Thus, combining this together with C ∈ Γ and that Γ is Π-theory, we obtain A∈ Γ.

We refer to [5, 6, 18, 26] for the details of the next lemmas.

Lemma 15. If 〈Σ,∆〉 is a Π-partition then Σ is a prime Π-theory.

Lemma 16. If 0Π Σ → ∆ then there are Σ
′ ⊇ Σ and ∆

′ ⊇ ∆ such that 〈Σ′,∆′〉 is a Π-partition.

Corollary 17. Let Σ be a non-empty Π-theory, ∆ be closed under disjunction, and Σ∩∆ = /0. Then there

is Σ
′ ⊇ Σ such that Σ

′∩∆ = /0 and Σ
′ is a prime Π-theory.

Note that we make use of (Trans) and Proposition 13 for the next lemma.

Lemma 18. If Σ 0∆ then there are Σ
′ ⊇ Σ and ∆

′ ⊇∆ such that 〈Σ′,∆′〉 is a partition, and Σ
′ is deductively

closed.

Corollary 19. If Σ 0 A then there is Π ⊇ Σ such that A /∈ Π, Π is a prime Π-theory and is Π-deductively

closed.

We also prepare two more lemmas for the truth lemma.

Lemma 20. If ∆ is a Π-theory and A → B /∈ ∆, then there is a prime Π-theory Γ ⊇ ∆, such that A ∈ Γ

and B /∈ Γ.

Lemma 21. If Σ is prime, Π-deductively closed and A 6∈ Σ then A ⊃ B ∈ Σ.

Proof. If Σ is Π-deductively closed, then by (C) we obtain A∨ (A ⊃ B) ∈ Σ. This together with A 6∈ Σ

and the primeness of Σ implies A ⊃ B ∈ Σ.

We are now ready to establish the completeness.

Theorem 2 (Completeness). For Γ∪{A} ⊆ Form⊃, if Γ |= A then Γ ⊢ A.

Proof. We prove the contrapositive. Suppose that Γ 0 A. Then, by Corollary 19, there is a Π ⊇ Γ such

that Π is a prime Π-theory, Π-deductively closed and A /∈ Π. Define the interpretation A= 〈X ,Π,≤, I〉,
where X = {∆ : ∆ is a non-empty and non-trivial prime Π-theory}, ∆ ≤ Σ iff ∆ ⊆ Σ and I is defined thus:

for every state Σ and propositional parameter p: I(Σ, p) = 1 iff p ∈ Σ.

We show by induction on B that I(Σ,B) = 1 iff B ∈ Σ. We will only deal with the cases involving →
and ⊃ (the cases for conjunction and disjunction can be found, for example, in [5, Theorem 3.13]).

• When B ≡C → D, by IH I(Σ,C → D) = 1 iff for all ∆ s.t. Σ ⊆ ∆, if C ∈ ∆ then D ∈ ∆. Hence it

suffices to show that this latter condition is equivalent to C → D ∈ Σ. For the forward direction,

we argue by contraposition; so assume C → D /∈ Σ. Then by Lemma 20 we can find a non-trivial

prime Π-theory Σ
′ ⊃ Σ such that C ∈ Σ

′ but D /∈ Σ
′. For the backward direction, assume C → D ∈ Σ

and C ∈ ∆ for any ∆ s.t. Σ ⊆ ∆. Then C → D ∈ ∆ as well, and so D ∈ ∆ since ∆ is a Π-theory.

• When B≡C ⊃ D, by IH I(Σ,C ⊃D) = 1 iff C 6∈Π or D∈ Σ iff C ⊃D∈ Σ. For the last equivalence,

suppose C 6∈ Π. Then, by Lemma 21, we obtain C ⊃ D ∈ Π. This together with Lemma 14 implies

that C ⊃ D ∈ Σ. That D ∈ Σ implies C ⊃ D ∈ Σ is easy in view of (Kmix). For the other way

around, suppose C ⊃ D ∈ Σ and C ∈ Π; we want to show D ∈ Σ. Then we infer from (MP3) and

(MP) that ⊢Π (C ⊃ D)→ D. Now because Σ is a Π-theory, C ⊃ D ∈ Σ implies D ∈ Σ, as desired.

It now suffices to observe that B∈Π for all B∈Γ and A/∈Π, which in view of the above means Γ 6|= A.
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Remark 22. It is straightforward to observe that S is a conservative extension of intuitionistic logic.

In addition, an interpretation at g of formulas in {∧,∨,⊃}-fragment corresponds to a classical model,

because it never refers to other worlds. Consequently, S is also a conservative extension of classical

logic. Hence we see that S properly combines the two implications.

Remark 23. Given the notion of empirical negation, our classical conditional is defined as the material

conditional. However, in view of the treatment of classical conditional by Humberstone in [9, p.174], we

may also introduce another classical conditional as ∼(A∧∼B). Of course, these two ways are equivalent

in classical logic, but this is not the case in our present context, giving rise to the following truth condition.

• I(w,A⊃B) = 1 iff I(g,A) 6= 1 or I(g,B) = 1.

Otherwise, we retain the definition of S-model. Let us refer to the resulting model and the semantic

consequence relation as T-model and |=T, respectively. We can then also axiomatize this system.

Definition 24. The system T is obtained from S by (i) replacing (AxM3) and (AxM4) by (K⊃) and

(MP3), and (ii) adding the following axiom schemata in T:

(A⊃B)→((⊤⊃A)→B)(T1) (A⊃B)→(C⊃(A⊃B))(T2)

where ⊤ abbreviates p → p for some p ∈ Prop. We refer to the proof-theoretic consequence relation as

⊢T.

Then, we may establish that for all Γ∪ {A} ⊆ Form⊃, Γ |=T A iff Γ ⊢T A, and that S and T are

incomparable. The details are kept for the full version of this paper, due to space restriction.

4 Indispensability of disjunction

The axiom schemata of S expressing properties of ⊃ are in implicational form (i.e. → and ⊃ are the only

connectives), except for (AxM6). This allows us to establish the completeness of the conjunction-free

fragment of S, by altering the definition of ⊢Π Σ → ∆ to “⊢Π C1 → (C2 → (· · · → (Cn → D1 ∨·· ·∨Dm)))
for some C1, . . . ,Cn ∈ Σ and D1, . . . ,Dm ∈ ∆”, and dropping the condition (a) from a Π-theory. Then we

can observe that the arguments in [5, 6, 18] are suitably modified for conjunction-free language.

It is then a natural question to ask if we may take the fragment of S which is also disjunction-free,

i.e. the implicational fragment. This will be reduced to the question if we can replace (AxM6) by an

axiom in an implicational form.

It turns out that such axiom does not exist. In order to observe this, we change our setting slightly

so as to make the presence of disjunction in axiomatization explicit. We shall employ a formalism with

axioms and the rule of substitution, rather than axiom schemata. In addition, we discuss in a system

with the absurdity ⊥. We shall establish a stronger result that even in this expanded language we cannot

replace (AxM6) by an implicational formula.

Definition 25. Let S⊥ be a system in L⊥,⊃ obtained by adding the next axiom schemata to S.

⊥→ A(Ax0)

If we remove (AxM6), then we obtain a system which we shall call S−
⊥. If we further eliminate (Ax0)

and move the language to L⊃, we obtain the system S−.

Definition 26. We define S⊥2 to be a system in L⊥,⊃ defined by the axioms corresponding to axiom

schemata in S⊥, e.g.

(p⊃r)→((q⊃r)→((p∨q)⊃r))(AxM6’)

with rules (MP) and



180 Another Combination of Classical and Intuitionistic Conditionals

A

A[p/B]
(Sub)

where A[p/B] denotes the result of substituting all instances of p occurring in A (and assumption) by B.

If we remove (AxM6’) then it defines a subsystem S−
⊥2.

Remark 27. It is straightforward to observe S⊥ and S⊥2, as well as S−
⊥ and S−

⊥2 coincide. Furthermore,

Propositions 8, 9 as well as Lemma 12 do not depend on (AxM6), and so they hold for S−
⊥ as well. The

reason we introduced ⊥ in the language is to appeal to the intuitionistic modal logic L4 introduced in

[20] by Hiroakira Ono. Let us briefly recall this system.

Definition 28 (Ono). The logic L4 is defined in L⊥,� with the following axiom schemata and rules,

along with those of intuitionistic logic.

�(A→B)→(�A→�B)(�1)

�A→A(�2)

�A→��A(�3)

�A∨�(�A→B)(�4)

A

�A
(RN)

A A→B

B
(MP2)

Remark 29. L4 is a syntactic variant of the logic TCCω , introduced in [8], which in turn is a subsystem

of the expansion of intuitionistic logic by empirical negation, IPC∼ introduced in [4]. See also [16, 17,

18] for a comparison of these systems.

We are now going to establish the relationship between S−
⊥ and L4.

Definition 30. Let ()� and ()⊃ be the following translations between L⊥,⊃ and L⊥,�.

p� = p p⊃ = p.

⊥� =⊥ ⊥⊃ =⊥.

(A◦B)� = A� ◦B� (A◦B)⊃ = A⊃ ◦B⊃.

(A ⊃ B)� =�A� → B� (�A)⊃ = (A⊃ ⊃⊥)⊃⊥.

where ◦ ∈ {∧,∨,→}.

We shall occasionally abbreviate A ⊃⊥ as ∼A. The choice of the symbol ∼ is based on the fact that

the formula defines empirical negation in S⊥.

Lemma 31. The following formulas are provable in S.

(A⊃(B⊃C))→ (B⊃(A⊃C))(Ex) (B →C)→ (A⊃B → A⊃C)(Pfix)

Proof. For (Ex), on one hand B⊃(A⊃B) from (K⊃). On the other hand, (A⊃B)⊃((A⊃(B⊃C)→(A⊃C)))
from (AxM2) and (AxM4). Hence by (Trans) B⊃((A⊃(B⊃C)→(A⊃C))); then apply (AxM4) again to

obtain the formula. For (Pfix), By (MP3) and deduction theorem, A ⊢ (A⊃B)→B. Thus A ⊢ (B →C)→
((A ⊃ B)→C). Therefore by deduction theorem and (AxM3), we conclude (B→C)→(A⊃B→A⊃C).

Lemma 32. (i) S−
⊥ ⊢ A ↔ (A�)⊃; (ii) L4 ⊢ A ↔ (A⊃)�.

Proof. By induction on A. For (i), we need S−
⊥ ⊢ (B⊃C)↔((B⊃C)�)⊃. For this it suffices to show that:

• S−
⊥ ⊢ (B ⊃C)↔ (∼∼B →C).

For the left-to-right direction, because B ⊃ ((B ⊃ C) → C) and ∼B ⊃ (∼∼B → C) are provable from

instances of (MP3), we obtain B ⊃ ((B ⊃ C) → (∼∼B → C)) and ∼B ⊃ ((B ⊃ C) → (∼∼B → C))
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by (Pfix). Then the desired implication follows from (AxM5). For the right-to-left direction, first we

note B ⊃ ∼∼B follows from (B ⊃ ⊥) ⊃ (B ⊃ ⊥) by (Ex). Also it is a consequence of (Pfix) that (B ⊃
∼∼B)→ (B ⊃ ((∼∼B →C)→C)). Thus by (MP2) and (AxM3) we obtain the desired implication.

For (ii), we need L4 ⊢�A ↔ ((�A)⊃)�. It suffices to show L4 ⊢�A ↔¬�¬�A. This follows from

(Ax0) and (�4).

Proposition 33. (i) S−
⊥ ⊢ A iff L4 ⊢ A�; (ii) L4 ⊢ A iff S−

⊥ ⊢ A⊃.

Proof. We show by induction on A. By Lemma 32 it is sufficient to show the left-to-right directions.

For (i), we need to consider the cases for (AxM1)–(AxM5) and (MP). The translation of (AxM5)

follows from (�4) and that of (AxM1) from (�1) and (�2). The translations of (AxM3) and (AxM4)

follow by intuitionitistic logic, and that of (MP) from (RN) and (MP2). For (AxM2), we require

• L4 ⊢ (�A → (�B →C))→ (�(�A → B)→ (�A →C)).

for which is enough to show L4 ⊢ (�(�A → B)∧�A)→ (�A∧�B). This follows from (�1) and (�3).

For (ii), we have to consider the cases for (�1)–(�4) and (RN). We recall the equivalence observed

in Lemma 32, namely (A ⊃ B)↔(∼∼A → B). Then the translation of (�2) follows form A ⊃ A. That of

(�3) follows from ∼∼A→∼∼∼∼A, which follows from (C) and (MP3). For (RN), if S−
⊥ ⊢ A then S−

⊥ ⊢
A ⊃ ∼∼A implies S−

⊥ ⊢ ∼∼A. The translation of (�4) is derived from (AxM5); we have ∼∼A ⊃ ∼∼A

and ∼A ⊃ (∼∼(∼∼A → B)). The latter follows from ∼∼A → (∼A ⊃ B), which by (AxM4) derives

∼A ⊃ (∼∼A → B). Then use deduction theorem and the argument for (RN). For (�1), we need to show

• S−
⊥ ⊢ ∼∼(A → B)→ (∼∼A →∼∼B)

This is equivalent to S−
⊥ ⊢ (A → B)⊃ (A ⊃∼∼B) Now as A,A → B ⊢ B holds in S−

⊥. Then arguing as in

the case for (RN), we obtain A,A → B ⊢ ∼∼B, from which the above formula is derived.

The following semantics corresponds to L4, as we observed in [18].

Definition 34. An L4-model for L⊥,� is a triple 〈W,≤,V 〉 as in S-model, except that we drop the base

state. The interpretations I� to state-formula pairs are the same with S-models except for the following:

• I�(w,⊥) = 0;

• I�(w,�A) = 1 iff for all x ∈W : I�(x,A) = 1.

Finally, the semantic consequence is now defined as follows: Σ |=� A iff for all L4-models 〈W,≤,V 〉, if

I�(w,B) = 1 for all B ∈ Σ and for all w ∈W , then I�(w,A) = 1 for all w ∈W .

Theorem 3 ([18]). L4 ⊢ A iff |=� A.

An analogous model can be considered for the language L⊥,⊃, with the only difference being the

interpretation (which we shall denote by I⊃) where

• I⊃(w,A⊃B) = 1 iff I⊃(x,A) 6= 1 for some x ∈W or I⊃(w,B) = 1.

We shall call a model of this semantics an S−
⊥-model, and denote the semantic consequence for this

semantics by |=⊃. Note that the class of S−
⊥-models with a base state is nothing but the class of S-models

(with ⊥ added to the language), because the interpretations of ⊃ coincide. We shall use |=⊥ to denote

the semantic consequence restricted to this class of models (to be called S⊥-models). Then the next

completeness follows analogously to Theorem 2.

Proposition 35. S⊥ ⊢ A iff |=⊥ A.

Proposition 36. (i) |=⊃ A iff |=� A�; (ii) |=� A iff |=⊃ A⊃.
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Proof. We note each L4-model can be seen as a S−
⊥-model, and vice versa. Then it suffices to show by

induction on A that I⊃(w,A) = 1 iff I�(w,A
�) = 1, and similarly for the other translation.

For instance, for A ≡ B ⊃C,

I⊃(w,B ⊃C) = 1 iff ∀w′(I⊃(w
′,B) = 1) implies I⊃(w,C) = 1.

iff ∀w′(I�(w
′,B�) = 1) implies I�(w,C

�) = 1. (by IH)

iff ∀w′ ≥ w(I�(w
′,�B�) = 1 implies I�(w

′,C�) = 1).

iff I�(w,(B ⊃C)�) = 1.

We safely leave the other cases to the reader.

As a consequence of Theorem 3, Propositions 33 and 36, we obtain the following.

Corollary 37. S−
⊥ ⊢ A iff |=⊃ A.

Definition 38. Let M = 〈W,≤,V 〉 be an S−
⊥-model. We define another S−

⊥-model M ′ = 〈W ′,≤′,V ′〉 by

setting W ′ =W ∪{g}; ≤′=≤∪{(g,w) : w∈W ′} and: V ′(w, p)= 1 iff V (w, p)= 1 or (w= g and V (w′, p)=
1 for all w′ ∈W ).

Note that V ′ is well-defined as a valuation. We use the notation M |=⊃ A to abbreviate I⊃(w,A) = 1

for all w ∈W in M .

Lemma 39. Let M and M ′ be as in the previous definition. Then for any formula A in L
−
⊥,⊃ (i.e.

disjunction-free): (i) I⊃(w,A) = 1 iff I′⊃(w,A) = 1 for any w ∈W , and (ii) M |=⊃ A iff I′⊃(g,A) = 1.

Proof. We show (i) and (ii) by simultaneous induction on A. Here we treat the cases for → and ⊃. If

A ≡ A1 → A2 then for (i):

I⊃(w,A1 → A2) = 1 iff ∀w′ ≥ w(I⊃(w
′,A1) = 1 implies I⊃(w

′,A2) = 1).

iff ∀w′ ≥ w(I′⊃(w
′,A1) = 1 implies I′⊃(w

′,A2) = 1).

iff I′⊃(w,A1 → A2) = 1.

and for (ii), first we note

M |=⊃ A1 → A2 iff ∀w ∈W (I⊃(w,A1) = 1 implies I⊃(w,A2) = 1).

iff ∀w ∈W (I′⊃(w,A1) = 1 implies I′⊃(w,A2) = 1).

Also if I′⊃(g,A1) = 1, then by IH M |=⊃ A1. So M |=⊃ A2, and by IH again I′⊃(g,A2)= 1. Combining the

above two observations, we conclude I′⊃(g,A1 → A2) = 1. For the other direction, if I′⊃(g,A1 → A2) = 1

then ∀w ∈W (I′⊃(w,A1) = 1 implies I′⊃(w,A2) = 1). Thus by the equivalence above, M |=⊃ A1 → A2.

If A ≡ A1 ⊃ A2, then for (i):

I⊃(w,A1 ⊃ A2) = 1 iff M |=⊃ A1 implies I⊃(w,A2) = 1.

iff I′⊃(g,A1) = 1 implies I′⊃(w,A2) = 1.

iff I′⊃(w,A1 ⊃ A2) = 1.

and for (ii):

M |=⊃ A1 ⊃ A2 iff M |=⊃ A1 implies M |=⊃ A2.

iff I′⊃(g,A1) = 1 implies I′⊃(g,A2) = 1.

iff I′⊃(g,A1 ⊃ A2) = 1.

This completes the proof.
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Theorem 4. Let A be a formula in L
−
⊥,⊃. Then |=⊥ A implies |=⊃ A.

Proof. If 6|=⊃ A, there is an S−
⊥-model M with M 6|=⊃ A. By Lemma 39, there is another S−

⊥-model M ′

with a base state such that M ′ 6|=⊃ A. But as we observed M ′ is nothing but an S⊥-model; so 6|=⊥ A.

Corollary 40. Let A be a formula in L
−
⊥,⊃. Then S⊥2 ⊢ A implies S−

⊥2 ⊢ A.

Proof. If S⊥2⊢ A, then S⊥ ⊢A and so |=⊥ A by soundness. So by Theorem 4, |=⊃ A. Hence by Corollary

37, S−
⊥ ⊢ A and thus S−

⊥2 ⊢ A.

Corollary 41. There is no A∈Form−
⊥,⊃ such that (i) S⊥2⊢A and (ii) the system S−

⊥2+A derives (AxM6’).

Proof. If S⊥2 ⊢ A then by Corollary 40, S−
⊥2 ⊢ A already. Thus S−

⊥2+A = S−
⊥2. However, we can show

6|=⊃ (AxM6’) by considering a model (W,≤,V ) where W={w,w′}, ≤= {(w,w),(w′,w′)}, V (w, p) =
V (w′,q) = 1 and V (w,q)=V (w′, p)=V (w,r)=V (w′,r)=0. Then I(w, p⊃r)=1 and I(w,q⊃r)=1, but

I(w,(p∨q)⊃r)=0. Thus by soundness, S−
⊥ 0 (AxM6’) and so S−

⊥2 0 (AxM6’). Therefore the second

condition cannot be satisfied.

Remark 42. If there is a formula which satisfies the above conditions with respect to S−2 (i.e. the system

in L⊃), then it is derivable in S⊥2 and also derives (AxM6’) when added to S−
⊥2. This is impossible by

the corollary; so (AxM6’) cannot be converted to a disjunction-free axiom for the language L⊃ either.

We conclude this section by observing that a disjunction-free rule cannot replace (AxM6’) in S⊥2.

Recall that a rule
A1, · · · ,An

B
is said to be derivable in a proof system if there is a proof in the system

of B from A1, · · · ,An. Moreover, a rule
A1, · · · ,An

B
is admissible if the provability of A1, · · · ,An implies

the provability of B (see [31] for more details). Then, we obtain the following result.

Corollary 43. There is no rule R of the form
A1, · · · ,An

B
, where B is in L

−
⊥,⊃, such that (i) R is

admissible in S⊥2; and (ii) S−
⊥2+R derives (AxM6’).

Proof. It suffices to show that if (i) is satisfied, then R is already admissible in S−
⊥2. Now if S−

⊥2 ⊢
A1, . . .S

−
⊥2 ⊢ An, then S⊥2 ⊢ A1, . . .S⊥2 ⊢ An. Hence S⊥2 ⊢ B by R, but then by Corollary 40, S−

⊥2 ⊢ B.

Hence R is already admissible in S−
⊥2.

5 Adding a weaker absurdity

In order to introduce negation into our language, recall that the intuitionists treat negation as implication

to absurdity ¬A := A→⊥. Moreover, intuitionists assume that ⊥ satisfies the law of explosion ⊥→A; if

no such assumption is made, we obtain Johansson’s minimal logic, introduced in [12].

Now, in order to obtain classical negation at the base state, we would need absurdity to be explosive

therein. However, this does not necessarily require absurdity to be explosive elsewhere. In other words,

the law of explosion may be allowed in a restricted manner, much like the law of excluded middle. This

allows us, somewhat surprisingly, to obtain a system, which we refer to as S⊥w
, that combines classical

logic and minimal logic.

Definition 44. Let S⊥w
be an expansion of S in L

−
⊥,⊃ with the following additional axiom.

⊥⊃A(AxE)

We refer to the derivability in S⊥w
as ⊢⊥w

.
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Remark 45. Semantically, we can basically reuse the Kripke model for S. The only change we need

to make is to expand V to be V : W ×Prop∪{⊥} −→ {0,1} with a condition that V (g,⊥) = 0 for all

V . Without this condition and the requirement that there is a base state, the ⊃-free fragment of this

semantics is equivalent to that of minimal logic in [28]. Then I(w,⊥) is defined to be equal to V (w,⊥).
We refer to the semantic consequence relation as |=⊥w

.

Theorem 5 (Soundness and Completeness). For Γ∪{A} ⊆ Form⊥,⊃, Γ ⊢⊥w
A iff Γ |=⊥w

A.

Proof. For soundness, it suffices to check (AxE) holds in any model. This is immediate from the fact

that I(g,⊥) = 0 in any model. For completeness, we can use the same countermodel construction as in

Theorem 2. That is to say, we set I(Σ,⊥) = 1 iff ⊥ ∈ Σ. Then the base state Π is deductively closed, so

If ⊥ ∈ Π then by (AxE) and (MP) we deduce A ∈ Π for all A, a contradiction. Thus ⊥ /∈ Π and so the

condition for our model that V (Π,⊥) = 0 is satisfied.

Next we check that the intuitionistic absurdity (which we denote by ⊥i here) satisfying the law of

explosion cannot be defined in S⊥w
.

Proposition 46. There is no formula F ∈ Form⊥,⊃ such that I(w,F) = 0 for any w∈W in any S⊥w
-model

〈g,W,≤,V 〉.

Proof. Suppose there is such a formula. Choose a model such that there are more than two states, and

(i) V (w,⊥) = 1 iff w ∈W\{g}; (ii) V (w, p) = 1 iff w ∈W\{g} for all p occurring in F; (iii) V (w,q) = 1

iff w ∈ /0 for other propositional variables. Then we can show by induction that for any subformula A of

F , I(w,A) = 1 iff w ∈W , or I(w,A) = 1 iff w ∈W\{g}. Then I(w,F) = 1, a contradiction.

Finally, we show that S⊥w
is a conservative extension of minimal logic. Let MPC be the propositional

minimal logic defined by (Ax1)–(Ax8) and (MP) in the language L⊥ = {∧,∨,→,⊥}. As we mentioned

above, the Kripke semantics for MPC is obtainable from that of S⊥w
by posing no restriction on the

valuation of ⊥ and the shape of a model. By making use of ⊢ j and |= j to denote the derivability and

validity in MPC, respectively, we obtain the following result.

Theorem 6. For A ∈ Form⊥, if ⊢⊥w
A, then ⊢ j A.

Proof. By Theorem 5, if ⊢⊥w
A then |=⊥w

A. Let M = 〈W,≤,V 〉 be an MPC-model. Take w ∈W . We

wish to show I(w,A) = 1. Towards this, we first note that similarly to intuitionistic logic, we can take the

truncated model [30, p.78] M ′ of M , i.e. the submodel restricted to the worlds above w. In particular

I(w,A) = 1 iff I′(w,A) = 1. Moreover, M ′ is also a truncated model of the model M0 obtained by adding

a new root w0 to M ′, with V0(w0,B) = 0 for B ∈ {p,⊥}. Then M0 is well-defined, and can be seen as

an S⊥w
-model because it satisfies the condition that ⊥ is not true at the root. Hence by assumption,

I0(w0,A) = 1 and so I0(w,A) = 1. Therefore I′(w,A) = 1 and consequently I(w,A) = 1, as required. Thus

|= j A and by the completeness of MPC, ⊢ j A.

6 Comparison with CIPC

So far, we have seen how we may obtain a combination of classical positive logic and intuitionistic

positive logic, which can be expanded to combine (i) classical logic and intuitionistic logic, by adding

⊥→A, as well as (ii) classical logic and minimal logic, by adding ⊥⊃A. In view of these results, we

believe that our system offers a ground for classicists to capture intuitionistic logic. Our system, however,

is not the first attempt of combining classical positive logic and intuitionistic positive logic. Indeed,
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there is an attempt by Carlos Caleiro and Jaime Ramos who presented a system that combines classical

conditional and intuitionistic conditional in [1]. Since this will give us an opportunity to highlight some

of the features of our system, we will focus on their system in this section.

The system CIPC of Caleiro and Ramos, introduced in [1], is a logic with classical implication (⇒)

and intuitionistic implication (→), obtained via the technique of cryptofibring (cf. [2]). Semantically, it

is captured by intuitionistic Kripke models with a base state together with the following condition for the

classical conditional.

• I(w,A ⇒ B) = 1 iff for some w′ ≤ w (I(w′,A) = 0 or I(w′,B) = 1).
As observed in [1, Corollary 2], this is equivalent to I(g,A) = 0 or I(w,B) = 1. Moreover the system has

two sorts of atomic formulas, classical and intuitionistic. Classical ones are either true in every world in

the model, or true nowhere. Intuitionistic ones are evaluated as usual.1 Then CIPC has the following

axiomatization.

A ⇒ (B ⇒ A)(C1)

(A⇒(B⇒C))⇒((A⇒B)⇒(A⇒C))(C2)

((A ⇒ B)⇒ A)⇒ A(C3)

A → (B → A)(I1)

(A→(B→C))→((A→B)→(A→C))(I2)

A A⇒B

B
(CMP)

A → (B ⇒ A)(X1)

(A∗ ⇒ B)→ (A∗ → B)(X2)

A ⇒ ((A ⇒ B)→ (A → B))(X3)

(X⇒(A→B))→((X⇒A)→(X⇒B))(X4)

A A→B

B
(IMP)

where A∗ is classical, i.e. it is built up from classical atoms by means of ⇒.

As the above semantic condition makes it clear, CIPC is almost identical to S except for the restric-

tion of the connectives and the presence of classical atoms. Now, Definition 38 can be naturally extended

to treat classical atoms, and consequently Corollary 41 applies to CIPC as well. Therefore, for CIPC in

the full language with conjunction and disjunction, it is insufficient to add standard axiom for ∧ and ∨.

Indeed, if we adopt the interpretation of ⊃ in S−, namely

• I(w,A⇒B) = 1 iff for some x (I(x,A) 6= 1) or I(w,B) = 1,

then it is straightforward to observe that the axioms of CIPC are sound with respect to the class of Kripke

models without the condition that there is a base state. Now if CIPC in the full language is complete

with respect to the class of Kripke models with a base state, then A ⇒ C → ((B ⇒C) → (A∨B ⇒ C))
has to be provable in CIPC, and so it must be valid in all Kripke models without the condition of a base

state. However analogously to what we observed in in Corollary 40 this is impossible. Therefore CIPC

in the full language cannot be complete with respect to the class of Kripke models with a base state.

Another thing to note here is that the above three interpretations for ⇒ coincide only in a Kripke

model with a base state. If we do not assume a base state, then the first and the third condition are

no longer equivalent. In particular, the first condition becomes equivalent to that of ∼A∨B in Graham

Priest’s logic of co-negation [25]. This difference illustrates why (X3) is said to fail when considering

arbitrary Kripke models in [1, Section 5]. This occurs when the first condition is considered, but not

when the third condition is considered, as we discussed above.

7 Concluding remarks

In this paper, motivated by questions concerning the relation between classical logic and intuitionistic

logic, we introduced an expansion of positive intuitionistic logic by classical conditional. Semantically,

1A similar idea is employed by Hidenori Kurokawa in [13] to formulate intuitionistic logic with classical atoms.
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we made essential use of the base point in defining the classical conditional, and proof-theoretically, we

introduced the system as an axiomatic proof system. We then established soundness and strong com-

pleteness results. Moreover, by taking this system as the basic system, we discussed the indispensability

of disjunction in §4, pointed out that we may also combine classical logic and minimal logic in §5,

and quickly compared with one of the most closely related proposals, namely the system CIPC due to

Caleiro and Ramos in the literature in §6. The following table summarizes the systems we looked at in

the paper.

System

S New combination of classical and intuitionistic conditionals

T Alternative combination incomparable with S

S⊥w
Combination of classical and minimal conditionals

()⊥ Addition of intuitionistic ⊥ to the system

()− Subsystem without (AxM6) (or (AxM6’))

()2 System defined with substitution rule

MPC Johansson’s minimal logic

L4 One of intuitionistic S5 of Ono

CIPC Combination of classical and intuitionistic conditionals by Caleiro and Ramos

Table 1: List of systems discussed in this paper

Further results we are ready to report, though had to be kept aside for the full version due to space

restriction, include a formulation of sequent calculus with a detailed comparison to LEci discussed in

[22, 23], as well as some comparison to the proposal due to Steffen Lewizka presented in [14].

Needless to say, our paper is meant to be a starting point rather than offering our final words on

this topic. Future directions to be pursued, beside fully addressing the question (Q2) based on our

new system, include (i) investigations into combination of subintuitionistic logic and classical logic, (ii)

investigations into other ways of adding classical conditional on top of positive intuitionistic logic, such

as those making use of Humberstone’s constant Ω (cf. [10, 19]), (iii) investigations into the combination

via Beth semantics instead of Kripke semantics, and (iv) investigations into other ways to combine two

conditionals, via other routes outlined in the introduction.
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