
Gabriel Ciobanu (Ed.): Membrane Computing and
Biologically Inspired Process Calculi (MeCBIC 2012)
EPTCS 100, 2012, pp. 29–47, doi:10.4204/EPTCS.100.3

GUBS, a Behavior-based Language for Open System
Dedicated to Synthetic Biology

Adrien Basso-Blandin
IBISC lab.

Evry University

abasso@ibisc.univ-evry.fr

Franck Delaplace
IBISC lab.

Evry University

franck.delaplace@ibisc.univ-evry.fr

In this article, we propose a domain specific language, GUBS (Genomic Unified Behavior Specifi-
cation), dedicated to the behavioural specification of synthetic biological devices, viewed as discrete
open dynamical systems. GUBS is a rule-based declarative language. By contrast to a closed system, a
program is always a partial description of the behaviour of the system. The semantics of the language
accounts the existence of some hidden non-specified actions that possibly alter the behaviour of the
programmed devices. The compilation framework follows a scheme similar to automatic theorem
proving, aiming at improving synthetic biological design safety.

1 Introduction

Synthetic biology is an emerging scientific field combining the investigative nature of biology with the
constructive nature of engineering [22] to design synthetic biological systems. The issue is to devise
new functionality/behaviour that does not exist in nature. Then, the field of synthetic biology is looking
forward principles and tools to make the biological devices inter-operable and programmable [19]. Syn-
thetic biology projects were first focusing on the design and the improvement of small genetic devices
comparable to logical gates for electronic circuits [23, 11]. Recently, projects have attempted to develop
large bio-systems integrating different devices with as a long-term goal, the design of de-novo synthetic
genome [16]. In this endeavour, the computer-aided-design (CAD) environments play a central role by
providing the required features to engineer systems: specification, analysis, and tuning [4, 20, 25, 12].
Pioneer applications show the valuable potential of such environments in IGEM competition.

Currently, the design specifies the structural assembly of DNA sequences (biobrick) as in GENO-
CAD [7]. Although this description is indispensable to provide a finalized specification of devices, the
abstraction level seems inappropriate for tackling large bio-systems. The required size of programs for
sequence description likely makes the task error-prone and un-come-at-able. In the same way as large
softwares cannot be programmed in binary, large biological systems cannot be described as aDNA se-
quence assembly. Then, scaling up the complexity of the synthetic biological systems needs to complete
the structural description by an additional abstract programming layout based on a high-level program-
ming language and harness the automatic conversion of the design specification into a DNA sequence,
like compilers. High level programming language for synthetic biology is announced as a key mile-
stone for the second wave of synthetic biology to overcome the complexity of large synthetic system
design [22]. Nonetheless, in this domain, language technology is still in its infancy and transforming this
vision into a concrete reality remains a daunting challenge.

Such high-level language should describe the devices in term of functionalities, offering the ability
to program the behaviour directly instead of the structure supporting this behaviour. Indeed, behaviour
specification contributes to accurately document the device by adding its behavioural description, to

http://dx.doi.org/10.4204/EPTCS.100.3


30 GUBS, a Behavioral Language for Synthetic Biology

assess its functionality automatically and formally, notably by generating test-benches from this spec-
ification, and to get a relative independence to technology because different biological structures can
carry out the same functionality. In this framework, the components are selected and organized automat-
ically or semi-automatically to generate a structural description of the device at compile phase whose
behaviour complies with the specified function. A such approach has been already achieved in hardware
by using languages as VHDL [1] or VERILOG [24] to overcome the growing complexity of electronic
circuits. However, the major difference in synthetic biology relates to the openness of biological sys-
tem. Thereby, the issue is to propose a behavioural language for open systems. More precisely, GUBS is
a rule-based declarative language dedicated to the behavioural specification of discrete open dynamical
systems for synthetic biology interacting with its environment. GUBS symbolically defines the behaviours
to provide a relative independence from structures by postponing the biological component selection at
compile phase. Within this framework, the compiler translates the behavioural specification to a struc-
tural description of a device whose behaviour carries the functional features defined by a program. The
proposed compilation method is inspired by automated theorem proving.

After introducing the main features of GUBS language (Section 2), we define the semantics of GUBS

based on hybrid logic. Then, we detail the proof-based principles governing the compilation (Section 3)
illustrated with a complete example (Section 4). After a survey of the related works, Section 5, we
conclude (Section 6).

2 GUBS language

In this section, we describe the main features of GUBS.

Constant and variables. In GUBS, two kinds of objects are distinguished: the constants and the vari-
ables. The constants designate the pre-defined objects in a corpus of knowledge. In biology, the constants
may refer to proteins or genes of interest. For example, the agent LacZ refers to LacZ protein or gene.
By convention, their name starts with a capital letter. The variables refer to an abstraction of these pre-
defined objects and can be potentially replaced (substituted) by any constant. By convention, the variable
names start with a minuscule letter.

Agents, attributes and states. The agents represent the biological objects. Their different observable
states characterize their different behaviours. The behaviours actually define the different capacities
for actions on the state of the other agents. They are characterized symbolically by a set of attributes
categorizing these different capacities. The real significance of the attributes is a matter of convention de-
pending on the targeted realization (e.g., protein pathways, gene network) and will be addressed through
examples. For instance, the regulatory activity of a gene is observationally related to thresholds of RNA

transcripts concentration. At a given threshold, a gene regulates a given set of genes whereas at another
one the regulation applies to another set of genes (See Figure 1). The different thresholds define the
levels of gene activities leading to different regulatory activities. For a gene G, if we identify three dif-
ferent kinds of regulatory activities, the state of this gene will be defined by three different attributes
{Low,Mid,High} that characterize symbolically three possible behaviours. For example, G(Low) ex-
presses the fact that agent G is in state Low and then ready for the action corresponding to this attribute.
In some cases, a single state is sufficient to qualify the capacity for the action of the agent. Hence, the
agent is identified to its capacity. Then, G means that agent G is available.



A. Basso-Blandin and F. Delaplace 31

By contrast, G(Low) signifies that the state of the agent differs from Low (G when an agent has
a single capacity). It is worth to point out that, not being in a state defined by an attribute, does not
necessarily means that the agent state is in another attribute. Indeed, for open systems the state of the
agents could be of any sort that does not necessarily belong to the pre-defined attributes.

Two kinds of relations on attributes are defined: an order, ≺, meaning “less capacity than” and an
inequality, ≉, meaning “different capacity than”. Then Low ≺Mid implies that the capacity for the action
of Mid includes the capacity related to Low. Usually, in gene regulatory model [14], the set of genes
regulated at a given level will also be regulated at a higher level. By contrast, in signalling pathways,
the phosphorylation of a protein induces a conformational change of the structure leading to a specific
signalling potentiality not occurring in the unphosphosrylated conformation. Assuming that Phos and
UnPhos respectively represents the phosphorylated and the unphosphorylated conformations of protein
P, we have Phos≉UnPhos. Then, P(Phos) implies P(UnPhos) implicitly. The attributes and the relation
between attributes will be declared as follows: G ∶∶ {Low ≺ Mid,Mid ≺ High},P ∶∶ {Phos ≉ UnPhos}. A
simple set of attributes replaces the relations if unknown and no specific relation is set between attributes.

Finally, the description of the agent state is extended to a collection of agent states as follows: g1+

. . .+gn, meaning that all the agent states, gi, are observed concomitantly.

Trace, event, and history. A GUBS program describes a behaviour, its interpretation is based on the
observations of designed systems. Then, the issue is to formalize the notion of behaviour observa-
tion. To this end, we focus on the notion of trace that symbolically represents the evolution of some
quantities related to the agents of interest by the evolution of these agent states. A trace can be ob-
tained from experiments by establishing a correspondence between measurements of some quantities
(e.g., RNA transcript concentration) and attributes of agents. Formally, a trace, (Tt)1≤t≤m, is a finite se-
quence of agent state sets where each set contains the agent states at a given instant. For instance, the
evolution of a concentration evolving from Low to High for G may be described by the following trace
of 6 instants: ({G(Low)},{G(Low)},{G(Mid)},{G(Mid)},{G(Mid)},{G(High)}), .

1 2 3 4 5 6 7
However, all the events in a

trace are not necessarily relevant with regards to the behaviour description. For example, if we focus
on the evolution from Low to High for G , only three events are relevant for the behaviour description:
G(Low),G(Mid),G(High); without accounting the intermediary evolution stages occurring between.
Then, the behaviour recognition always emphasizes the key events in a trace entailing its contraction to
show their succession. Such a contracted series is called a consistent history of the expected behaviour.
Generally speaking, an history is related to a chronological division of a trace into periods where the
events of a period represent all the agent states occurring at each instant. Then, an history is a sequence
of these event sets. Given a trace (Tt)0≤t≤m, and a chronological division, (di)1≤i≤n, corresponding to a
sequence of the starting dates for each period, the history is a sequence of agent states occurring in each
period, (Hi)1≤i<n, such that each Hi =⋃di≤t<di+1 Tt . Hence, a consistent history is purposely made to point
the characteristic event steps of a behaviour description out.

In the previous example, a chronological division1 of the trace leading to an history consistent with
the expected evolution from Low to High for G is (1,3,6,7) which corresponds to following discrete
time-intervals ([1,2],[3,5],[6,6]). The resulting history is: ({G(Low)},{G(Mid)},{G(High)}). Notice that
(1,2,4,7) also fits. However, the chronological division (1,3,7) leads to an inconsistent history because
the level Mid is not seen as an intermediary event in the history (See also Figure 1 depicting the trace
and consistent history of the dependences). The formal definition of the consistency in the scope of the
semantics will be given in Section 2.1.

1Step 7 is inserted as an extra step to comply with the definition of the chronological division.



32 GUBS, a Behavioral Language for Synthetic Biology

time

q.

T
H

∅ ∅ {c} {c} ∅ ∅ {e} {e} ∅ ∅ ∅

c◯→ e

c
e

∅ {c} {e} ∅

time

q.

T
H

∅ ∅ {c} {c,e} {c,e} {e} ∅ ∅ ∅ ∅ ∅

c⊙→ e

c
e

∅ {c} {c,e} ∅

time

q.

T
H

∅ ∅ {c} {c} ∅ ∅ ∅ {e} {e} {e} {e}

c⊕→ e

c
e

∅ {c} {e} {e}

Figure 1: The curves represent the typical behaviours of the causal dependences based on the time
evolution of a quantity (q) related to agents c and e (e.g., RNA transcript for gene regulation). The
symbolic agent states c and e are here both associated to the maximal threshold of the quantity. The
symbolic trace (T ) is issued from a periodic sampling of the evolution by identifying whether c or e
occur. A consistent history (H) complying to a causal dependence definition is represented below the
trace. The first graphic illustrates the normal causality: c◯→ e, the second the persistent: c⊙→ e and the
third the remanent one: c⊕→ e.

Behavioral dependence and observation spot. A behavioural dependence identifies a relation be-
tween behaviours as a causal relation on events. Basically, the dependences should define the control of
agents on another. However, the definition of the causality also needs to tackle the openness of a system
by adapting it to this context. A seminal definition of the causality, proposed by Hume [17], is formu-
lated in terms of regularity on events: “[we may define] a cause to be an object, followed by another,
and where all the objects similar to the first are followed by objects similar to the second”. Although
this definition appropriately characterizes the notion of control, the openness of the system implies to
account the environment actions that possibly alter the causal dependence chain. For example, a pro-
grammed activation G1

+
Ð→G2 may be contradicted by an existing inhibition G3

−
Ð→G2 addressing the

same target gene G2. Hence, while G1 is active, it may appear that G2 will not be active because the reg-
ulatory strength of G3 is greater than the regulatory strength of G1, contradicting the expected activation
by a hidden inhibition. Hence, pushed to the limit, this consideration prevents the ability to describe any
behaviour causally because any programmed action can be unexpectedly preempted by an external one.

However, by assuming that the design always describes a new functionality which is not observed
naturally, the effect becomes the event indicating the effectiveness of a causal relation. As no cause
external to the description can trigger the effect, the over-determination by unknown causes is prevented,
then insuring that the program is the sole device entailing the expected effect in the biological system.
Hence, the definition of the causal dependence will be governed by the effect leading to the following
definition of the dependence: “if effect e would occur then c occurs”. Moreover, the scope of future (resp.
past) is narrowed to a closest future (resp. past) period, representing the fact that a response is always
expected in a given delay. Notice that, the proposed definition circumvents the afore mentioned problem



A. Basso-Blandin and F. Delaplace 33

illustrated by the hidden inhibition because if the effect does not occur the question of the existence of a
cause is meaningless. This definition is somehow equivalent to the causal claims proposed by Lewis [18]
in terms of counter-factual conditionals, i.e., “If c had not occurred, e would not have occurred”.

Three behavioural dependences are defined in GUBS: the normal denoted by ◯→, persistent by ⊙→,
and remanent by ⊕→. Informally, for normal dependence the cause precedes the effect providing the
effect is observed; for persistent dependence the cause still precedes the effect but it is maintained while
the effect is observed; and for remanent dependence, the effect is maintained despite the cause has dis-
appeared. These dependences symbolize common biological interactions. For instance, in genetic engi-
neering, the recombination enables the emergence of a regulated gene or an hereditary trait permanently.
A such mechanism typifies the remanent dependence in biology. The relations between gene expression
at steady state are symbolized by persistent dependence. The behavioural dependences are defined as
follows (see Section 2.1 for their formalization):

• c◯→ e: if e occurs then c occurs in the closest past.

• c⊙→ e: if e occurs then c occurs in the closest past and also currently.

• c ⊕→ e: if e occurs then, either e occurs in the closest past or the dependence complies to the
property of the normal dependence.

Figure 1 exemplifies the correspondence between experimental traces, symbolic traces and the history for
the causal dependences. All the dependences are extended to a set of causes and a set of consequences,
i.e., c1+ . . .+ cn ◯→ e1+ . . .+ em. For example, let us define the activation and the inhibition as follows:
g1

+
Ð→ g2 ≡ g1 ⊙→ g2,g1 ◯→ g2 and g1

−
Ð→ g2 ≡ g1 ⊙→ g2,g1 ◯→ g2, the program depicting a negative

regulatory circuit with two genes, i.e., g1
+
Ð→ g2,g2

−
Ð→ g1, is: {g1 ⊙→ g2,g1 ◯→ g2,g2 ⊙→ g1,g2 ◯→ g1}.

The observation spots describe the set of observations expected in a trace. For instance, observ-
ing that gene G is at level high is written Obs::G(High). As the activation of a dependence lies on
the observation of the effect, the observation spot is used to determine which effects must be necessar-
ily observed. For example, in the negative regulatory circuit, the characteristic observation spots are:
obs1::g1+g2,obs2::g1+g2.

Compartment & Context. A compartment encloses a set of dependences making them local to the
compartment. For instance, C{g1 ◯→ g2} describes a normal dependence occurring in compartment C.
The compartments are hierarchically organized and all the compartments are included in another ex-
cept for the outermost one. Although the compartments directly refer to the compartmentalized cellular
organization (e.g., nucleus, mitochondria), they are also used to emphasize the isolation of some inter-
actions by syntactically enclosing the dependences into a compartment. C.s refers to an agent state in
compartment C.

A context refers to a stimulus acting on the system, as environmental conditions or external sig-
nalling. The application of a context c to a set of dependences b is written [c]b where c is either a
variable or a constant. This means that dependences of b are triggered when the context c is present. For
instance, recently Ye et al. [26] explore the opto-genetics signalling to control the expression of target
transgenes. The blue-light induces the expression of transgene (tg) via a signalling cascade leading to
the binding of NFAT transcription factor to a specific promoter (PNFAT). The following program using a
context summarizes the process: [BlueLight]{NFAT ⊙→ tg}. A context can be decomposed to several
contexts, [k1, . . . ,kn]b, meaning that all the conditions must be met to trigger the dependences of b. The
interpretation is equivalent to a context cascading, [k1][k2] . . .[kn]b. Moreover, the observation spots and
the attribute definition are context insensitive.



34 GUBS, a Behavioral Language for Synthetic Biology

2.1 Semantics of GUBS

The interpretation of GUBS is a formula such that the set of all the models validating it defines all the
possible histories complying to the programmed behaviour. The interpretation is based on multi-modal
hybrid logic with the “Always” operator,H(A,@).

Hybrid logic. In what follows, we recall the formal syntax and semantics of hybrid logic. The hybdrid
logic [5, 6] offers the possibility to denominate worlds by new symbols called nominals. They will be
used in satisfaction modal operators @a; the formula @aφ asserts that φ is satisfied at the unique point
named by the nominal a identifying a particular truth values of a formula at this point. Given a set of
propositional symbol, PROP, a set of relational symbol REL, and a set of nominal NOM disjoint to
PROP, a set of well formed formula in the signature of ⟨PROP,NOM,REL⟩ is defined as follows:

φ ∶∶= ⊺ ∣ p ∣ a ∣ ¬φ ∣ φ ∧φ ∣ @aφ ∣ ⟨k⟩φ ∣ ⟨k⟩−φ ∣ Aφ .

with p ∈ PROP,a ∈ NOM and k ∈ REL. Moreover, the syntax is extended to other logical operators
classically 2: �,∨,→,[k],E.

The interpretation is carried out using the Kripke model satisfaction definition (Table 2.1).M,w⊩ φ

is interpreted as the satisfaction of a formula φ by a model M at world w where ⊩ stands for the
realizability relation (i.e., “is a model of”). A model validates a formula, denoted byM⊩ φ , if and only
if it is satisfied for all the worlds of the model (i.e., ∀w ∈DomM ∶M,w⊩ φ ).

Definition 1 (Kripke model). A Kripke model is a structureM = ⟨W,(Rk)k∈τ ,V ⟩ where W =DomM is a
non-empty set of worlds, τ ⊆REL a subset of relational symbols denoting the modalities, Rk ⊆W ×W,k ∈ τ

a relation of accessibility, V ∶ (PROP∪NOM)→ 2W an interpretation attributing to each nominal and
propositional variable a set of worlds such that any nominal addresses one world at most (i.e., ∀a ∈

NOM ∶ ∣V(a)∣ ≤ 1).

By convention, R stands for the union of the accessibility relation, R = (⋃k∈τ Rk).

A modal theory of a modelM regarding to a set of formulas F , THF(M), is the set of formulas of
F validated byM, i.e., THF(M) = {φ ∈ F ∣M⊩ φ}. KS(φ) denotes the set of all models validating φ ,
i.e., KS(φ) = {M ∣M⊩ φ}.

M,w⊩ ⊺ iff true
M,w⊩ a iff w ∈V(a), a ∈NOM∪PROP
M,w⊩ ¬φ iff M,w⊮ φ

M,w⊩ φ1∧φ2 iff M,w⊩ φ1 andM,w⊩ φ2

M,w⊩@aφ iff ∃w′ ∈W ∶M,w′ ⊩ φ and {w′} =V(a)
M,w⊩ ⟨k⟩φ iff ∃w′ ∈W ∶M,w′ ⊩ φ and wRkw′
M,w⊩ ⟨k⟩−φ iff ∃w′ ∈W ∶M,w′ ⊩ φ and w′Rkw
M,w⊩Aφ iff ∀w′ ∈W ∶M,w′ ⊩ φ

Table 1: Hybrid logic interpretation.

Semantics. A GUBS program is interpreted by a hybrid logic formula where the modal operators
characterize here the temporal observations on an history: [ ] means “observed in all the closest fu-
tures” and ⟨ ⟩ means “observed in a possible closest future at least” (resp. ⟨ ⟩−,[ ]− for the closest
past). Moreover, we assume that the accessibility relations, (Rk)k∈τ , are indexed by the non empty

2 � = ¬⊺,ψ ∨φ = ¬(¬ψ ∧¬φ),ψ → φ = ¬(ψ ∧¬φ),[k]φ = ¬⟨k⟩¬φ ,Eφ = ¬A¬φ .



A. Basso-Blandin and F. Delaplace 35

parts of the set of all the contexts of a program P, denoted by KP (i.e., τ = 2KP ∖ {∅}). Then, a non-
empty set of contexts ,∅ ⊂ K ⊆ KP, is a modality, i.e., ⟨K⟩,[K] with ⟨ ⟩ = ⟨∅⟩ by convention. Let
⟨W,●,Λ⟩ be the set of words W with the concatenation operation and the neutral element, the empty
word Λ and FH the set of well-formed formulas ofH(A,@), the semantics is defined by four functions:
⟦.⟧ ∶P→ FH,⟦.⟧P ∶P→W→ 2W→ FH,⟦.⟧B ∶B→W→ FH,⟦.⟧R ∶R→W→ FH, where P,B,R respectively
stand for the set of GUBS programs, the set of agent state set and the set of relations on attributes. ⟦.⟧
initiates the interpretation. Table 2.1 defines these functions. For instance, the program of the negative

⟦{b}⟧ = A(⟦b⟧P (Λ)(∅))

⟦ε⟧P (C)(K) = ⊺
⟦b1,b2⟧P (C)(K) = ⟦b1⟧P (C)(K)∧⟦b2⟧P (C)(K)
⟦s1 ◯→ s2⟧P (C)(K) = ⟦s2⟧B (C)→ ⟨K⟩− (⟦s1⟧B (C))
⟦s1 ⊙→ s2⟧P (C)(K) = ⟦s2⟧B (C)→ (⟦s1⟧B (C)∧ ⟨K⟩− (⟦s1⟧B (C)))
⟦s1 ⊕→ s2⟧P (C)(K) = ⟦s2⟧B (C)→ ((⟨ ⟩− ⟦s2⟧B (C))∨(⟨K⟩− ⟦s1⟧B (C)))
⟦g1,⋯,gn ∶ {r1,⋯,rm}⟧P (C)(K) =⋀n

i=1⋀m
j=1 ⟦r j⟧R (C.gi)

⟦l::s⟧P (C)(K) = @l ⟦s⟧B (C)
⟦C′{b}⟧P (C)(K) = ⟦b⟧P (C.C′)(K)
⟦[K]{b}⟧P (C)(K′) = ⟦b⟧P (C)(K∪K′)

⟦s1+ . . .+ sn⟧B (C) =⋀n
i=1 ⟦si⟧B (C)

⟦C′.s⟧B (C) = ⟦s⟧B (C.C′)
⟦g(a)⟧B (C) =C.ga
⟦g(a)⟧B (C) = ¬C.ga
⟦g⟧B (C) =C.g
⟦g⟧B (C) = ¬C.g

⟦a1 ≺ a2⟧R (g) = ga2 → ga1

⟦a1 ≉ a2⟧R (g) = ga1 → ¬ga2 ∧ga2 → ¬ga1

⟦a⟧R (g) = ⊺

Table 2: Semantics of GUBS. In the definition, a represents an attribute, b a behaviour, g an agent, s a set
of agent states or an agent state, r a relation on attributes, C a compartment, K a set of contexts and b a
set of behaviours (i.e., contexts, compartments, dependences, attributes, observation spots).

regulatory network, {g1 ⊙→ g2,g1 ◯→ g2,g2 ⊙→ g1,g2 ◯→ g1,obs1 ∶∶ g1+g2,obs2 ∶∶ g1+g2}, is translated
into the following formula:

A( g2→ ((⟨ ⟩−g1)∧g1)∧¬g2→ (⟨ ⟩−¬g1)∧g1→ ((⟨ ⟩−¬g2)∧¬g2)∧¬g1→ (⟨ ⟩−g2)∧
@obs1(g1∧¬g2)∧@obs2(¬g1∧g2)

Consistent history. Now, we formally define the consistency of the history with regards to models.
An history is assimilated to a path in a model ending by a world labelled with an observation spot label.
The set of Kripke-models validating the interpretation of a program P, KS(⟦P⟧), not only contains all
the consistent histories, but also the possible histories corresponding to behavioural alterations due to
external perturbations. Thus, the compilation generates a device such that all the models validating
its interpretation integrate all the observations related to the program, including the consistent and the
inconsistent ones.

More precisely, the consistency lies on the identification of the largest number of “relevant” events
characterizing a complete causal chain described in a program. As an history is also a model, a consistent



36 GUBS, a Behavioral Language for Synthetic Biology

history should validate the interpretation of the complete causal chain. The dependence formula set FP

of a program P corresponds to a set of formulas where each formula is the interpretation of a dependence
taken separately with the attributes related to the involved agents. By definition of the semantics, any
model validating the interpretation of a program also validates each formula of this set. The consistency
of an history is then based on the validated formulas of this set by this history. An history MH is
consistent for P if and only if no other modal theory of histories based on FP (i.e., THFP(M) with
M as an history), ending with the same labelled world includes the modal theory of this history (i.e.,
THFP(MH) ⊈ THFP(M)).

3 Compilation

At compile phase, a program is transformed to a structure (e.g., a DNA sequence) while inserted in a
vector cell, should behave according to the programmed specification. The structure will result to an
assembly of several devices stored in a library of components (e.g., parts registry). As the design relates
here to a behavioural/functional description, we need to bridge the gap between structural and functional
description. This stage is called the functional synthesis. The issue is to select a set of components whose
assembly preserves the behaviour of the program. To achieve this goal, a GUBS program is associated to
each component to describe its behaviour. Thereby, the component assembly corresponds to a program
assembly preserving the behaviour of the compiled program. Preserving a behaviour is laid on a property
called the behavioural inclusion formalizing the fact that the characteristic observational traits of the
specified function must be recognized in traces related to the device experiments. In other words, we
can exhibit histories consistent with the programmed behaviour from histories consistent with the device
behaviour description. The behavioural inclusion is defined from the interpretation of the programs, as a
logical consequence (Definition 2).

Definition 2 (Behavioral inclusion). A program Q behaviourally includes another program P, if and only
if the interpretation of the latter is a logical consequence of the interpretation of the former:

P ^Q ≜ ∀M ∶M⊩ ⟦Q⟧ Ô⇒ M⊩ ⟦P⟧ .

The behavioural inclusion is a pre-order3 such that the empty program, denoted by ε , is a minimum,
meaning that a program with no behaviour can be observed in all traces. And a program whose inter-
pretation equals �, is a maximum. Figure 2 illustrates the behavioural inclusion on a particular model.

Observability. It may arise that no history will be consistent with a programmed behaviour. For ex-
ample, the program {Obs ∶∶ g,g⊙→ g} is not observable in a trace. Indeed, its interpretation yields to the
following formula: A((@Obsg)∧ (g→ ((⟨ ⟩−¬g)∧¬g))), false in all models because world Obs must
both satisfies g and ¬g by definition of the persistent dependence. A GUBS program is said observable
if and only if the formula resulting from its interpretation is validated by one model at least. Hence, the
interpretation of an unobservable program is an antilogy. An unobservable program can be assimilated to
a programming error. The detection of such errors can be carried out at compile-phase by using tableaux
method [9] that automatically determines whether a formula is satisfiable in a model. Indeed GUBS uses
fragment of HL(@) logic which is decidable. Notice that an observable program always behaviourally
includes an observable program (Proposition 1).

3A reflexive and transitive relation.



A. Basso-Blandin and F. Delaplace 37

P Q
{g1 ◯→ g3, {[k1]{g0 ◯→ g1},
[k3]{g3 ◯→ g4}, [k2]{g0 ◯→ g2},
[k4]{g3 ◯→ g5}, g1 ◯→ g3,
[k6]{g8 ◯→ g9}, g2 ◯→ g5,
[k7]{g8 ◯→ g10}, [k3]{g3 ◯→ g4},
g9 ◯→ g11, [k4]{g3 ◯→ g5},
g10 ◯→ g11, g6 ◯→ g8,
a ∶∶ g4} [k5]{g6 ◯→ g7},

[k6]{g8 ◯→ g9},
[k7]{g8 ◯→ g10},
g9 ◯→ g11,
g10 ◯→ g11,
a ∶∶ g4,b ∶∶ g5,c ∶ g11}

a : b :

g0

g1

g2

g3

g4 g5

g6

g7

c :

g8

g9 g10

g11

k1
k2

k3 k4

k5

k6 k7

Figure 2: Behavioral inclusion example. Consistent histories of P necessary contains worlds coloured in
gray.

Proposition 1. A program behaviourally included in an observable program is observable: ∀P,Q ∈ P ∶
obsQ∧P ^Q Ô⇒ obsP.

3.1 Functional synthesis

The functional synthesis is the operation whereby biological components of a library are selected and
assembled to generate a device behaviourally including the designed function. The behaviour of each
component is described by a GUBS program. At its simplest, the functional synthesis could be considered
as a proper substitution of variables by constants. For example, in the following activation {G1

+
Ð→ g2},

g2 will be substituted by gene G2, providing that component Q describes the activation {G1
+
Ð→ G2}.

However, more complex situations may arise during component selection. For example, if the activation
G1

+
Ð→G2 occurs with another regulation only i.e., Q = {G1

+
Ð→G2,G3

+
Ð→G4} then the selection of Q

adds a supplementary regulation.
Formally, a finite substitution is a set of mappings, σ = {vi/bi}i, on variables and constants such that

a variable can be substituted by a variable or a constant, and a constant can only substituted by itself4.
For instance, we have: {Obs::G(l)+b2,b1 ◯→G(l)}[{b1 ↦ B1,b2 ↦ B2, l ↦ Low}] = {Obs::G(Low)+

B2,B1 ◯→G(Low)}.

Functional synthesis rules. The functional synthesis is defined by rules (Table 3) governing the com-
ponent assembly. Only the dependences and the attributes will be functionally synthesize. The observa-
tion spots are considered as annotations used for the compilation process. To insure the correctness, each
transform must preserved the seminal behaviour. Hence, each program resulting from the application
of a rule must behaviourally includes the previous one. Formally, the functional synthesis is modelled
by a relation on programs denoted by �, i.e., Q�σ P where P is the initial program and Q the trans-
formed one, such that each rule insures that: Q�σ P is correct with regards to a substitution σ , that
is P[σ] ^ Q[σ] and Q[σ] is observable. Also notice that the behavioural inclusion is preserved by
substitution (Proposition 2).

Proposition 2. For all substitutions σ , we have: P ^Q Ô⇒ P[σ] ^Q[σ].

4 Pσ or P[σ] represents its application on program P and identity substitutions are omitted.



38 GUBS, a Behavioral Language for Synthetic Biology

Table 3 describes the functional synthesis rules5. Γ is a set of components representing the library.
P ⊆Asm Q denotes the fact that program Q corresponds to an assembly including P i.e., Q = (Q1,P,Q2)

where Q1 or Q2 may be an empty program. Rule (Inst.) describes the fact that an observable instance of a

- INSTANTIATION -

Q[σ] ⊆Asm P[σ] obs(Q[σ]) Q ∈ Γ
(Inst.)

Q�σ P

- COMMUTATIVITY, CONTRACTION -

Q�σ P,P′
(Com.)

Q�σ P′,P
Q�σ P

(Cont.)
Q�σ P,P

- ASSEMBLY -

Q�σ P Q′ �σ ′ P′ σ ∣VA(P)∩VA(P′) = σ
′∣VA(P)∩VA(P′) obs(Q[σ],Q′[σ ′])

(Asm.)
Q,Q′ �σ∪σ ′ P,P′

Table 3: Functional synthesis rules

part of a component in the library is functionally synthesized. Rule (Com.) expresses the commutativity
of the assembly. Rule (Cont.) contracts the redundant formulation of programs. Finally, Rule (Asm.)
details the conditions for an assembly of two components, each representing a functional synthesis of a
part of the designed function. A detailed example of their use on a real case is given in Section 4.

Theorem 1. The functional synthesis rules (Table 3) are correct.

- DEPENDENCES - Q�σ S1 ⊙→ S2,S2 ⊙→ S3,∆ (Trans.)
Q�σ S1 ⊙→ S3,∆

Q�σ S1 ⊙→ S2,∆ (N2P.)
Q�σ S1 ◯→ S2,∆

Q�σ S1 ◯→ S2,∆ (R2N.)
Q�σ S1 ⊕→ S2,∆

- AGENT STATES -
S1+S2 (SCom.)
S2+S1

S+ s (SCont.)
S+ s+ s

S+ s (Incl.)
S

Table 4: Rules for the dependences and the agent states. Si stands for a collection, s1+ . . .+ sn, of agent
states, including negation, and ∆ stands for the rest of the program.

Another set of rules, more specifically devoted to dependences (Table 4), defines the alternate pos-
sibilities to express similar behaviours. The table also includes the rules for agent sets. Rule (Trans.)
expands the chain of the persistent dependences by adding intermediary dependence to refine a pathway.
Rule (N2P.) transforms a normal dependence to a persistent one since the latter is a normal dependence
with an additional property. And Rule (R2N.) transforms a remanent dependence to a normal depen-
dence, since normal dependence is also remanent dependence with a repetition of the effect restricted
to one step. According to these rules, all the dependence chains can be implemented with persistent
dependences.

A possible algorithm for the assembly could be based on a combinatorial application of the rules.
However, such algorithm may reveal inefficient in practice. The conditions for an efficient algorithm of
compilation should be based on an internal representation of a program, as a set of contextualized de-
pendences with attributes, {{A,[K]S1 ⍟→ S2}}, such that A,K,S1,S2 are respectively: a set of attributes

5Rules are of the form:
hypothesis
conclusion

.



A. Basso-Blandin and F. Delaplace 39

specification related to the agent involved in the dependency, a set of contexts and sets of agent states.
Any program can be encoded under this representation from a normal form of the program (not de-
tailed here). Accordingly, the problem solved by the compilation algorithm can be defined as follows
(Definition 3):

Definition 3 (Functional Synthesis Problem). Let Γ = {Qi}1≤i≤n be set where each Qi is a set of contex-
tualized dependences with attributes and P a set of contextualized dependences with attribute, can we
find the smallest observable subset of components C ⊆ Γ, such that there exists a substitution σ so that
its application on the components of C form a cover of P[σ],i.e., ∃σ ∶ P[σ] ⊆⋃Q j∈C Q j[σ]∧obsC.

As the set cover problem is reducible to this problem, the problem is NP-complete. Then, the reso-
lution is oriented towards a heuristic algorithm.

4 Example

Tetr LuxR

AHL

LuxR LaclM1

Cl Lacl

GFP
+

+ + +

+

−

−

−

Figure 3: The band detector regulatory circuit.

The compilation process is here exemplified in a real case by the design of the Band Detector pro-
posed in [2]. This example explains how from a simple abstract definition of the functionality a complex
design can be synthesized. Accordingly, GUBS may be used to describe a behaviour with a high-level of
programming well as a low-level, detailing the components involved in the process. Although, the func-
tional synthesis is not yet performed automatically, it is worth to point out that the different transforms of
the high-level program to obtain the final design complies to rules of Tables 3, 4, insuring its correctness
and so, its functional safety in the context of open system.

The design aims at forming patterns of different colours in a population of bacteria exploiting the
quorum sensing phenomenon by staining with fluorescent protein (GFP). The amount of molecules of
interest that receives a cell depends on its relative position to the cell diffusing the molecule of interest
controlled by an external event: more the cell is far from the source, the fewer is the amount of molecules
received. The activation or inhibition of the fluorescent protein due to the concentration will distinguish
the bands surrounding the source. In the original design, the protein does not fluoresce in an intermediary
band.

From a computing standpoint, we can assimilate the design to a message transmission coupled to a
sensor/actuator responsible for fluorescence, then leading to a concise GUBS program presented below:
the diffusive molecule is AHL which production is controlled by a context and the observation is applied
on GFP. Two categories of cells are defined: the Sender and the Receiver. Therefore, two GUBS programs
identify the two cell types.

Sender ={ AHL:{low ≉ mid ≉ high},[Light]{detect ◯→AHL(low),detect ◯→AHL(mid),detect ◯→AHL(high)}}

Receiver={ AHL(low)◯→GFP,AHL(mid)◯→GFP,AHL(high)◯→GFP,obs1::GFP,obs2::GFP}



40 GUBS, a Behavioral Language for Synthetic Biology

Figure 3 describes the original genetic circuit used in the article. The diffusible molecule is the
constant AHL. The gene LuxR has three activation thresholds: at Level 2, it activates both LaclM1 and
Cl, at level 1, the amount of AHL only allows activation of Cl, and finally, at level 0, none are activated.
We show that from the sender-receiver program, we obtain the original design by applying the afore

Q1={[Light]{detect ◯→Tetr}}
Q2={Tetr

+Ð→ Luxl}
Q3={AHL:{low ≉ mid ≉ high},Luxl +Ð→AHL(low),Luxl +Ð→AHL(mid),Luxl +Ð→AHL(high)}
Q4={AHL:{low ≉ mid ≉ high},LuxR:{low ≉ {mid ≺ high}},AHL(mid)◯→ LuxR(mid),AHL(high)◯→ LuxR(high)}
Q5={LuxR:{low ≉ {mid ≺ high}},LuxR(mid) +Ð→ Cl,LuxR(high) +Ð→ Cl+LaclM1}
Q6={Cl

−Ð→ Lacl}
Q7={LaclM1

−Ð→GFP}
Q8={Lacl

−Ð→GFP}

Table 5: Part of the database dedicated to the Band Detector.

mentioned rules with an appropriate selection of components. The regulations of Figure 3 are described
in GUBS program (Table 5) translating in term of dependences and relations on their attributes their
regulatory action. We focus here on some illustrative steps of the sender program compilation. The
complete functional synthesis is given in Appendix. The compilation consists in finding the appropriate
components whose assembly behaviourally includes the sender-receiver program, with the particularity
that the diffusive molecule must be the same in both programs. To ease compilation follow-up, we label
each dependency of the sender-receiver program (Table 6). Let us consider P11 whose compilation is
closed to P12 and P13. Notice that P11 cannot be directly instantiated with any component because, in the
one hand, the component Q1 contains a context like P11 but applied on gene Tetr instead of AHL, and on
the other hand Q3 has the AHL molecule but no context is defined. So, to fit P11 with the components Q1,
Q2 and Q3, first, the normal dependence is converted to persistent one (Rule (N2P.)).

Q1,Q2,Q3 �σ {[light]{detect ⊙→ AHL(low)}}
(N2P.)

Q1,Q2,Q3 �σ P11

Thereby, the resulting dependence can be separated to match the assembly Q1,Q2,Q3 by applying
(Trans.) rule twice. v1 and v2 are fresh variables.

Q1,Q2,Q3 �σ P′11 = {[light]{detect ⊙→ v2,v2 ⊙→ v1,v1 ⊙→ AHL(low)}
(Trans.)

Q1,Q2,Q3 �σ [light]{detect ⊙→ v1,v1 ⊙→ AHL(low)}
(Trans.)

Q1,Q2,Q3 �σ [light]{detect ⊙→ AHL(low)}

Finally, we obtain a new program program P′11 compatible with Q1,Q2,Q3, and each variable is substi-
tuted by a constant (biological element) with the application of Rule (Inst.). For P′11 we have:

Q1,Q2,Q3[σ = {light/Light,v1/Tetr,v2/Luxl}] ⊆Asm P′11[σ] obs(Q1,Q2,Q3[σ])
(Inst.)

Q1,Q2,Q3 �σ [light]{detect ⊙→ v1,v1 ⊙→ v2,v2 ⊙→ AHL(low)}

By following this scheme for P12 and P13, we respectively obtain P′12 and P′13. The final assembly corre-
sponds to the functional synthesis of Sender program.

Q1,Q2,Q3 �σ P′11

⋮

Q1,Q2,Q3 �σ P11

Q1,Q2,Q3 �σ P′12

⋮

Q1,Q2,Q3 �σ ′ P12

Q1,Q2,Q3 �σ P′13

⋮

Q1,Q2,Q3 �σ ′′ P13 (Asm.)
Q1,Q2,Q3 �σ∪σ ′∪σ ′′ P11,P12,P13



A. Basso-Blandin and F. Delaplace 41

Sender Receiver
P11 = {[Light]{detect ◯→AHL(low)}} P21 = {AHL(low)◯→GFP}
P12 = {[Light]{detect ◯→AHL(mid)}} P22 = {AHL(mid)◯→GFP}

P13 = {[Light]{detect ◯→AHL(high)}} P23 = {AHL(high)◯→GFP}

with {AHL:{low ≉ mid ≉ high}} as attributes of AHL.

Table 6: Separation of the dependences.

In conclusion, the functional synthesis generates the original genetic circuit (Figure 3) from the sender
program. A similar approach can be also applied to obtain the receiver program (see the complete proof
in Appendix 6).

Sender = {AHL:{low ≉ mid ≉ high},[Light]{detect ◯→Tetr},

Tetr
+
Ð→ Luxl,Luxl

+
Ð→AHL(low),Luxl

+
Ð→AHL(mid),Luxl

+
Ð→AHL(high)}

5 Related works

Several domain specific languages have been developped to model and simulate biological systems.
Based on process-calculus, seminally used to model process concurrency, several rule-based languages
model protein interactions [21, 13, 10]. Another approach is based on logic, such as BIOCHAM [8] that
formalizes the temporal properties of a biological system. As these languages are dedicated to simulation,
the objective is to close the systems because the simulations need to integrate all the characteristics of
the analysed systems. By comparison, the purpose of GUBS is different since the issue is to represent
the behaviour of a synthetic device in an organism, leading to translate the notion of the openness of
biological systems by the semantics of the language.

In synthetic biology, the structural description languages [12, 20, 4] allow to specify well-formed
genome sequences by grammars modularly and hierarchically. Although the sequence description is
necessary, the programmer must previously anticipate the behaviour of the device to conceive. Besides,
the behavioural design is not included in the program while it initially motivates it. In GUBS, the design
is driven by a behaviour description and sequence selection is postponed at compile phase. Moreover,
the size of the structural description is also subject to a combinatorial explosion when the complexity of
programmed systems increases.

Amorphous programming language has been also investigated to specify the biological devices at the
scale of cell colony, here considered as a possible computing medium for amorphous program. J. Beal [3]
demonstrates the proof of concept of this approach in PROTO, showing the feasibility of an automatic
compile chain. In GUBS, the compile chain is based on rewriting rules whose correctness have been
formally proved with regards to a semantics describing the constraints of an open system.

Developing a language for biological systems actually involves to consider several unknown due to
their openness: lack of knowledge on all the interactions in biological circuits and imprecise definition
of initial conditions. We only know the result of a chain of effects. Then, the major constraint for
programming open system seems to be: how to provide an expressive language to describe the dynamics
of such systems, but simple enough to capture the essence of the biological questions in a small program
in order to allow programming of large biological systems with a program humanly achievable.

In the future, the design in synthetic biology will certainly require different programming layouts
based on different paradigms addressing the integration levels of biological systems. In a tower of lan-
guages, starting from a language with collective operations on cell colony, using an amorphous program-



42 GUBS, a Behavioral Language for Synthetic Biology

ming language as Proto [3] or a language for dynamical systems with dynamical structures as MGS [15],
and ending by a structural description programmed in a grammar based language, GUBS language occu-
pies the intermediary level dedicated to cell entity behavioural programming.

6 Conclusion

In GUBS language, we propose to characterize a programming paradigm abstracting the molecular inter-
actions in the context of open system, that differs to an approach dedicated to biological system model-
ing. Accordingly, the interactions are symbolized by causal dependences whose interpretation is driven
by effect. We have demonstrated the proof-of-concept of the compilation based on rewriting rules, and
illustrated it on a realistic example. The perspective of this work is to find an efficient compilation al-
gorithm. Identifying the biological parameters guiding the component selection should be a key issue in
this undertaking.

Acknowledgements. The funding for most of this work is granted by the ANR SYNBIOTIC (ANR BLAN

0307 01) and we would like to thank the colleagues of this project for their fruitful discussions.

References

[1] PJ Ashenden (2008): The Designer’s Guide to VHDL. Morgan Kaufmann Publishers.

[2] S. Basu, Y. Gerchman, C. H Collins, F. H Arnold & R. Weiss (2005): A Synthetic Multicellular System for
Programmed Pattern Formation. Nature 434(7037), pp. 1130–4, doi:10.1038/nature03461.

[3] J. Beal, T. Lu & R. Weiss (2011): Automatic Compilation from High-Level Biologically-
Oriented Programming Language to Genetic Regulatory Networks. PLoS ONE 6(8), p. e22490,
doi:10.1371/journal.pone.0022490.

[4] L. Bilitchenko, A. Liu, S. Cheung, E. Weeding, B. Xia, M. Leguia, J C. Anderson & D. Densmore (2011):
Eugene–A Domain Specific Language for Specifying and Constraining Synthetic Biological Parts, Devices,
and Systems. PloS one 6(4), p. e18882, doi:10.1371/journal.pone.0018882.

[5] P. Blackburn, J. F. A. K. van Benthem & F. Wolter (2006): Handbook of Modal Logic, Volume 3 (Studies in
Logic and Practical Reasoning). Elsevier Science Inc., doi:10.1016/S1570-2464(07)80017-6.

[6] T. Braüner (2010): Hybrid Logic and Its Proof-Theory. Springer, doi:10.1007/978-94-007-0002-4.

[7] Y. Cai, M. W Lux, L. Adam & J. Peccoud (2009): Modeling Structure-function Relationships
in Synthetic DNA Sequences Using Attribute Grammars. PLoS Computational Biology 5(10),
doi:10.1371/journal.pcbi.1000529.

[8] L. Calzone, F. Fages & S. Soliman (2006): BIOCHAM: An Environment for Modeling Biological Sys-
tems and Formalizing Experimental Knowledge. Bioinformatics (Oxford, England) 22(14), pp. 1805–7,
doi:10.1093/bioinformatics/btl172.

[9] S. Cerrito & M. C. Mayer (2011): A Tableaux Based Decision Procedure for a Broad Class of Hybrid
Formulae with Binders. In: Proceedings of the 20th International Conference on Automated Reasoning with
Analytic Tableaux and Related Methods, TABLEAUX’11, Springer-Verlag, pp. 104–118, doi:10.1007/978-
3-642-22119-4 10.

[10] F. Ciocchetta & J. Hillston (2009): Bio-PEPA: A Framework for the Modelling and Analysis of Biological
Systems. Theoretical Computer Science 410(33-34), pp. 3065–3084, doi:10.1016/j.tcs.2009.02.037.

[11] K. Clancy & C. A Voigt (2010): Programming Cells: Towards an Automated Genetic Compiler. Current
Opinion in Biotechnology 21(4), pp. 581–572, doi:10.1016/j.copbio.2010.07.005.

http://dx.doi.org/10.1038/nature03461
http://dx.doi.org/10.1371/journal.pone.0022490
http://dx.doi.org/10.1371/journal.pone.0018882
http://dx.doi.org/10.1016/S1570-2464(07)80017-6
http://dx.doi.org/10.1007/978-94-007-0002-4
http://dx.doi.org/10.1371/journal.pcbi.1000529
http://dx.doi.org/10.1093/bioinformatics/btl172
http://dx.doi.org/10.1007/978-3-642-22119-4_10
http://dx.doi.org/10.1007/978-3-642-22119-4_10
http://dx.doi.org/10.1016/j.tcs.2009.02.037
http://dx.doi.org/10.1016/j.copbio.2010.07.005


A. Basso-Blandin and F. Delaplace 43

[12] M. J Czar, Y. Cai & J. Peccoud (2009): Writing DNA with GenoCAD. Nucleic Acids Research 37(Web Server
issue), pp. W40–7, doi:10.1093/nar/gkp361.

[13] V. Danos, J. Feret, W. Fontana, R. Harmer & J. Krivine (2007): Rule-Based Modelling of Cellular Signalling.
In: CONCUR, pp. 17–41, doi:10.1007/978-3-540-74407-8 3.

[14] F. Delaplace, H. Klaudel & A. Cartier-Michaud (2010): Discrete Causal ModelView of Biological Networks.
In: Proceedings of the 8th International Conference on Computational Methods in Systems Biology - CMSB
’10, ACM Press, New York, New York, USA, pp. 4–13, doi:10.1145/1839764.1839767.

[15] J.L. Giavitto, O. Michel, J. Cohen & A. Spicher (2005): Computations in Space and Space in Computations.
In: Unconventional Programming Paradigms, Lecture Notes in Computer Science 3566, Springer Berlin /
Heidelberg, pp. 97–97, doi:10.1007/11527800 11.

[16] D.G. Gibson, J.I. Glass, C. Lartigue, V.N. Noskov, R.Y. Chuang, M.A. Algire, G.A. Benders, M.G. Montague,
L. Ma, M.M. Moodie & Others (2010): Creation of a Bacterial Cell Controlled by a Chemically Synthesized
Genome. Science 329(5987), p. 52, doi:10.1126/science.1190719.

[17] D. Hume (1739): A Treatise of Human Nature, Being an Attempt to Introduce the Experimental Method of
Reasoning into Moral Subjects. unknow, doi:10.1037/12868-000.

[18] D. Lewis (2000): Causation as Influence. The Journal of Philosophy 97(4), pp. 182–197,
doi:10.2307/2678389.

[19] T. K Lu, A. S Khalil & J. J Collins (2009): Next-generation Synthetic Gene Networks. Nature Biotechnology
27(12), pp. 1139—-1150, doi:10.1038/nbt.1591.

[20] M. P. Pedersen (2009): Towards Programming Languages for Genetic Engineering of Living Cells. Journal
of the Royal Society, Interface 6 Suppl 4, pp. S437–450, doi:10.1098/rsif.2008.0516.focus.

[21] C. Priami, A. Regev, E. Shapiro & W. Silverman (2001): Application of a Stochastic Name-passing Calculus
to Representation and Simulation of Molecular Processes. Information Processing Letters 80(1), pp. 25–31,
doi:10.1016/S0020-0190(01)00214-9.

[22] P. E M Purnick & R. Weiss (2009): The Second Wave of Synthetic Biology: From Modules to Systems. Nature
Reviews. Molecular Cell Biology 10(6), pp. 410–22, doi:10.1038/nrm2698.

[23] S. Regot, J. Macia, N. Conde, K. Furukawa, J. Kjellén, T. Peeters, S. Hohmann, E. de Nadal, F. Posas &
R. Solé (2010): Distributed Biological Computation with Multicellular Engineered Networks. Nature, pp.
2–6, doi:10.1038/nature09679.

[24] D. E. Thomas & P. Moorby (1998): The Verilog Hardware Description Language. Kluwer Academic Pub-
lishers, doi:10.1007/978-1-4615-3992-6.

[25] P. Umesh, F. Naveen, C.U.M. Rao & S.A. Nair (2010): Programming Languages for Synthetic Biology.
Systems and Synthetic Biology 4(4), pp. 265–269, doi:10.1007/s11693-011-9070-y.

[26] H. Ye, M. Daoud-El Baba, R-W. Peng & M. Fussenegger (2011): A Synthetic Optogenetic Transcription
Device Enhances Blood-glucose Homeostasis in Mice. Science (New York, N.Y.) 332(6037), pp. 1565–8,
doi:10.1126/science.1203535.

http://dx.doi.org/10.1093/nar/gkp361
http://dx.doi.org/10.1007/978-3-540-74407-8_3
http://dx.doi.org/10.1145/1839764.1839767
http://dx.doi.org/10.1007/11527800_11
http://dx.doi.org/10.1126/science.1190719
http://dx.doi.org/10.1037/12868-000
http://dx.doi.org/10.2307/2678389
http://dx.doi.org/10.1038/nbt.1591
http://dx.doi.org/10.1098/rsif.2008.0516.focus
http://dx.doi.org/10.1016/S0020-0190(01)00214-9
http://dx.doi.org/10.1038/nrm2698
http://dx.doi.org/10.1038/nature09679
http://dx.doi.org/10.1007/978-1-4615-3992-6
http://dx.doi.org/10.1007/s11693-011-9070-y
http://dx.doi.org/10.1126/science.1203535


44 GUBS, a Behavioral Language for Synthetic Biology

program ∶∶= {behaviour}
behaviour ∶∶= behaviour,behaviour ∣ behaviour
behaviour ∶∶= compartment ∣ dependence ∣ context ∣ observation ∣ defattributes
compartment ∶∶= varconstant {behaviour}
observation ∶∶= varconstant::worlds
context ∶∶= [varconstants] {behaviour}
dependence ∶∶=worlds◯→worlds ∣ worlds⊙→worlds ∣ worlds⊕→worlds
world ∶∶= attribute ∣ varconstant(attribute) ∣ varconstant.world
worlds ∶∶=worlds+world ∣ world
attribute ∶∶= varconstant ∣ varconstant
defattribute ∶∶= varconstants ∶ attspec
attspec ∶∶= defspec{varconstants} ∣ {attrels}
defspec ∶∶= exclusion ∣ inclusion
attrels ∶∶= attrels,attrel ∣ attrel
attrel ∶∶= varconstant ≺ varconstant ∣ varconstant ≉ varconstant ∣ varconstant
varconstant ∶∶=word ∣ Word
varconstants ∶∶= varconstants,varconstant ∣ varconstant

Table 7: Syntax of GUBS program

Appendix

Proofs

Proposition 1. By contradiction, assume that P is unobservable, then there does not exist a model satis-
fying the formula. As Q is observable, we deduce that there exists models satisfying Q, but no restricted
model must satisfy P, that contradicts the definition of the behavioural consequence.

Proposition 3. Let ψ ∈ FH be a formula, let σ ∶ (NOM∪PROP∪REL)→ (NOM∪PROP∪REL) be
a substitution on nominals, variables and relational symbols, let M = ⟨W,(Rk)k∈τ ,V ⟩ be a model, we
define the model M̃ = ⟨W,(R̃k)k∈τ̃ ,Ṽ ⟩ fromM as follows:

1. ∀a ∈NOM∪PROP,∀w ∈W ∶w ∈V(aσ) ⇐⇒ w ∈ Ṽ(a)

2. ∀k ∈ τ̃ ∶wRkσ w′ ⇐⇒ wR̃kw′;

we have:M,w⊩ψσ ⇐⇒ M̃,w⊩ψ.

Proof. The proof is defined by induction on the formula:
without loss of generality, we assume that ψ is in Negation Normal Form where negation occurs only

immediately before variables only. Recall that every formula can be set in Negation Normal Form.
• M,w⊩ a ⇐⇒ M̃,w⊩ a,a ∈ PROP∪NOM. By (1), we have w ∈V(aσ) ⇐⇒ w ∈ Ṽ(a) leading

to the equivalence.

• M,w ⊩ ¬a ⇐⇒ M̃,w ⊩ ¬a. By definition of the realizability relation, this is equivalent to:
M̃,w⊮ a ⇐⇒ M̃,w⊮ a. By (1), this equivalence holds.

• M,w⊩ (ψ1∧ψ2)σ ⇐⇒ M̃,w⊩ (ψ1∧ψ2). By definition of the substitution, we have to prove:
M,w⊩ (ψ1σ)∧(ψ2σ) ⇐⇒ M̃,w⊩ (ψ1∧ψ2). By definition of the realizability relation we can
formulate the property equivalently as follows:

M,w⊩ (ψ1σ)∧M̃,w⊩ (ψ2σ) ⇐⇒ M̃,w⊩ψ1∧M̃,w⊩ψ2.



A. Basso-Blandin and F. Delaplace 45

By induction hypothesis, we have: M̃,w ⊩ (ψ1σ) ⇐⇒ M̃,w ⊩ ψ1 and M̃,w ⊩ (ψ2σ) ⇐⇒

M̃,w⊩ψ2, implying the previous condition.

• M,w⊩ (ψ1∨ψ2)σ ⇐⇒ M̃,w⊩ (ψ1∨ψ2). The proof is similar to the proof of the previous item
(∧).

• M,w ⊩ (@aψ)σ ⇐⇒ M̃,w ⊩@aψ. By definition of the substitution we have to prove that:
M,w⊩ (@aσ ψσ) ⇐⇒ M̃,w⊩@aψ By definition of the realizability relation, this is equivalent
to:

∃w′ ∈W ∶w ∈V(aσ)∧M,w′ ⊩ψσ ⇐⇒ ∃w′′ ∈W ∶w′′ ∈ Ṽ(a)σ ∧M̃,w′′ ⊩ψ.

By setting w′ = w′′, from (1) we have: w′ ∈V(aσ) ⇐⇒ w′ ∈V(a). By induction hypothesis, we
have:M,w′ ⊩ψσ ⇐⇒ M̃,w′ ⊩ψ. The both last properties imply that:

∃w′ ∈W ∶w ∈V(aσ)∧M,w′ ⊩ψσ ⇐⇒ ∃w′ ∈W ∶w′ ∈ Ṽ(a)σ ∧M̃,w′′ ⊩ψ,

which implies the initial property.

• M,w ⊩ (⟨k⟩ψ)σ ⇐⇒ M̃,w ⊩ ⟨k⟩ψ. By definition of the substitution we prove that: M,w ⊩
⟨kσ⟩ψσ ⇐⇒ M̃,w⊩ ⟨k⟩ψ.

By definition of the realizability relation the condition is equivalent to:

∃w′ ∈W ∶M,w′ ⊩ψσ ∧wRkσ w′ ⇐⇒ ∃w′′ ∈W ∶ M̃,w′′ ⊩ψ ∧wR̃kw′′.

By setting w′ = w′′, the following equivalence holds from (2): wRkσ w′ ⇐⇒ wR̃kw′. By induction
hypothesis, we have:M,w′ ⊩ψσ ⇐⇒ M̃,w′ ⊩ψ . The both last properties imply that:

∃w′ ∈W ∶M,w′ ⊩ψσ ∧wRkσ w′ ⇐⇒ M̃,w′ ⊩ψ ∧wR̃kw′

which implies the initial property.

• M,w⊩ ([k]ψ)σ ⇐⇒ M̃,w⊩ [k]ψ. The proof is similar to the previous item.

• M⊩ (Eψ)σ ⇐⇒ M̃⊩Eψ. By definition of the substitution we prove that:M,w⊩E(ψσ) ⇐⇒

M̃,w⊩Eψ.

By definition of the realizability relation, we have:

∃w ∈W ∶M,w⊩ (ψσ) ⇐⇒ M̃,w⊩ψ,

which is directly verified by induction hypothesis.

• M⊩ (Aψ)σ ⇐⇒ M̃⊩Aψ. The proof is similar to the previous item.

Proposition 2. First, let us remark that when P Ö Q, the property is trivially verified. Besides, under
the assumption P ^ Q, if Q[σ] is not observable the property is also verified because an unobservable
program includes all programs behaviourally (Definition 2).

In the rest of the proof, we assume that P is behaviourally included in Q and Q[σ] is observable
(i.e., P ^ Q and obsQ[σ]). Hence, by definition of the observability there exists a modelM such that
M⊩ ⟦Q[σ]⟧. By proposition 3, we deduce that there exists a model M̃ such that: M̃⊩ ⟦Q⟧. Moreover,
as P ^ Q by hypothesis, there exists S̃ ⊆ Dom M̃ such that: M̃S̃ ⊩ ⟦P⟧. By construction of M̃ we
deduce that there exists a sub model ofM, denoted byM′, complying to the properties, (1) and (2) of
Proposition 3 which corresponds to M̃S̃. Moreover, we have M′ ⊩ P[σ] by Proposition 3. Then we
conclude that: P[σ] ^Q[σ].



46 GUBS, a Behavioral Language for Synthetic Biology

Theorem 1. First, let us remark that P ^ Q is true whenever M ⊮ Q by definition of the behavioural
inclusion (Definition 2). Hence, the proof doesn’t consider the trivial verified case but rather the case
whereM⊩Q.

Inst. Directly from the definition of the behavioural inclusion (Definition 2).

Com. By definition of the semantics ⟦P,P′⟧ =A(φ ∧φ
′) =A(φ

′∧φ) = ⟦P′,P⟧ with ⟦P⟧P = φ and ⟦P′⟧P =

φ
′. Thus, for allM we have: M ⊩ ⟦P,P′⟧ ⇐⇒ M ⊩ ⟦P′,P⟧. Hence, if Q ^ P,P′ we conclude

that: Q ^ P′,P.

Cont. Similar to the proof of (Com.).

Asm. First let us remark that σ ∣VA(P)∩VA(P′) =σ
′∣VA(P)∩VA(P′) means that the substitution of the common

variables are the same for σ and σ
′, leading to, Q[σ ∪σ

′] = Q[σ] and Q′[σ ∪σ
′] = Q′[σ ′]. Let

σ
′′ = σ ∪σ

′. Then, we have the following property by definition of the semantics (Table 2.1) and
σ
′′.

∀M ∈KS(⟦(Q,Q′)[σ ′′]⟧) ∶M⊩ ⟦Q[σ]⟧∧M⊩ ⟦Q′[σ ′]⟧ .

Notice that the set of models, KS(⟦(Q,Q′)[σ ′′]⟧), is not empty since, by hypothesis,
obs(Q[σ],Q′[σ ′]) holds. As Q �σ P and Q′ �σ ′ P′, any model validating Q (resp. Q′) also
validates P, (resp. P′) by definition of the functional synthesis. Then, we deduce that:

∀M ∈KS(⟦(Q,Q′)[σ ′′]⟧) ∶M⊩ ⟦P[σ]⟧∧M⊩ ⟦P′[σ ′]⟧ .

Then, we conclude that:

∀M ∈KS(⟦(Q,Q′)[σ ′′]⟧) ∶M⊩ ⟦(P,P′)[σ ′′]⟧ .

Complete compilation of the Band Detector



A. Basso-Blandin and F. Delaplace 47

-
S

E
N

D
E

R
-

Q
1,

Q
2,

Q
3[

σ
=
{

de
te

ct
/
D

et
ec

t,
li

gh
t/

Li
gh

t,
v 1
/
Te

tr
,v

2/
Lu

xl
}
]
⊆

A
sm

P
′ 11
[
σ
]

ob
s(

Q
1,

Q
2,

Q
3[

σ
]
)

(I
ns

t.)
Q

1,
Q

2,
Q

3
�

σ
P
′ 11
}

Q
1,

Q
2,

Q
3[

σ
′
=
{

de
te

ct
/
D

et
ec

t,
li

gh
t/

Li
gh

t,
v 3
/
Te

tr
,v

4/
Lu

xl
}
]
⊆

A
sm

P
′ 12
[
σ
′
]

ob
s(

Q
1,

Q
2,

Q
3[

σ
′
]
)

(I
ns

t.)
Q

1,
Q

2,
Q

3
�

σ
′

P
′ 12

Q
1,

Q
2,

Q
3[

σ
′
′
=
{

de
te

ct
/
D

et
ec

t,
li

gh
t/

Li
gh

t,
v 5
/
Te

tr
,v

6/
Lu

xl
}
]
⊆

A
sm

P
′ 13
[
σ
′
′
]

ob
s(

Q
1,

Q
2,

Q
3[

σ
′
′
]
)

(I
ns

t.)
Q

1,
Q

2,
Q

3
�

σ
′
′

P
′ 13

P
′ 11
=
[
li

gh
t]
{

de
te

ct
⊙
→

v 1
,v

1
⊙
→

v 2
,v

2
⊙
→

A
H

L(
lo

w
)
}

(T
ra

ns
.)

[
li

gh
t]
{

de
te

ct
⊙
→

v 1
,v

1
⊙
→

A
H

L(
lo

w
)
}

(T
ra

ns
.)

[
li

gh
t]
{

de
te

ct
⊙
→

A
H

L(
lo

w
)
}

(N
2P

.)
P 1

1

P
′ 12
=
[
li

gh
t]
{

de
te

ct
⊙
→

v 3
,v

3
⊙
→

v 4
,v

4
⊙
→

A
H

L(
m

id
)
}

(T
ra

ns
.)

[
li

gh
t]
{

de
te

ct
⊙
→

v 3
,v

3
⊙
→

A
H

L(
m

id
)
}

(T
ra

ns
.)

[
li

gh
t]
{

de
te

ct
⊙
→

A
H

L(
m

id
)
}

(N
2P

.)
P 1

2

P
′ 13
=
[
li

gh
t]
{

de
te

ct
⊙
→

v 5
,v

5
⊙
→

v 6
,v

6
⊙
→

A
H

L(
hi

gh
)
}

(T
ra

ns
.)

[
li

gh
t]
{

de
te

ct
⊙
→

v 5
,v

5
⊙
→

A
H

L(
hi

gh
)
}

(T
ra

ns
.)

[
li

gh
t]
{

de
te

ct
⊙
→

A
H

L(
hi

gh
)
}

(N
2P

.)
P 1

3

Q
1,

Q
2,

Q
3
�

σ
P 1

1
Q

1,
Q

2,
Q

3
�

σ
′

P 1
2

Q
1,

Q
2,

Q
3
�

σ
′
′

P 1
3

(A
sm

.)
Q

1,
Q

2,
Q

3
�

σ
∪

σ
′
∪

σ
′
′

P 1
1,

P 1
2,

P 1
3

-
R

E
C

E
IV

E
R

-
Q

4,
Q

5,
Q

6,
Q

8[
σ
=
{

v 1
/
Lu

xR
,v

2/
C

l,
v 3
/
La

cl
}
]
⊆

A
sm

P
′ 21
[
σ
]

ob
s(

Q
4,

Q
5,

Q
6,

Q
8[

σ
]
)

(I
ns

t.)
Q

4,
Q

5,
Q

6,
Q

8
�

σ
P
′ 21

Q
4,

Q
5,

Q
6,

Q
8[

σ
′
=
{

v 4
/
Lu

xR
,v

5/
C

l,
v 6
/
La

cl
}
]
⊆

A
sm

P
′ 22
[
σ
′
]

ob
s(

Q
4,

Q
5,

Q
6,

Q
8[

σ
′
]
)

(I
ns

t.)
Q

4,
Q

5,
Q

6,
Q

8
�
′ σ

P
′ 22

Q
4,

Q
5,

Q
7[

σ
′
′
=
{

v 7
/
Lu

xR
,v

8/
La

cM
1}

]
⊆

A
sm

P
′ 23
[
σ
′
′
]

ob
s(

Q
4,

Q
5,

Q
7[

σ
′
′
]
)

(I
ns

t.)
Q

4,
Q

5,
Q

7
�
′
′

σ
P
′ 23

P
′ 21
=

A
H

L(
lo

w
)
⊙
→

v 1
,v

1
⊙
→

v 2
,v

2
⊙
→

v 3
,v

3
⊙
→

G
F

P
(T

ra
ns

.)
A

H
L(

lo
w
)
⊙
→

v 1
,v

1
⊙
→

v 2
,v

2
⊙
→

G
F

P
(T

ra
ns

.)
A

H
L(

lo
w
)
⊙
→

v 1
,v

1
⊙
→

G
F

P
(T

ra
ns

.)
A

H
L(

lo
w
)
⊙
→

G
F

P
(N

2P
.)

P 2
1

P
′ 22
=

A
H

L(
m

id
)
⊙
→

v 4
,v

4
⊙
→

v 5
,v

5
⊙
→

v 6
,v

6
⊙
→

G
F

P
(T

ra
ns

.)
A

H
L(

m
id
)
⊙
→

v 4
,v

4
⊙
→

v 5
,v

5
⊙
→

G
F

P
(T

ra
ns

.)
A

H
L(

m
id
)
⊙
→

v 4
,v

4
⊙
→

G
F

P
(T

ra
ns

.)
A

H
L(

m
id
)
⊙
→

G
F

P
(N

2P
.)

P 2
2

P
′ 23
=

A
H

L(
hi

gh
)
⊙
→

v 7
,v

7
⊙
→

v 8
,v

8
⊙
→

G
F

P
(T

ra
ns

.)
A

H
L(

hi
gh

)
⊙
→

v 7
,v

7
⊙
→

G
F

P
(T

ra
ns

.)
A

H
L(

hi
gh

)
⊙
→

G
F

P
(N

2P
.)

P 2
3

Q
4,

Q
5,

Q
6,

Q
8
�

σ
P 2

1
Q

4,
Q

5,
Q

6,
Q

8
�

σ
′

P 2
2

Q
4,

Q
5,

Q
7
�

σ
′
′

P 2
3

(A
sm

.)
Q

4,
Q

5,
Q

6,
Q

7,
Q

8
�

σ
∪

σ
′
∪

σ
′
′

P 2
1,

P 2
2,

P 2
3

-
F

IN
A

L
D

E
S

IG
N

-
Se

nd
er

R
ec

ei
ve

r
{A

H
L
:{

lo
w
≉

m
id
≉

hi
gh

},
[L

ig
ht
]{

de
te

ct
◯→

T
et
r}
,

{A
H
L
:{

lo
w
≉

m
id
≉

hi
gh

},
L
u
xR

:{
lo

w
≉
{m

id
≺

hi
gh

}}
,

T
et
r

+ Ð→
L
u
xL

,
L
u
xl

+ Ð→
A
H
L
(l

ow
),

A
H
L
(m

id
)◯
→

L
u
xR

(m
id
),

A
H
L
(h

ig
h)
◯→

L
u
xR

(h
ig

h)
,

L
u
xl

+ Ð→
A
H
L
(m

id
),

L
u
xl

+ Ð→
A
H
L
(h

ig
h)

}
L
u
xR

(m
id
)

+ Ð→
C
l,

L
u
xR

(h
ig

h)
+ Ð→

L
ac
lM

1
,

C
l
− Ð→

L
ac
l,

L
ac
lM

1
− Ð→

G
F
P
,

L
ac
l
− Ð→

G
F
P
}

Table 8: Complete band detector compilation.


	1 Introduction
	2 gubs language
	2.1 Semantics of gubs

	3 Compilation
	3.1 Functional synthesis

	4 Example
	5 Related works
	6 Conclusion

