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Automated synthesis from behavioural specifications isteadive and powerful way of construct-
ing concurrent systems. Here we focus on the problem of sgiging a membrane system from a
behavioural specification given in the form of a transitignatem which specifies the desired state
space of the system to be constructed. We demonstrate haw adteolution to this problem, based
on the notion of region of a transition system, yields a methioautomated synthesis of membrane
systems from state spaces.

1 Introduction

Membrane systems| ([19, 20,121, 22]) are a computational hiosigired by the functioning of living
cells and their architecture and in particular, the way dbahreactions take place in cells divided by
membranes into compartments. The reactions are abstractatbs that specify which and how many
molecules can be produced from given molecules of a certathdnd quantity. As a result, membrane
systems are essentially multiset rewriting systems. Timaulyc aspects of the membrane system model
including potential behaviour (computations), derivenfrsuch evolution rules.

Petri nets (see, e.d.,[5.123,/ 25]) are a well-establishedrg¢ model for distributed computation with
an extensive range of tools and methods for constructiaysis, and verification of concurrent systems.
Their diverse applications areas include computationdl @perational foundations for problems and
issues arising in biology; see for example,|[15], for a réoamprehensive overview of applications of
Petri nets in systems biology.

There are intrinsic similarities between Petri nets and brame systems. In particular, there exists
a canonical way of translating membrane systems into Petd. nThis translation is faithful in the
sense that it relates computation steps at the lowest ledeina@uces in a natural way (sometimes new)
extensions and interpretations of Petri net structure afdhdour (e.g., inhibitor arcs, localities, and
maximal concurrency). More details on the relationshipMeen Petri nets and membrane systems can
be found in, e.qg.,[19, 14].
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2 Membrane Systems and Petri Net Synthesis

The strong semantical link between the two models invitemxtend where necessary and possible
existing Petri net techniques and bring them to the domaimerbrane systems. An example is the
process semantics of Petri nets that can help to underdtaradyhamics and causality in the biological
evolutions represented by membrane systéms [8, 12]. IrpHpsr, we focus on the synthesis problem,
that is, the problem of automated construction of a system & specification of its (observed or desired)
behaviour.

Automated synthesis from behavioural specifications isttractive and powerful way of construct-
ing correct concurrent systems [1[ 2| 4,16, 7,18, 24]. Heravillee-visit the problem of synthesising a
Petri net from a behavioural specification given in the foifra transition system. The latter specifies the
desired state space of the Petri net to be constructed. Weegdlll a solution to this problem based on
the notion of region of a transition system. We will then destcate how this solution leads to a method
of automated synthesis of basic membrane systems fromsgiates. We also discuss how the proposed
method could be extended to cope with more complicated lohdsembrane systems.

2 Prdiminaries

Multisets. A multiset over a finite seX is a function6 : X — N ={0,1,2,...}. 8 may be represented
by listing its elements with repetitions, e.§.~ {y,y,z} is such thaB(y) = 2, 8(z) = 1, andB(x) =0
otherwise.0 is said to be empty (and denoted &Y if there are noc such thak € 8 by which we mean
thatx € X and8(x) > 1.

For two multisets9 and8’ overX, the sumf + 6’ is the multiset given byf + 6')(x) = 6(x) + 6’ (x)
for all x € X, and fork € N the multisek- 6 is given by(k- 8)(x) = k- 8(x) for all x € X. The difference
6 — 6 is given by (8 — 6')(x) = max{06(x) — 6'(x),0} for all x € X. We denotef < 6’ whenever
0(x) < 0'(x) for all x e X, and6 < 6’ wheneverd < 8’ and8 # 8'. The restriction|z of 6 to a subset
Z C X is given by8|z(x) = 6(x) for x € Z, and 8|z(x) = 0 otherwise. The siz&| of 6 is given by
Yxex O(X). If f:X — Y is afunction therf (6) is the multiset oveY such thatf (6)(y) = ¥ yet-1(y) (%),
for everyyeY.

Step transition systems. A step transition systerover a finite set (of actionsh is a triple TS=
(Q,«,q0), where:Q is a set of nodes callestates </ is the set ofircs each arc being a triple, a,q)
such thatg, g € Q are states and is a multiset oveA; andqp € Q is theinitial state. We may write
q = o whenever(q, a,q ) is an arc, and denote by

tsStepg={a |a#o A 3d: 9= q}

the set of nonempty steps enabled at a gjateTS We additionally assume that:
e if g5 o andg 2> o’ theng = ¢’ (i.e., TSis deterministic);

for every state) € Q, there is a path fromyg leading tog;
for every actiora € A, there is an arq LN g in TSsuch thal € a; and

o for every state € Q, we haveq = q iff q=.
Let TS= (Q,«7,qo) be a step transition system over a set of actidnandTS = (Q',.«’, ) be

a step transition system over a set of actidhsTSand TS areisomorphicif there are two bijections,
@:A— A andv:Q— Q, such thav(go) = o and, for all states,d € Q and multisetsx overA:

(qa,d)e o — (v(q),0(a),v(q)) e’ .
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We denote this bf S~y TS or TS~ TS.

Petri nets. A Place/Transition nefor PT-net) is specified as a tupRT = (P, T,W, Mop), where:P and

T are finite disjoint sets of respectiveptacesandtransitions W : (T x P)U (P x T) — N is thearc
weight functionandMg : P — N is theinitial marking (in general, any multiset of places is a marking).
We assume that, for each transitigrthere is at least one plagesuch thaW(p,t) > 0. In diagrams,
such as that in Figufé 1, places are drawn as circles, arsitioans as boxes. W(x,y) > 1, then(x,y) is
anarc leading fromxtoy. An arc is annotated with its weight if the latter is greatenrt one. A marking
M is represented by drawing in each placexactlyM(p) tokens (small black dots).
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Figure 1: APT-net.

A step Uof PT is a multiset of transitions. l{gre-multisetandpost-multiseof places,’U andU*®,

are respectively given by
ZJU p,t) and U’(p):Z}U(t) W(t
te

for each placep. For thepT-net in Figurd L we have:

r r b _b
*{e1 e1 3% ) = {pL,p1,p3} and{t]*, t1,t5}° = {pf,pl. p1, P3. P3: PS}-

We distinguish two basic modes of executionrafnets. To start with, a step of transitiobsis
free-enabledat a markingM if *U < M. We denote this bi[U )see, and then say that a free-enabléd
is max-enabledat M if U cannot be extended by a transition to yield a step which es-démabled aM,
i.e., there is nd € T such thatM[U + {t})see. We denote this by [U)max In other wordsU is free-
enabled aM if in each place there are sufficiently many tokens for thecifigel multiple occurrence of
each of its transitions. Maximal concurrency (max-enaidsgd) means that extendibgwould demand
more tokens tha supplies. For theT-net in Figurd_]L we have that, at the given markivigj the step
{t]"?,t5%'} is free-enabled but not max-enabled, dmg', t7,t5%,t5%} is max-enabled.

For each mode of execution € {free max;, a stepU WhICh ism-enabled at a markinlyl can be
m-executedeading to the marking/l’ given byM’ = M — *U +U*. We denote this b[U),M’. For
thePT-net in Figuré L we have

Mol[{t]%%, 5 ree{ P P2, P2, P3: P, P, D3} -
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Petri netswith localities. PT-nets are a general model of concurrent computation. Taioafte com-
partmentisation of membrane systems) [12] adds explicilities to transitions. Though not necessary
from a modelling point of view, we associate in this paper —ydaor notational convenience — also
each place with a locality.

A PT-net with localities(or PTL-net) is a tuplePTL= (P, T,W, ¢,Mo) such that P, T,W,Mp) is aPT-
net, and/ is alocation mapping for the transitions and places. Whené\{gf = ¢(z), we callx andz
co-located In diagrams, nodes representing co-located transitiodgoa places will be shaded in the
same way, as shown in Figure 2.
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Figure 2: APTL-net corresponding to a basic membrane system, wiigfe= i, for each node of the
form x7. Note that, e.g., transitions**, t7** andt;** are co-located.

Co-locating transitions leads to one more way of enablingsfeps of transitions. We say that a
step U of PTL is Imax-enabledat a markingM if M[U )fee andU cannot be extended by a transition
co-located with a transition ib to yield a step which is free-enabledMt i.e., there is nd € T such
that/(t) € £(U) andM[U + {t})see. We denote this b [U )imax and then denote the Imax-execution of
U by M[U)maxM’, whereM’ = M —*U +U*. Note thatiocally maximal (Imax) concurrendyg similar to
maximal concurrency, but now only active localifiesminnot execute further transitions. For #.-net
in Figure[2 we have thatt]*, t7*?} is Imax-enabled at the given marking, Huf*} is not.

Let m € {free,maxImax} be a mode of execution of rL-net PTL. Then anm-step sequencs
a finite sequence afi-executions starting from the initial marking, and@areachablemarking is any
marking resulting from the execution of such a sequence ebiar, than-concurrent reachability graph
of PTLis the step transition system:

CRG(PTL) = ( Mol , {(M.U,M') [ M € [Mo) A MIU}wM'}, Mo ) .

where[Mo),, is the set of alim-reachable markings which are the nodes of the grfhis the initial
node; and the arcs between the nodes are labellad&xyecuted steps of transitions. Concurrent reacha-
bility graphs provide complete representations of the dyindoehaviour oPTL-nets evolving according

to the chosen mode of execution.

1 By active localities of a step we mean the localities of transitions presenitiin
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Figure 3: A membrane structuren= 3) and its compartments with 1 being the root node2) € u
and 1= parent3).

Membrane structures. A membrane structurgl (of degreem > 1) is given by a rooted tree witim
nodes identified with the integers.1.,m. We will write (i, j) € u ori = parentj) to indicate that there
is an edge from (parent) toj (child) in the tree ofu, andi € y means thatis a node ofu. The nodes of
a membrane structure represent nested membranes which oetiermine compartments (compartment
i is enclosed by membramnand lies in-betweenand its children, if any), as shown in Figuie 3.

We will say that apTL-net PTL= (P, T,W,¢,Mp) is spannedover the membrane structugeif ¢:
PUT — u and the following hold, for alpe Pandt € T:

e if W(p,t) > 0 then{(p) = ¢(t); and
o if W(t,p) >0 thenl(p) = £(t) or (¢(p),L(t)) € por(£(t),4(p)) € M.

ThepTL-net of Figurd R is spanned over the membrane structureteepit Figurd B.

Basic membrane systems. LetV be a finite alphabet of names albjects(or molecules) and lgti be
a membrane structure of degnee A basic membrane systgioverV andp) is a tuple

BMS= (V,u,w3,...,W2. Ry, ...,Rm)

such that, for every membrarh,ewi0 is a multiset of objects frorv, andR, is a finite set ofevolution
rulesassociated with membrane (compartménBach evolution rule € R; is of the formr : lhs' — rhs',
wherelhs’ (the left hand side af) is a nonempty multiset ov&f, andrhs’ (the right hand side af) is a
multiset over

VU{aout|aeViu{an [acV and(i,j) € u}.

Here a symbody,; represents an objeatthat is sent to a child node (compartmepgndao,e means that
ais sent to the parent node. ilfs the root ofu then no indexed object of the forag,; belongs tahs'.
A configurationof BMSis a tuple

C= (Wl7"'7Wm)

of multisets of objects, and = (W5, ...,w0) is theinitial configuration. Figuré]4 shows a basic mem-
brane system over the membrane structure depicted in F&jure

A membrane system evolves from configuration to configunadi®a consequence of the application
of evolution rules. There are differeekecution modeganging from fully synchronous — as many
applications of rules as possible — to sequential — a singéieation of a rule at a time. Here, similarly
as in the case afTL-nets, we distinguish three modes, all based on the notiarvettor multi-rule.
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ri1: {b} — {a} 1
{a, b} r12: {a} — {b,Cin,,ains }
ri3: {b} = {c,ain,}

{a,b,c,c} %)

r21: {a,c} — {b} r31: {a} — {aa,c,Cout}
roo. {b} — {a}

Figure 4: Basic membrane syst&8ivS.

A vector multi-ruleof BMSis a tupler = (ry,...,rm) where, for each membraneof y, r; is a
multiset of rules fronR;. For such a vector multi-rule, we denote lbg the multiset

% ri(r)-lhs’

in which all objects in the left hand sides of the rulesiimre accumulated, and biis' the multiset

ER ri(r)-rhs

of all (indexed) objects in the right hand sides. The firsttinet specifies how many objects are needed
in each compartment for the simultaneous execution of allrtetances of evolution rules in
A vector multi-ruler of BMSis

o free-enabledat a configuratior€ if Ihs < w;, for eachi.
Moreover, a free-enabled vector multi-rule= (rq,...,ry) is:

e max-enabledf no r; can be extended to a vector multi-rule which is free-enabt€j and

e Imax-enabledf no nonemptyr; can be extended to a vector multi-rule which is free-enahtéx
For example, in Figurel 4,

e (0,0, {r31}) is not free-enabled;

e ({r11,r12},9,9) is Imax-enabled but not max-enabled; and

o ({r11,r12},{r21,122}, ) is max-enabled.

If r is free-enabledf(e€) at a configuratiorC, thenC has in each membranesnough copies of
objects for the application of the multiset of evolutionasil;. Maximal concurrencyrfiax requires that
adding any extra rule makesdemand more objects th&hcan provide. Locally maximal concurrency
(Imax) is similar but in this case only those compartments whicrehales inr cannot enable any more
rules; in other words, each compartment either uses noouleses a maximal multiset of rules.
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The effect of the rules is independent of the mode of exesutic= {free maxImax}. A vector
multi-rule r which ism-enabled a€ canm-evolveto a configuratiorC’ = (wj, ... w;,) such that, for each
i and object:

V\/l(a) = Wi(a) - Ihsir (a) + I‘hSir (a) + rhs;)aren(i)(aini) + Z I’hSE (aout)

i=paren(j)

whererhs,,engi) = @ if i is the root ofus. We denote this b 5 C'. Moreover, anm-computatioris

a finite sequence ofi-evolutions starting from the initial configuration; anynfiguration which can be
obtained through such a computation is calietleachable For the basic membrane system depicted in
Figure[4 we have, for example:

CO M)Imax ({a> b}7 {a7 b> Cv C> C}7 {a}) M}Imax ({aa b}> {a7 b7 C> C}7 {a}) .

Let m € {free maxImax} be a mode of execution of a basic membrane sys#dts Then the
m-concurrent reachability graph of BMIS given by:

CRGy(BMS = ( [Colm , {(C. 1+ +T1n,C)) |C € [Colm LN o).

where[Co), is the set of alin-reachable configurations which are the nodes of the g@pis;the initial
node; and the arcs between the nodes are labelled by mulééeivolution rules involved in then-
executed vector muIti-ruI&SimilarIy as in the case @fTL-nets, concurrent reachability graphs capture
completely the dynamic behaviour of basic membrane systeiwieg according to the chosen mode of
execution.

3 Membrane Systemsand Petri Nets

There is a natural way of translating a basic membrane syBMS:— (V, u,w‘l’, ..,W8. Ry,...,Ry) over
a membrane structurg into a behaviourally equivalertL-net PTL(BMS) = (P, T,W,¢,Mp) spanned
over the same membrane structure. In the constructed aeeglepresent objects present inside com-
partments, and transitions represent evolution rules.h Ptaces and transitions are associated with
membranes and this information is represented by the totatiapping.

The constructe@TL-net PTL(BMS) has a separate plag§ with /(p{) = |, for each object and
membrang, and a separate transitiah with £(t]) =i, for each rule in compartment.

The initial marking insertsrv(j’(a) tokens into each placp‘]?‘. The connectivity between transition
t =] and placep = pf is given by:

[ Ihs'(a) ifi=]j
Wip.t _{ 0 otherwise
as well as:
rhs'(a) if i =]

rhs (aoyt) if j = parenti)
rhs'(apn,) if i = parent(j)
0 otherwise

W(t7 p) =

2 Though it may be that rules from different membranes are dheesin terms of the multisets defining their left hand and
right hand sides, we assume here that evolution rules adedavith different membranes can be distinguished, eygyiving
them each their own name (an injective label).
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Figure[2 shows the result of the above translation for thecmaembrane system in Figuré 4. Note that
it immediately follows from the construction that thgL-netPTL(BMS) is spanned oven.

The pTL-net PTL(BMS) provides afaithful representation of the behaviour of the basic membrane
systemBMS To capture this very close relationship, we define two bijeanappingsy andp, which
allow us to move betweeBMSandPTL(BMS):

e for every markingM of PTL(BMS), v(M) = (wy,...,Wy) is the configuration oBMSgiven by
w;(a) = M(pf), for every object and everyi.

e for every stepd of PTL(BMS), p(U) = (r1,...,rm) is the vector multi-rule oBMS given by
ri(r) =U(t]), for every ruler € R; and everyi.

It is then possible to establish a direct relationship betwéhe operation of) the original membrane
system and theTL-net resulting from the above translation at the systemni:leve
C5nC = v 3C)[pXr)mvi(C)

) 29 vw)

1)
MU)uM = v(M

for all modes of executiom € {free, max Imax}, configuration€ of BMSand markings/! of PTL(BMS).
Together withv(Mp) = Co, this result means that the-step sequences BTL(BMS) faithfully represent
m-computations o0BMS and the same applies to markings and configurations. disyciee obtain

Theorem 1 For eachm € {free, max Imax},

CRG(PTL(BMS)) ~y CRGy(BMS)
where the mapping is defined as above, ang(t]) =r, for every transitiont] of PTL(BMS).

The above theorem captures the very tight behavioural sporelence betwe@MSandPTL(BMS),
allowing to apply analytical techniques developed for Patts in the analysis of membrane systems.
For example, one can employ the invariant analysis baseh@arlalgebra [26], or use the causality se-
mantics approach of Petri nets based on occurrence netsstasutiined in[12]. In this paper, we show
how techniques used to synthesise Petri nets could be eatpioyorder to construct basic membrane
systems from their intended behaviours as representedepytisinsition systems. First, however, we
provide a translation fromTL-nets spanned over membrane structures to basic membrsterensy

Let PTL= (P, T,W,¢,Mp) be apTL-net spanned over a membrane strucfure~or such eTL-net,
we construct the corresponding basic membrane syBM®PTL) over u in the following way:

e Pis the set of objects;
e the initial configuration i/'(Mo) where, for every markiniyl of PTL,

V(M) = (Mg-10)0p5 - - -» M| -1(myrp) ;

e each transitiont € T with t* = {p’,..., pX} has a corresponding evolution ruf(t) of the form
t:*t—{a,...,a} where, fori=1,... k

P ifup) =
a={ Pou ITL(p")=parentl(t))
Pln,,,, i £(t) = parent((p))
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e for each membraniec y, the set of evolution rules is given By = {¢/(t) | ¢(t) =i}.
Again, the translation results in a very close behavioualaspondence.

Theorem 2 For eachm € {free maxImax},
CRGy(PTL) ~¢ ., CRG,(BMSPTL)),

where the mappingg andv’ are defined as above.

It follows from Theorem$11 and 2 that the problem of synthegibasic membrane systems from
step transition systems is equivalent to the problem off®sis ofPTL-nets spanned over membrane
structures. It therefore suffices to solve the latter, artiémext section we describe a solution based on
the notion of a region of a step transition system.

4 Synthesising nets cor responding to membrane systems

The Petri net synthesis problem we consider is formulatdd|isvs.

Problem 1 Given are a finite set T, a membrane structure mapping: T — u, m € {free maxImax},
and TS= (Q, <7, qo) which is a finite step transition system over T.

Construct apTL-net PTL= (P, T, ¢, Mo) spanned ovep such that CRG(PTL) ~ TS, and/ is an exten-
sion of the mapping defined for T.

As demonstrated in [4], synthesis problems like Prodlémrlbmsolved using techniques coming
from the theory of regions of transition systems (see, §1lZ,[18]). Intuitively, a region represents a
single place in a hypothetical net generating the giversttiam system. Regions are used both to check
whether a net satisfying the conditions can be construatddifithe answer turns out to be positive, to
construct such net.

In this particular case, @gion of the step transition systeffSconsists of three mappings

reg=(0:Q—N,:T—N, w:T—-N) (2)
such that, for every ag > f of TS
o(a) > w(a) and o(q)=0o(q) - w(a)+1(a). 3)

Here w(a) = Siet a(t) - w(t) and similarlyi(a) = Syt a(t) - 1(t). In a region of the form[(2) repre-
senting a place, o(q) is the number of tokens ip in the marking corresponding to the nogecw(t)
represents the weight of the arc frgoto transitiont, andi(t) represents the weight of the arc fram
to p. Itis then natural to require if}(3) thatcontains enough tokens not to block a stepxecuted aty,
and also to ensure that the number of tokeng lrefore and after executing is consistent with the total
arc weight of the stepr in relation top.

In the case of Probleimn 1, one also needs to take into accoarfath that the targetTL-net must
be spanned oven. This imposes additional constraints on allowed regiofacgs) and the location
mapping/. We call a regiorreg as in [2) with a locatior/(reg) € u compatible withthe membrane
structurey if the following hold, for everyt € T:

e if w(t) > 0 then/(t) = ¢(reg); and
e if I(t) > O then/(t) = ¢(reg) or ({(t),¢(reg)) € u or (¢(reg),£(t)) € U.
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The set of all such regions will be denoted By. Note that ifreg is such thatw(t) > 0, for at least one
t € T, then/(reg) is uniquely determined; otherwise we always chotseg) to be the membrane which
is higher up in the tree structure pfthan any other suitable candidate. As a result, we can l&zsg)
implicit.

Finally, Probleni ]l should be feasible in the sense that #resition systenTScan be realised by a
suitable net. There are two necessary and sufficient condifior realisability (see [4, 17]):

e state separationfor every pair of distinct states of the transition systéere is a region (a marked
place) distinguishing between them; and

o forward closure there are sufficiently many places defined by regions ofrimesition system to
disallow steps not present in the transition system.

First we describe how all places can be found that potentatbvide a solution to Problefd 1; in other
words, all the regiong$ [2) of the transition syst&®which are compatible witlu.

Finding compatibleregions. LetT, u, ¢: T — puandTS= (Q,</,qo) be as in Problernl1. Assume
thatQ = {do,...,0qn} andT = {t1,...,t,}. We use three vectors of non-negative variables:

X=Xg...%h Y=VYi...¥n Z2=2...7.

We also denotg = xyz and define a homogeneous linear system

[ x>a-z Ca
P {Xj:)(i+a‘(y—2) forallg = q;in TS
wherea -z denotesx (t1) -z, + - - - + d (tn) - Z, and similarly fora - (y — z).

The regions[(2) of Sare then determined by the integer solutipraf the systemz? assuming that,
forO<i<hand 1< j<n,

o(Gi) =X 1(tj) =y; w(tj) =z

The set of rational solutions of? forms a polyhedral cone @21, As described in[[3], one
can effectively compute finitelynany integer generating rays, . ..,pX of this cone such that any in-
teger solutiorp of &2 can be expressed as a linear combination of the rays witmegative rational
coefficients:

p=Ya-p.

M~

Such raysp' are fixed and (some of them) turned into net places if Profilemasla solution. More
precisely, ifp' is included in the constructed net, then

Mo(p') =X W(p't) =2 W(t,p') =y (4)

whereMp is the initial marking of the target net, ahd= T.

Clearly, not all such rays can be considered for the inctugiothe net being constructed, as the
corresponding regions have to be compatible withwe therefore ensure through a simple check that
the generating rayg?, ..., p* are compatible withu, deleting in the process those which are not. Note
that anyp € P, is a non-negative linear combination of rays compatibléayuit

Having found the generating rays compatible withwe proceed to check whether Problem 1 has
any solutions at all.
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Checking state separation. LetTS= (Q,.«/,qo) be as in Problefl1. We take in turn each pair of dis-
tinct statesg; anddqj, of Q and decide whether there exigts= (0,1, w) € P, with coefficientscy, ..., C«
such thaio(g)) = x # x; = 0(q;). Since the latter is equivalent to

one can simply check whether there exists at leasipbiealled awitness[6]) such thatx} #* x'j.

Checkingforward closure. Again, letTS= (Q, .«7,qop) be as in Problernl 1, and € {free, maxImax}.
First, we take in turn each statg of Q, and calculate the set @égion enabledsteps, denoted by
regStepg. Intuitively, region enabled steps are those that cannadiszbled (or blocked) by compatible
regions.

To build regStepg one only needs to consider nonempty stepsith |a| < m-Max, whereMax s
the maximum size of steps labelling arcsli§ andmis the number of membranes pf The reason is
that, for each membrariec 11 there exists a compatible regi¢a, 1, w) € P, (called awitnes$ such that
o(Q) = {Max} and, for everyt € T,

(1 i) =i
w(t)—’(t)—{ 0 otherwise

Taken together, all such regions block any stepith |a| > m-Max

For each nonempty step with [a| < m-Maxit is the case thatr ¢ regStepg iff for somep € P,
with coefficientscy, ..., Ccx we havex; < a - z. Since the latter is equivalent to

a-d—a-Z)<o0,

M~

one simply checks whether there exists at leastpriagain called avitnes$ such thalx} —a-Z <o.
Having determined the region enabled steps, in order tdblestiforward closure we need to verify
that, for every statg € Q,

regStepg if m = free
tsStepg= ¢ {a €regStepg| -t €T : a+ {t} € regStepg} if m = max
{a eregStepg| -t € T a+{t} cregStepg A £(t) € £(a)} if m=Imax.

Constructing the solution net.  If the above checks for the feasibility of Probléin 1 are sasfié, one
can construct a solutioprTL-net spanned ovar by taking all the witness rays and regions, and treating
them as places in the way indicated[ih (4). The resultingPTétsatisfies

CRG,(PTL) ~TS.

5 Concluding remarks

We have described how one can adapt a solution to the Pesyntitesis problem based on regions of
step transition systems, so that the resulting method carsée to construct basic membrane systems
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with a specific behaviour. Moreover, there are other syighesults developed for Petri nets which can
be employed to extend the proposed solution in severaltdires; two of which are briefly mentioned
below.

In Problem1 it is assumed that the association of transitisith membranes is given. This can
be relaxed and one can aim at synthesising membrane systghwmtsuch an association, or even
without being given a membrane structure (in such a casesythinesis procedure should construct a
membrane structure as well). For such a modification, thieeady exist results which can be used to
develop a solution. More precisely, the method of ‘discmggrlocalities in [17] works forpPTL-nets
with localised conflicts (where transitions which sharergiut place are co-located). SincerflL-nets
spanned over membrane structures have localised contietsesult in[[17] can be adapted to work for
basic membrane systems.

Evolution rules of membrane systems are often equipped pridmoters and inhibitors. Both fea-
tures have direct counterparts in Petri nets in the form tf&or and inhibitor arcs, and suitable transla-
tions between membrane systems and Petri nets can be dedelsplescribed in][9, 14]. Moreover, the
synthesis technique based on regions of step transitideragsworks also fopTL-nets extended with
activator and inhibitor arc$ [16]. In fact, there is a geheedting of so-called-nets and corresponding
T-regions [1/ 4]. Here the parametelis a general and convenient way of capturing different tygfes
connections (arcs and their combinations) between plawds$ransitions, removing the need to re-state
and re-prove the key results every time a new kind arcs iedotred. Note that the recently introduced
SET-nets [13/14] (with qualitative rather than quantitatiesaource management) and set membrane
systems|[[10] can be treated within the general theory-nét synthesis based on regions of transition
systemsl[11].
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