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Automated synthesis from behavioural specifications is an attractive and powerful way of construct-
ing concurrent systems. Here we focus on the problem of synthesising a membrane system from a
behavioural specification given in the form of a transition system which specifies the desired state
space of the system to be constructed. We demonstrate how a Petri net solution to this problem, based
on the notion of region of a transition system, yields a method of automated synthesis of membrane
systems from state spaces.

1 Introduction

Membrane systems ([19, 20, 21, 22]) are a computational model inspired by the functioning of living
cells and their architecture and in particular, the way chemical reactions take place in cells divided by
membranes into compartments. The reactions are abstractedto rules that specify which and how many
molecules can be produced from given molecules of a certain kind and quantity. As a result, membrane
systems are essentially multiset rewriting systems. The dynamic aspects of the membrane system model
including potential behaviour (computations), derive from such evolution rules.

Petri nets (see, e.g., [5, 23, 25]) are a well-established general model for distributed computation with
an extensive range of tools and methods for construction, analysis, and verification of concurrent systems.
Their diverse applications areas include computational and operational foundations for problems and
issues arising in biology; see for example, [15], for a recent comprehensive overview of applications of
Petri nets in systems biology.

There are intrinsic similarities between Petri nets and membrane systems. In particular, there exists
a canonical way of translating membrane systems into Petri nets. This translation is faithful in the
sense that it relates computation steps at the lowest level and induces in a natural way (sometimes new)
extensions and interpretations of Petri net structure and behaviour (e.g., inhibitor arcs, localities, and
maximal concurrency). More details on the relationship between Petri nets and membrane systems can
be found in, e.g., [9, 14].
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2 Membrane Systems and Petri Net Synthesis

The strong semantical link between the two models invites toextend where necessary and possible
existing Petri net techniques and bring them to the domain ofmembrane systems. An example is the
process semantics of Petri nets that can help to understand the dynamics and causality in the biological
evolutions represented by membrane systems [8, 12]. In thispaper, we focus on the synthesis problem,
that is, the problem of automated construction of a system from a specification of its (observed or desired)
behaviour.

Automated synthesis from behavioural specifications is an attractive and powerful way of construct-
ing correct concurrent systems [1, 2, 4, 6, 7, 18, 24]. Here wewill re-visit the problem of synthesising a
Petri net from a behavioural specification given in the form of a transition system. The latter specifies the
desired state space of the Petri net to be constructed. We will recall a solution to this problem based on
the notion of region of a transition system. We will then demonstrate how this solution leads to a method
of automated synthesis of basic membrane systems from statespaces. We also discuss how the proposed
method could be extended to cope with more complicated kindsof membrane systems.

2 Preliminaries

Multisets. A multiset over a finite setX is a functionθ : X → N= {0,1,2, . . .}. θ may be represented
by listing its elements with repetitions, e.g.,θ = {y,y,z} is such thatθ(y) = 2, θ(z) = 1, andθ(x) = 0
otherwise.θ is said to be empty (and denoted by∅) if there are nox such thatx∈ θ by which we mean
thatx∈ X andθ(x) ≥ 1.

For two multisetsθ andθ ′ overX, the sumθ +θ ′ is the multiset given by(θ +θ ′)(x) = θ(x)+θ ′(x)
for all x∈ X, and fork∈N the multisetk·θ is given by(k·θ)(x) = k·θ(x) for all x∈ X. The difference
θ − θ ′ is given by (θ − θ ′)(x) = max{θ(x)− θ ′(x),0} for all x ∈ X. We denoteθ ≤ θ ′ whenever
θ(x) ≤ θ ′(x) for all x∈ X, andθ < θ ′ wheneverθ ≤ θ ′ andθ 6= θ ′. The restrictionθ |Z of θ to a subset
Z ⊆ X is given byθ |Z(x) = θ(x) for x ∈ Z, andθ |Z(x) = 0 otherwise. The size|θ | of θ is given by
∑x∈X θ(x). If f : X →Y is a function thenf (θ) is the multiset overY such thatf (θ)(y) = ∑x∈ f−1(y) θ(x),
for everyy∈Y.

Step transition systems. A step transition systemover a finite set (of actions)A is a triple TS=
(Q,A ,q0), where:Q is a set of nodes calledstates; A is the set ofarcs, each arc being a triple(q,α ,q′)
such thatq,q′ ∈ Q are states andα is a multiset overA; andq0 ∈ Q is the initial state. We may write
q

α
−→ q′ whenever(q,α ,q′) is an arc, and denote by

tsStepsq = {α | α 6=∅ ∧ ∃q′ : q
α
−→ q′}

the set of nonempty steps enabled at a stateq in TS. We additionally assume that:

• if q
α
−→ q′ andq

α
−→ q′′ thenq′ = q′′ (i.e.,TSis deterministic);

• for every stateq∈ Q, there is a path fromq0 leading toq;

• for every actiona∈ A, there is an arcq
α
−→ q′ in TSsuch thata∈ α ; and

• for every stateq∈ Q, we haveq
∅
−→ q′ iff q= q′.

Let TS= (Q,A ,q0) be a step transition system over a set of actionsA, andTS′ = (Q′,A ′,q′0) be
a step transition system over a set of actionsA′. TSandTS′ are isomorphicif there are two bijections,
φ : A→ A′ andν : Q→ Q′, such thatν(q0) = q′0 and, for all statesq,q′ ∈ Q and multisetsα overA:

(q,α ,q′) ∈ A ⇐⇒ (ν(q),φ(α),ν(q′)) ∈ A
′ .
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We denote this byTS∼φ ,ν TS′ or TS∼ TS′.

Petri nets. A Place/Transition net(or PT-net) is specified as a tuplePT= (P,T,W,M0), where:P and
T are finite disjoint sets of respectivelyplacesand transitions; W : (T ×P)∪ (P×T) → N is thearc
weight function; andM0 : P→ N is theinitial marking (in general, any multiset of places is a marking).
We assume that, for each transitiont, there is at least one placep such thatW(p, t) > 0. In diagrams,
such as that in Figure 1, places are drawn as circles, and transitions as boxes. IfW(x,y)≥ 1, then(x,y) is
anarc leading fromx to y. An arc is annotated with its weight if the latter is greater than one. A marking
M is represented by drawing in each placep exactlyM(p) tokens (small black dots).
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t
r11
1

t
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1
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2 pb
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Figure 1: APT-net.

A step Uof PT is a multiset of transitions. Itspre-multisetandpost-multisetof places,•U andU•,
are respectively given by

•U(p) = ∑
t∈U

U(t) ·W(p, t) and U•(p) = ∑
t∈U

U(t) ·W(t, p) ,

for each placep. For thePT-net in Figure 1 we have:

•{tr11
1 ,tr11

1 ,tr31
3 }= {pb

1,p
b
1,p

a
3} and{tr11

1 ,tr11
1 ,tr31

3 }
•
= {pa

1,p
a
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c
1,p

a
3,p

a
3,p

c
3}.

We distinguish two basic modes of execution ofPT-nets. To start with, a step of transitionsU is
free-enabledat a markingM if •U ≤ M. We denote this byM[U〉free, and then say that a free-enabledU
is max-enabledat M if U cannot be extended by a transition to yield a step which is free-enabled atM,
i.e., there is not ∈ T such thatM[U + {t}〉free. We denote this byM[U〉max. In other words,U is free-
enabled atM if in each place there are sufficiently many tokens for the specified multiple occurrence of
each of its transitions. Maximal concurrency (max-enabledness) means that extendingU would demand
more tokens thanM supplies. For thePT-net in Figure 1 we have that, at the given markingM0, the step
{tr12

1 ,tr21
2 } is free-enabled but not max-enabled, and{tr11

1 ,tr12
1 ,tr21

2 ,tr22
2 } is max-enabled.

For each mode of executionm ∈ {free,max}, a stepU which ism-enabled at a markingM can be
m-executedleading to the markingM′ given byM′ = M− •U +U•. We denote this byM[U〉mM′. For
thePT-net in Figure 1 we have

M0[{t
r12
1 ,tr21

2 }〉free{p
b
1,p

b
1,p

b
2,p

b
2,p

c
2,p

c
2,p

a
3} .



4 Membrane Systems and Petri Net Synthesis

Petri nets with localities. PT-nets are a general model of concurrent computation. To capture the com-
partmentisation of membrane systems, [12] adds explicit localities to transitions. Though not necessary
from a modelling point of view, we associate in this paper — only for notational convenience — also
each place with a locality.

A PT-net with localities(or PTL-net) is a tuplePTL= (P,T,W, ℓ,M0) such that(P,T,W,M0) is aPT-
net, andℓ is a location mapping for the transitions and places. Wheneverℓ(x) = ℓ(z), we callx andz
co-located. In diagrams, nodes representing co-located transitions and/or places will be shaded in the
same way, as shown in Figure 2.
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Figure 2: APTL-net corresponding to a basic membrane system, whereℓ(xz
i ) = i, for each node of the

form xz
i . Note that, e.g., transitionstr11

1 , tr12
1 andtr13

1 are co-located.

Co-locating transitions leads to one more way of enabling for steps of transitions. We say that a
step U of PTL is lmax-enabledat a markingM if M[U〉free andU cannot be extended by a transition
co-located with a transition inU to yield a step which is free-enabled atM; i.e., there is not ∈ T such
thatℓ(t) ∈ ℓ(U) andM[U +{t}〉free. We denote this byM[U〉lmax, and then denote the lmax-execution of
U by M[U〉lmaxM′, whereM′ = M− •U +U•. Note thatlocally maximal (lmax) concurrencyis similar to
maximal concurrency, but now only active localities1 cannot execute further transitions. For thePTL-net
in Figure 2 we have that{tr11

1 ,tr12
1 } is lmax-enabled at the given marking, but{tr11

1 } is not.
Let m ∈ {free,max, lmax} be a mode of execution of aPTL-net PTL. Then anm-step sequenceis

a finite sequence ofm-executions starting from the initial marking, and anm-reachablemarking is any
marking resulting from the execution of such a sequence. Moreover, them-concurrent reachability graph
of PTL is the step transition system:

CRGm(PTL) =
(

[M0〉m ,
{

(M,U,M′) | M ∈ [M0〉m ∧ M[U〉mM′
}

, M0

)

,

where[M0〉m is the set of allm-reachable markings which are the nodes of the graph;M0 is the initial
node; and the arcs between the nodes are labelled bym-executed steps of transitions. Concurrent reacha-
bility graphs provide complete representations of the dynamic behaviour ofPTL-nets evolving according
to the chosen mode of execution.

1 By active localities of a stepU we mean the localities of transitions present inU .
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Figure 3: A membrane structure (m= 3) and its compartments with 1 being the root node,(1,2) ∈ µ
and 1= parent(3).

Membrane structures. A membrane structureµ (of degreem≥ 1) is given by a rooted tree withm
nodes identified with the integers 1, . . . ,m. We will write (i, j) ∈ µ or i = parent( j) to indicate that there
is an edge fromi (parent) toj (child) in the tree ofµ , andi ∈ µ means thati is a node ofµ . The nodes of
a membrane structure represent nested membranes which in turn determine compartments (compartment
i is enclosed by membranei and lies in-betweeni and its children, if any), as shown in Figure 3.

We will say that aPTL-net PTL= (P,T,W, ℓ,M0) is spannedover the membrane structureµ if ℓ :
P∪T → µ and the following hold, for allp∈ P andt ∈ T:

• if W(p, t) > 0 thenℓ(p) = ℓ(t); and

• if W(t, p) > 0 thenℓ(p) = ℓ(t) or (ℓ(p), ℓ(t)) ∈ µ or (ℓ(t), ℓ(p)) ∈ µ .

ThePTL-net of Figure 2 is spanned over the membrane structure depicted in Figure 3.

Basic membrane systems. Let V be a finite alphabet of names ofobjects(or molecules) and letµ be
a membrane structure of degreem. A basic membrane system(overV andµ) is a tuple

BMS= (V,µ ,w0
1, . . . ,w

0
m,R1, . . . ,Rm)

such that, for every membranei, w0
i is a multiset of objects fromV, andRi is a finite set ofevolution

rulesassociated with membrane (compartment)i. Each evolution ruler ∈Ri is of the formr : lhsr → rhsr ,
wherelhsr (the left hand side ofr) is a nonempty multiset overV, andrhsr (the right hand side ofr) is a
multiset over

V ∪{aout | a∈V}∪{ain j | a∈V and(i, j) ∈ µ} .

Here a symbolain j represents an objecta that is sent to a child node (compartment)j andaout means that
a is sent to the parent node. Ifi is the root ofµ then no indexed object of the formaout belongs torhsr .
A configurationof BMSis a tuple

C= (w1, . . . ,wm)

of multisets of objects, andC0 = (w0
1, . . . ,w

0
m) is theinitial configuration. Figure 4 shows a basic mem-

brane system over the membrane structure depicted in Figure3.
A membrane system evolves from configuration to configuration as a consequence of the application

of evolution rules. There are differentexecution modesranging from fully synchronous — as many
applications of rules as possible — to sequential — a single application of a rule at a time. Here, similarly
as in the case ofPTL-nets, we distinguish three modes, all based on the notion ofa vector multi-rule.
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1

2 3

{a,b}
r11 : {b}→ {a}
r12 : {a}→ {b,cin2,ain3}

r13 : {b}→ {c,ain3}

{a,b,c,c}
r21 : {a,c}→ {b}
r22 : {b}→ {a}

∅
r31 : {a}→ {a,a,c,cout}

Figure 4: Basic membrane systemBMS0.

A vector multi-ruleof BMS is a tupler = 〈r1, . . . ,rm〉 where, for each membranei of µ , ri is a
multiset of rules fromRi. For such a vector multi-rule, we denote bylhsr

i the multiset

∑
r∈Ri

ri(r) · lhsr

in which all objects in the left hand sides of the rules inri are accumulated, and byrhsr
i the multiset

∑
r∈Ri

ri(r) · rhsr

of all (indexed) objects in the right hand sides. The first multiset specifies how many objects are needed
in each compartment for the simultaneous execution of all the instances of evolution rules inr.

A vector multi-ruler of BMSis

• free-enabledat a configurationC if lhsr
i ≤ wi, for eachi.

Moreover, a free-enabled vector multi-ruler = 〈r1, . . . ,rm〉 is:

• max-enabledif no ri can be extended to a vector multi-rule which is free-enabledatC; and

• lmax-enabledif no nonemptyri can be extended to a vector multi-rule which is free-enabledatC.

For example, in Figure 4,

• 〈∅,∅,{r31}〉 is not free-enabled;

• 〈{r11,r12},∅,∅〉 is lmax-enabled but not max-enabled; and

• 〈{r11,r12},{r21,r22},∅〉 is max-enabled.

If r is free-enabled (free) at a configurationC, thenC has in each membranei enough copies of
objects for the application of the multiset of evolution rulesri. Maximal concurrency (max) requires that
adding any extra rule makesr demand more objects thanC can provide. Locally maximal concurrency
(lmax) is similar but in this case only those compartments which have rules inr cannot enable any more
rules; in other words, each compartment either uses no rule,or uses a maximal multiset of rules.
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The effect of the rules is independent of the mode of execution m ∈ {free,max, lmax}. A vector
multi-rule r which ism-enabled atC canm-evolveto a configurationC′ = (w′

1, . . .w
′
m) such that, for each

i and objecta:

w′
i(a) = wi(a)− lhsr

i (a)+ rhsr
i (a)+ rhsr

parent(i)(aini )+ ∑
i=parent( j)

rhsr
j(aout)

whererhsr
parent(i) =∅ if i is the root ofµ . We denote this byC

r
−→m C′. Moreover, anm-computationis

a finite sequence ofm-evolutions starting from the initial configuration; any configuration which can be
obtained through such a computation is calledm-reachable. For the basic membrane system depicted in
Figure 4 we have, for example:

C0
〈{r11,r12},∅,∅〉
−−−−−−−−−→lmax ({a,b},{a,b,c,c,c},{a})

〈∅,{r21,r22},∅〉
−−−−−−−−−→lmax ({a,b},{a,b,c,c},{a}) .

Let m ∈ {free,max, lmax} be a mode of execution of a basic membrane systemBMS. Then the
m-concurrent reachability graph of BMSis given by:

CRGm(BMS) =
(

[C0〉m ,
{

(C,r1+ . . .+ rm,C
′) |C∈ [C0〉m ∧ C

〈r1,...,rm〉
−−−−−→m C′

}

, C0

)

,

where[C0〉m is the set of allm-reachable configurations which are the nodes of the graph;C0 is the initial
node; and the arcs between the nodes are labelled by multisets of evolution rules involved in them-
executed vector multi-rules.2 Similarly as in the case ofPTL-nets, concurrent reachability graphs capture
completely the dynamic behaviour of basic membrane system evolving according to the chosen mode of
execution.

3 Membrane Systems and Petri Nets

There is a natural way of translating a basic membrane systemBMS= (V,µ ,w0
1, . . . ,w

0
m,R1, . . . ,Rm) over

a membrane structureµ into a behaviourally equivalentPTL-net PTL(BMS) = (P,T,W, ℓ,M0) spanned
over the same membrane structure. In the constructed net, places represent objects present inside com-
partments, and transitions represent evolution rules. Both places and transitions are associated with
membranes and this information is represented by the location mapping.

The constructedPTL-net PTL(BMS) has a separate placepa
j with ℓ(pa

j ) = j, for each objecta and
membranej, and a separate transitiontr

i with ℓ(tr
i ) = i, for each ruler in compartmenti.

The initial marking insertsw0
j (a) tokens into each placepa

j . The connectivity between transition
t = tr

i and placep= pa
j is given by:

W(p, t) =

{

lhsr(a) if i = j
0 otherwise,

as well as:

W(t, p) =















rhsr(a) if i = j
rhsr (aout) if j = parent(i)
rhsr(ain j ) if i = parent( j)
0 otherwise.

2 Though it may be that rules from different membranes are the same in terms of the multisets defining their left hand and
right hand sides, we assume here that evolution rules associated with different membranes can be distinguished, e.g., by giving
them each their own name (an injective label).
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Figure 2 shows the result of the above translation for the basic membrane system in Figure 4. Note that
it immediately follows from the construction that thePTL-netPTL(BMS) is spanned overµ .

The PTL-net PTL(BMS) provides afaithful representation of the behaviour of the basic membrane
systemBMS. To capture this very close relationship, we define two bijective mappings,ν andρ , which
allow us to move betweenBMSandPTL(BMS):

• for every markingM of PTL(BMS), ν(M) = (w1, . . . ,wm) is the configuration ofBMSgiven by
wi(a) = M(pa

i ), for every objecta and everyi.

• for every stepU of PTL(BMS), ρ(U) = 〈r1, . . . ,rm〉 is the vector multi-rule ofBMS given by
ri(r) =U(tr

i ), for every ruler ∈ Ri and everyi.

It is then possible to establish a direct relationship between (the operation of) the original membrane
system and thePTL-net resulting from the above translation at the system level:

C
r

−→m C′ =⇒ ν−1(C) [ρ−1(r)〉m ν−1(C′)

M[U〉mM′ =⇒ ν(M)
ρ(U)
−→m ν(M′)

(1)

for all modes of executionm∈{free,max, lmax}, configurationsC of BMSand markingsM of PTL(BMS).
Together withν(M0) =C0, this result means that them-step sequences ofPTL(BMS) faithfully represent
m-computations ofBMS, and the same applies to markings and configurations. Crucially, we obtain

Theorem 1 For eachm ∈ {free,max, lmax},

CRGm(PTL(BMS))∼φ ,ν CRGm(BMS) ,

where the mappingν is defined as above, andφ(tr
i ) = r, for every transitiontr

i of PTL(BMS).

The above theorem captures the very tight behavioural correspondence betweenBMSandPTL(BMS),
allowing to apply analytical techniques developed for Petri nets in the analysis of membrane systems.
For example, one can employ the invariant analysis based on linear algebra [26], or use the causality se-
mantics approach of Petri nets based on occurrence nets, as first outlined in [12]. In this paper, we show
how techniques used to synthesise Petri nets could be employed in order to construct basic membrane
systems from their intended behaviours as represented by step transition systems. First, however, we
provide a translation fromPTL-nets spanned over membrane structures to basic membrane systems.

Let PTL= (P,T,W, ℓ,M0) be aPTL-net spanned over a membrane structureµ . For such aPTL-net,
we construct the corresponding basic membrane systemBMS(PTL) overµ in the following way:

• P is the set of objects;

• the initial configuration isν ′(M0) where, for every markingM of PTL,

ν ′(M) = (M|ℓ−1(1)∩P, . . . ,M|ℓ−1(m)∩P) ;

• each transitiont ∈ T with t• = {p1, . . . , pk} has a corresponding evolution ruleφ ′(t) of the form
t : •t →{a1, . . . ,ak} where, fori = 1, . . . ,k,

ai =











pi if ℓ(pi) = ℓ(t)

pi
out if ℓ(pi) = parent(ℓ(t))

pi
inℓ(pi )

if ℓ(t) = parent(ℓ(pi))
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• for each membranei ∈ µ , the set of evolution rules is given byRi = {φ ′(t) | ℓ(t) = i}.

Again, the translation results in a very close behavioural correspondence.

Theorem 2 For eachm ∈ {free,max, lmax},

CRGm(PTL)∼φ ′,ν ′ CRGm(BMS(PTL)) ,

where the mappingsφ ′ andν ′ are defined as above.

It follows from Theorems 1 and 2 that the problem of synthesisof basic membrane systems from
step transition systems is equivalent to the problem of synthesis ofPTL-nets spanned over membrane
structures. It therefore suffices to solve the latter, and inthe next section we describe a solution based on
the notion of a region of a step transition system.

4 Synthesising nets corresponding to membrane systems

The Petri net synthesis problem we consider is formulated asfollows.

Problem 1 Given are a finite set T , a membrane structureµ , a mappingℓ : T → µ ,m∈{free,max, lmax},
and TS= (Q,A ,q0) which is a finite step transition system over T .
Construct aPTL-net PTL= (P,T, ℓ,M0) spanned overµ such that CRGm(PTL)∼ TS, andℓ is an exten-
sion of the mapping defined for T .

As demonstrated in [4], synthesis problems like Problem 1 can be solved using techniques coming
from the theory of regions of transition systems (see, e.g.,[1, 7, 18]). Intuitively, a region represents a
single place in a hypothetical net generating the given transition system. Regions are used both to check
whether a net satisfying the conditions can be constructed and, if the answer turns out to be positive, to
construct such net.

In this particular case, aregionof the step transition systemTSconsists of three mappings

reg=
(

σ : Q→ N , ı : T → N , ω : T → N
)

(2)

such that, for every arcq
α
−→ q′ of TS,

σ(q)≥ ω(α) and σ(q′) = σ(q)−ω(α)+ ı(α) . (3)

Hereω(α) = ∑t∈T α(t) ·ω(t) and similarlyı(α) = ∑t∈T α(t) · ı(t). In a region of the form (2) repre-
senting a placep, σ(q) is the number of tokens inp in the marking corresponding to the nodeq, ω(t)
represents the weight of the arc fromp to transitiont, andı(t) represents the weight of the arc fromt
to p. It is then natural to require in (3) thatp contains enough tokens not to block a stepα executed atq,
and also to ensure that the number of tokens inp before and after executingα is consistent with the total
arc weight of the stepα in relation top.

In the case of Problem 1, one also needs to take into account the fact that the targetPTL-net must
be spanned overµ . This imposes additional constraints on allowed regions (places) and the location
mappingℓ. We call a regionreg as in (2) with a locationℓ(reg) ∈ µ compatible withthe membrane
structureµ if the following hold, for everyt ∈ T:

• if ω(t)> 0 thenℓ(t) = ℓ(reg); and

• if ı(t)> 0 thenℓ(t) = ℓ(reg) or (ℓ(t), ℓ(reg)) ∈ µ or (ℓ(reg), ℓ(t)) ∈ µ .
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The set of all such regions will be denoted byPµ . Note that ifreg is such thatω(t) > 0, for at least one
t ∈ T, thenℓ(reg) is uniquely determined; otherwise we always chooseℓ(reg) to be the membrane which
is higher up in the tree structure ofµ than any other suitable candidate. As a result, we can leaveℓ(reg)
implicit.

Finally, Problem 1 should be feasible in the sense that the transition systemTScan be realised by a
suitable net. There are two necessary and sufficient conditions for realisability (see [4, 17]):

• state separation: for every pair of distinct states of the transition system there is a region (a marked
place) distinguishing between them; and

• forward closure: there are sufficiently many places defined by regions of the transition system to
disallow steps not present in the transition system.

First we describe how all places can be found that potentially provide a solution to Problem 1; in other
words, all the regions (2) of the transition systemTSwhich are compatible withµ .

Finding compatible regions. Let T, µ , ℓ : T → µ andTS= (Q,A ,q0) be as in Problem 1. Assume
thatQ= {q0, . . . ,qh} andT = {t1, . . . , tn}. We use three vectors of non-negative variables:

x = x0 . . .xh y = y1 . . .yn z = z1 . . .zn .

We also denotep = xyz and define a homogeneous linear system

P :

{

xi ≥ α · z
x j = xi +α · (y− z)

for all qi
α
−→ q j in TS

whereα · z denotesα(t1) ·z1+ · · ·+α(tn) ·zn and similarly forα · (y− z).
The regions (2) ofTSare then determined by the integer solutionsp of the systemP assuming that,

for 0≤ i ≤ h and 1≤ j ≤ n,

σ(qi) = xi ı(t j) = y j ω(t j) = zj

The set of rational solutions ofP forms a polyhedral cone inQh+2n+1. As described in [3], one
can effectively compute finitelymany integer generating raysp1, . . . ,pk of this cone such that any in-
teger solutionp of P can be expressed as a linear combination of the rays with non-negative rational
coefficients:

p =
k

∑
l=1

cl ·pl .

Such rayspl are fixed and (some of them) turned into net places if Problem 1has a solution. More
precisely, ifpl is included in the constructed net, then

M0(pl ) = xl
0 W(pl , ti) = zl

i W(ti ,pl) = yl
i , (4)

whereM0 is the initial marking of the target net, andti ∈ T.
Clearly, not all such rays can be considered for the inclusion in the net being constructed, as the

corresponding regions have to be compatible withµ . We therefore ensure through a simple check that
the generating raysp1, . . . ,pk are compatible withµ , deleting in the process those which are not. Note
that anyp ∈ Pµ is a non-negative linear combination of rays compatible with µ .

Having found the generating rays compatible withµ , we proceed to check whether Problem 1 has
any solutions at all.
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Checking state separation. Let TS= (Q,A ,q0) be as in Problem 1. We take in turn each pair of dis-
tinct states,qi andq j , of Q and decide whether there existsp = (σ , ı,ω) ∈ Pµ with coefficientsc1, . . . ,ck

such thatσ(qi) = xi 6= x j = σ(q j). Since the latter is equivalent to

k

∑
l=1

cl ·x
l
i 6=

k

∑
l=1

cl ·x
l
j ,

one can simply check whether there exists at least onepl (called awitness[6]) such thatxl
i 6= xl

j .

Checking forward closure. Again, letTS= (Q,A ,q0) be as in Problem 1, andm ∈ {free,max, lmax}.
First, we take in turn each stateqi of Q, and calculate the set ofregion enabledsteps, denoted by
regStepsqi

. Intuitively, region enabled steps are those that cannot bedisabled (or blocked) by compatible
regions.

To build regStepsqi
one only needs to consider nonempty stepsα with |α | ≤ m·Max, whereMax is

the maximum size of steps labelling arcs inTS, andm is the number of membranes ofµ . The reason is
that, for each membranei ∈ µ there exists a compatible region(σ , ı,ω) ∈ Pµ (called awitness) such that
σ(Q) = {Max} and, for everyt ∈ T,

ω(t) = ι(t) =
{

1 if ℓ(t) = i
0 otherwise.

Taken together, all such regions block any stepα with |α |> m·Max.
For each nonempty stepα with |α | ≤ m·Max it is the case thatα /∈ regStepsqi

iff for somep ∈ Pµ
with coefficientsc1, . . . ,ck we havexi < α · z. Since the latter is equivalent to

k

∑
l=1

cl · (x
l
i −α · zl )< 0 ,

one simply checks whether there exists at least onepl (again called awitness) such thatxl
i −α · zl < 0.

Having determined the region enabled steps, in order to establish forward closure we need to verify
that, for every stateq∈ Q,

tsStepsq =











regStepsq if m= free

{α ∈ regStepsq | ¬∃t ∈ T : α +{t} ∈ regStepsq} if m= max

{α ∈ regStepsq | ¬∃t ∈ T : α +{t} ∈ regStepsq ∧ ℓ(t) ∈ ℓ(α)} if m= lmax.

Constructing the solution net. If the above checks for the feasibility of Problem 1 are successful, one
can construct a solutionPTL-net spanned overµ by taking all the witness rays and regions, and treating
them as places in the way indicated in (4). The resulting netPTLsatisfies

CRGm(PTL)∼ TS.

5 Concluding remarks

We have described how one can adapt a solution to the Petri netsynthesis problem based on regions of
step transition systems, so that the resulting method can beused to construct basic membrane systems
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with a specific behaviour. Moreover, there are other synthesis results developed for Petri nets which can
be employed to extend the proposed solution in several directions, two of which are briefly mentioned
below.

In Problem 1 it is assumed that the association of transitions with membranes is given. This can
be relaxed and one can aim at synthesising membrane systems without such an association, or even
without being given a membrane structure (in such a case, thesynthesis procedure should construct a
membrane structure as well). For such a modification, there already exist results which can be used to
develop a solution. More precisely, the method of ‘discovering’ localities in [17] works forPTL-nets
with localised conflicts (where transitions which share an input place are co-located). Since allPTL-nets
spanned over membrane structures have localised conflicts,the result in [17] can be adapted to work for
basic membrane systems.

Evolution rules of membrane systems are often equipped withpromoters and inhibitors. Both fea-
tures have direct counterparts in Petri nets in the form of activator and inhibitor arcs, and suitable transla-
tions between membrane systems and Petri nets can be developed as described in [9, 14]. Moreover, the
synthesis technique based on regions of step transition systems works also forPTL-nets extended with
activator and inhibitor arcs [16]. In fact, there is a general setting of so-calledτ-nets and corresponding
τ-regions [1, 4]. Here the parameterτ is a general and convenient way of capturing different typesof
connections (arcs and their combinations) between places and transitions, removing the need to re-state
and re-prove the key results every time a new kind arcs is introduced. Note that the recently introduced
SET-nets [13, 14] (with qualitative rather than quantitative resource management) and set membrane
systems [10] can be treated within the general theory ofτ-net synthesis based on regions of transition
systems [11].
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[20] G.Păun: Membrane Computing, An Introduction. Springer-Verlag, Berlin Heidelberg New York (2002)
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