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We study monoidal profunctors as a tool to reason and structure pure functional programs both from
a categorical perspective and as a Haskell implementation. From the categorical point of view we
approach them as monoids in a certain monoidal category of profunctors. We study properties of
this monoidal category and construct and implement the free monoidal profunctor. We study the
relationship of the monoidal construction to optics, and introduce a promising generalization of the
implementation which we illustrate by introducing effectful monoidal profunctors.

1 Introduction

Functors, applicative functors [14], monads [16, 22], profunctors, and arrows [4, 5] are by now part of the
vocabulary of the programmer who writes mathematically structured programs. In order to understand
and develop these structures both the categorical view and the programming view have been helpful. For
example, Lindley et al. [12] compare these structures from the point of view of (typed) programming
languages, and Rivas and Jaskelioff [20] compare them from the point of view of monoidal categories.
In this last work, both monads and applicative functors are seen as monoids in a monoidal category
of endofunctors. Monads use functor composition as tensor, whereas applicative functors use the Day
convolution as tensor. Likewise, arrows can be seen as monoids in a monoidal category of (strong)
profunctors.

However, given that the Day convolution can also be a tensor of profunctors there is another structure
yet to be studied. In this work we study monoidal profunctors, a structure obtained from considering
monoids in a category of profunctors taking the Day convolution as tensor, hence filling the gap in the
following table:

functor applicative monad
profunctor ???? arrow

Table 1: Structure relations
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Monoidal profunctors are a categorical structure with two components: an identity computation and
a generic parallel composition.

Therefore, with this paper we aim to gather the knowledge about monoidal profunctors and study
their application in the context of functional programming.

After some mathematical background (Section 2), we introduce monoidal profunctors as monoids in
a monoidal category and study some of their properties (Section 3). Then, in Section 4, we implement
these ideas in Haskell and provide some instances. We show the free monoidal profunctor and a Haskell
implementation in Section 5. In Section 6, we present an application of monoidal profunctors to optics [1]
and observe connections with well-known structures such as traversals and grates [19, 17]. In Section 7,
we generalize the implementation to other categories and illustrate its application to effectful monoidal
profunctors.

2 Mathematical background

2.1 Monoidal Categories and Monoids

A monoidal category [20] gives us a minimal framework for defining the categorical version of a monoid.

Definition 2.1. A monoidal category is a sextuple (C , ⊗, I, α , ρ , λ ) where

• C is a category;

• ⊗ : C ×C → C is a bifunctor;

• I is an object called unit;

• ρA : A⊗ I→ A, λA : I⊗A→ A and αABC : (A⊗B)⊗C→ A⊗ (B⊗C) are three natural isomor-
phisms.

If the isomorphisms ρ , λ and α are identities then the monoidal category is called strict, if there is a
natural isomorphism γAB : A⊗B→ B⊗A the monoidal category is called symmetric.

A monoidal category is closed if there is an additional functor, called the internal hom, ⇒: C op×
C → Set such that C (A⊗B,C) ∼= C (A,B⇒C), natural in A, B and C, objects of C . The witnesses of
this isomorphism are called currying and uncurrying. In Set, with ⊗ = ×, A⇒ B is just the hom-set
A→ B.

Definition 2.2. A monoid in a monoidal category C is the tuple (M,e,m) where M is an object of C ,
e : I→M is the unit morphism and m : M⊗M→M is the multiplication morphism, satisfying

1. Right unit: m◦ (id⊗ e) = ρMMM

2. Left unit: m◦ (e⊗ id) = λMMM

3. Associativity: m◦ (m⊗ id) = m◦ (id⊗m)◦αMMM

2.2 Profunctors

A profunctor generalizes the notions of function relation and bimodule [10].

Definition 2.3. Given two categories C and D , a profunctor from C to D is a functor P : C op×D→ Set,
consisting of:

• for each a object of C and b object of D , a set P(a,b);

• for each a object of C and b,d objects of D , a function (left action) D(d,b)×P(a,d)→ P(a,b);
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• for all a,c objects of C and b object of D , a function (right action) P(a,b)×C (c,a)→ P(c,b).

This notion is also known as a Bimodule or a (C ,D)-module, and also as a distributor.
Since a profunctor is a functor from the product category C op×D to Set, it must satisfy the functor

laws.

P(1C,1D) = 1P(C,D)

P( f ◦g,h◦ i) = P(g,h)◦P( f , i)

An example of a profunctor is the hom functor Hom : C op ×C → Set, written as A→ B when
C = Set, and its actions are just pre-composition and post-composition of set functions.

Definition 2.4. Let C and D be small categories, Pro f (C ,D) is the profunctor category consisting of
profunctors C op×D → Set as objects, natural transformations between profunctors as morphisms, and
vertical composition to compose them. The fact that C and D are small categories will always be implied
when some statement about the category Pro f (C ,D) is present. We will call this category Pro f when
the categories C and D are clear from the context.

The profunctor category inherits some structure from the category Set such as binary products given
by (P×Q)(S,T ) = P(S,T )×Q(S,T ) and binary coproducts given by (P+Q)(S,T ) = P(S,T )+Q(S,T ),
where ×,+ are the respective universal constructions from Set. There are also terminal and initial pro-
functors given by 1p(S,T ) = {∗} and 0p(S,T ) = /0, i.e., they are just constant maps to the initial and
terminal object of Set, respectively.

2.3 Day Convolution

Definition 2.5. Let E be a small monoidal category and F,G : E → Set, then the Day convolution [2] of
F and G is another functor (in T ) given by the coend

(F ?G)T =
∫ XY

FX×GY ×D(X⊗Y,T ). (1)

One can work with this coend in the category Pro f (C ,D) of profunctors, that is, letting E =C op×D
in the above definition, enabling us to derive the following Day convolution for profunctors.

(P?Q)(S,T )∼=
∫ ABCD

P(A,B)×Q(C,D)×C (S,A⊗C)×C (B⊗D,T )

The profunctor J(A,B) = C (A, I)×C (I,B) is a unit for ?. When I = 1, where 1 is the terminal object,
then J(A,B)∼= B. When C = Set, this convolution gives rise to a monoidal profunctor (see next section),
when C is a Kleisli category on Set (same objects, but morphisms relies on a monad) gives the notion of
an effectful monoidal profunctor (see Section 7).

Proposition 2.6. Let C be a monoidal category, the profunctor J(A,B) = C (A, I)×C (I,B) is the right
and left unit of ?.

Proof. The calculation is standard coend calculus [13] using Yoneda’s lemma. This is a proof for J being
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a right unit, for the left one is analogous.

(P? J)(S,T ) =
∫ ABCD

P(A,B)× J(C,D)×C (S,A⊗C)×C (B⊗D,T )

∼=
∫ ABCD

P(A,B)×C (C, I)×C (I,D)×C (S,A⊗C)×C (B⊗D,T )

∼=
∫ ABD

P(A,B)×C (I,D)×C (S,A⊗ I)×C (B⊗D,T )

∼=
∫ AB

P(A,B)×C (S,A⊗ I)×C (B⊗ I,T )

∼=
∫ AB

P(A,B)×C (S,A)×C (B,T )

∼= P(S,T )

The associativity of ? is required to define a monoidal profunctor category.

Proposition 2.7. Let (C ,⊗,I) be a monoidal category and S,T two objects of C , the Day convolution for
profunctors is an associative tensor product (P?Q)?R∼= P? (Q?R).

Proof. The proof follows the same coend calculus pattern using Yoneda’s lemma whenever needed.

In order to be able to define monoids in a monoidal profunctor category, one needs to check that
when C and D are monoidal categories then (Pro f (C ,D)),?,J) is a monoidal category.

Theorem 2.8. Let C and D are monoidal small categories. Then (Pro f (C ,D)),?,J) is a monoidal
category.

Proof. Since C and D are monoidal categories, ? is a bifunctor by construction, and by Proposition 2.6
and 2.7 gives the desired morphisms, it follows that (Pro f (C ,D)),?,J) is a monoidal category.

Having obtained a monoidal category of profunctors, it is now possible to define a monoid in this
category. In order to do that, we will use the following proposition (as in the work of Rivas and Jaskelioff
[20]).

Proposition 2.9. Let D = C op⊗C , there is a one-to-one correspondence defining morphisms going out
of a Day convolution for profunctors

∫
XY

(P?Q)(X ,Y )→ R(X ,Y )∼=
∫

ABCD
P(A,B)×Q(C,D)→ R(A⊗C,B⊗D)

which is natural in P, Q and R.
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Proof. This proof uses the same coend calculus pattern with the help of Yoneda lemma and the fact that
the hom functor commutes with ends and coends [13].∫

XY
(P?Q)(X ,Y )→ R(X ,Y )

∼=
∫

XY
(
∫ ABCD

(P(A,B)×Q(C,D))×C (X ,A⊗C)×C (B⊗D,Y ))→ R(X ,Y )

∼=
∫

XYABCD
(P(A,B)×Q(C,D))×C (X ,A⊗C)×C (B⊗D,Y )→ R(X ,Y )

∼=
∫

XYABCD
(P(A,B)×Q(C,D))→ C (X ,A⊗C)→ C (B⊗D,Y )→ R(X ,Y )

∼=
∫

YABCD
(P(A,B)×Q(C,D))→ C (B⊗D,Y )→ R(A⊗C,Y )

∼=
∫

ABCD
P(A,B)×Q(C,D)→ R(A⊗C,B⊗D)

Whenever P = Q = R in the equation of Proposition 2.9 we get the following isomorphism, useful to
define a monoid in the profunctor category Pro f with Day convolution as its tensor.∫

XY
(P?P)(X ,Y )→ P(X ,Y )∼=

∫
ABCD

P(A,B)×P(C,D)→ P(A⊗C,B⊗D)

3 Monoidal Profunctors

We define monoidal profunctors as monoids in the monoidal category of profunctors of theorem 2.8.

Proposition 3.1. Let (C ,⊗,I) be a small monoidal category, P : C op×C → Set be a profunctor, and S,T
two objects of C . Then C (J(S,T ),P(S,T ))∼= P(I, I).

Proof.

C (J(S,T ),P(S,T ))∼= C (S, I)×C (I,T )→ P(S,T )
∼= C (S, I)→ C (I,T )→ P(S,T )
∼= C (S, I)→ P(S, I)
∼= P(I, I)

With all categorical tools in hand, the central notion of this work emerges from the category of
monoidal profunctors.

Definition 3.2. Let (C ,⊗, I) and (D ,⊗, I) be small monoidal categories. A monoid in the monoidal
profunctor category Pro f (C ,D) consists of a profunctor P, a unit e : P(I, I), and a multiplication given
by a natural family of morphisms mABCD : P(A,B)×P(C,D)→ P(A⊗C,B⊗D).

The unit is a natural transformation e : J→ P, which by proposition 3.1 is isomorphic to e : P(I, I). The
multiplication is a natural transformation m : P ?P→ P, which by proposition 2.9 is equivalent to the
family above.

As an example, consider (Set,⊗, I), where I is a singleton set, and the Hom profunctor P(A,B) =
A→ B, trivially gives us a monoidal profunctor.
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Proposition 3.3. Let (C ,⊗, I) and (D ,⊗,J) be a small monoidal categories, and P,Q monoidal pro-
functors, then

(P⇒ Q)(X ,Y ) =
∫

CD
P(C,D)→ Q(X⊗C,Y ⊗D)

defines an internal hom on the monoidal profunctor category Pro f (C ,D).

Proof. This proof follows the same steps as in the functor case [20] but adapting it for Pro f (C ,D).

This proposition states that the monoidal category of profunctors Pro f is closed.

4 Implementation in Haskell

We implement in Haskell the concepts of profunctors, Day convolution, and monoidal profunctors de-
fined before. Although other monoidal profunctors can be derived using other bifunctors, this work fo-
cuses only on the product. This section considers the (fictitious) category Hask as a small monoidal cat-
egory and Pro f (Hask,Hask) as the small category of profunctors to implement the typeclass MonoPro
which represents the desired monoid over this category.

4.1 Profunctors

A profunctor is an instance of the following class

class Profunctor p where
dimap :: (a→ b)→ (c→ d)→ p b c→ p a d

A profunctor is a functor, thus dimap needs to satisfy the functor laws.
The profunctor interface lifts pure functions into both type arguments, the first in a contravariant

manner, and the second in a covariant way. A morphism in the Pro f category can be represented, in
Haskell, as the type below.

type ( ) p q = ∀x y.p x y→ q x y

The function type (→), is the most basic example of a profunctor.
One notion captured by a Profunctor is that of a structured input and structured output of a function

SISO. This type generalizes Kleisli arrows which allow a pure input and a structured output.

data SISO f g a b = SISO {unSISO :: f a→ g b}
instance (Functor f ,Functor g)⇒ Profunctor (SISO f g) where

dimap ab cd (SISO bc) = SISO (fmap cd ◦bc◦ fmap ab)

4.2 The Day convolution type

The Day convolution is represented by the existential type

data Day p q s t = ∀a b c d.Day (p a b) (q c d) (s→ (a,c)) (b→ d→ t)

Since C (A, I) is isomorphic to a singleton set (unit of the cartesian product ×), and C (I,B)∼= B, one
can write, in Haskell, the type
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data I a b = I {unI :: b}

as the unit of the Day convolution. The following functions are representations of the right and left units.

ρ :: Profunctor p⇒ Day p I p
ρ (Day pab (I d) sac bdt) = dimap (fst ◦ sac) (λb→ bdt b d) pab

λ :: Profunctor q⇒ Day I q q
λ (Day (I b) qcd sac bdt) = dimap (snd ◦ sac) (λd→ bdt b d) qcd

The associativity of the Day convolution and its symmetric map also can be represented in Haskell
as the functions below.

α :: (Profunctor p,Profunctor q,Profunctor r)⇒ Day (Day p q) r Day p (Day q r)
α (Day (Day p q s1 f ) r s2 g) = Day p (Day q r f1 f2) f3 f4

where
f1 = first′ (snd ◦ s1)◦ s2
f2 d1 d2 = (d2,λx→ f x d1)
f3 = first′ (fst ◦ s1 ◦ (fst ◦ s2))◦diag
f4 b1 (d2,h) = g (h b1) d2

γ :: (Profunctor p,Profunctor q)⇒ Day p q Day q p
γ (Day p q sac bdt) = Day q p (swap◦ sac) (flip bdt)

where swap (x,y) = (y,x)

Functions ρ , λ , and α are natural isomorphisms. We leave the definition of the inverses as an exercise
for the reader.

4.3 MonoPro typeclass

We define a typeclass called MonoPro for implementing monoidal profunctors. The type p () () is a
representation in Haskell of the unit P(I, I). The multiplication is obtained from Proposition 2.9, which
gives the multiplication a type

∫
ABCD P(A,B)×P(C,D)→P(A⊗C,B⊗D) allowing to write the following

class in Haskell.

class Profunctor p⇒MonoPro p where
mpempty :: p () ()
(?) :: p b c→ p d e→ p (b,d) (c,e)

satisfying the monoid laws

• Left identity: dimap diag snd (mpempty? f ) = f

• Right identity: dimap diag fst (f ?mpempty) = f

• Associativity: dimap assoc−1 assoc (f ? (g?h)) = (f ?g)?h

where the helper functions diag :: x→ (x,x), assoc−1 :: ((x,y),z)→ (x,(y,z)), and assoc :: (x,(y,z))→
((x,y),z) are the obvious ones.

Another way to understand MonoPro is that it lifts pure functions with many inputs to a binary
constructor type, while a profunctor only lifts functions with one type as input parameter.
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lmap2 :: MonoPro p⇒ (s→ (a,c))→ p a b→ p c d→ p s (b,d)
lmap2 f pa pc = dimap f id (pa?pc)

rmap2 :: MonoPro p⇒ ((b,d)→ t)→ p a b→ p c d→ p (a,c) t
rmap2 f pa pc = dimap id f (pa?pc)

which can work together as one function

rlmap :: MonoPro p⇒ ((b,d)→ t)→ (s→ (a,c))→ p a b→ p c d→ p s t
rlmap f g pa pc = dimap f g (pa?pc)

which is the same behavior as the Day convolution of p with itself. Such convolution is the raison d’être
of a monoidal profunctor. A parallel composition is followed by a covariant and a contravariant lifting
of two pure functions matching the inner structure, which in our case is the product type (,).

If one chooses a suitable monoidal profunctor p and type s, MonoPro p s inherits the applicative
functor behavior naturally.

appToMonoPro :: MonoPro p⇒ p s (a→ b)→ p s a→ p s b
appToMonoPro pab pa = dimap diag (uncurry ($)) (pab?pa)

The MonoPro typeclass has a straightforward instance for the Hom profunctor (→) which satisfies
the monoidal profunctor laws trivially. A practical use for this instance is writing expressions in a point-
free manner. One can write an unzip′ :: Functor f ⇒ f (a,b)→ (f a, f b) function, for example, for any
functor that has as as input a pair type. A SISO is another example of a monoidal profunctor.

instance (Functor f ,Applicative g)⇒MonoPro (SISO f g) where
mpempty = SISO (λ → pure ())
SISO f ?SISO g = SISO (zip′ ◦ (f ?g)◦unzip′)

where zip′ ::Applicative f ⇒ (f a, f b)→ f (a,b) is the applicative functor multiplication. The most basic
notion of a monoidal profunctor is represented by this instance. It tells us that the input needs to be
a functor instance because of unzip′, the functions f and g are composed in a parallel manner using
the monoidal profunctor instance for (→) and then regrouped together using the applicative (monoidal)
behavior of zip′.

5 Free Monoidal Profunctors

There are different theorems with different hypothesis that ensure the existence of a free monoid in
a monoidal category. Here, we follow Rivas and Jaskelioff [20] and use the following proposition to
ensure the existence of the free monoidal profunctor.

Proposition 5.1 ([20]). Let (C ,⊗, I) be a monoidal category with internal homs. If C has binary co-
products, and for each A ∈ ob(C ) the initial algebra for the endofunctor I +A⊗− exists, then for each
A the free monoid A∗ exists and its carrier is the carrier of the initial algebra.

The category Pro f (C ,C ), when C is a small monoidal category, is monoidal with the Day convolu-
tion ? and the profunctor I as its unit, and also has binary coproducts and internal homs. The least fixed
point of the endofunctor Q(X) = J+P?X in Pro f (C ,C ) gives the free monoidal profunctor.

Following this definition we arrive at the following implementation of the free monoidal profunctor
(see also [15]).
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data FreeMP p s t where
MPempty :: t→ FreeMP p s t
FreeMP :: (s→ (x,z))→ ((y,w)→ t)→ p x y→ FreeMP p z w→ FreeMP p s t

where MPempty corresponds to mpempty, and FreeMP is the multiplication. The multiplication will be
apparent if one expands the definition of Day convolution for P and P∗. This interface stacks profunctors,
and in each layer, it provides pure functions to simulate the parallel composition nature of a monoidal
profunctor.

The following functions provide the necessary functions to build the free construction on monoidal
profunctors, toFreeMP insert a single profunctor into the free structure, and foldFreeMP provides a way
of evaluating the structure, collapsing it into a single monoidal profunctor.

toFreeMP :: Profunctor p⇒ p s t→ FreeMP p s t
toFreeMP p = FreeMP diag fst p (MPempty ())

foldFreeMP :: (Profunctor p,MonoPro q)⇒ (p q)→ FreeMP p s t→ q s t
foldFreeMP (Arr t) = dimap (\ → ()) (λ ()→ t) arrr
foldFreeMP (Prof h) (FreeMP f g p mp) = dimap f g ((h p)? foldFreeMP (Prof h) mp)

A free construction behaves like a list and, of course, MonoPro should provide a way to embed a
plain profunctor into the free context.

consMP :: Profunctor p⇒ p a b→ FreeMP p s t→ FreeMP p (a,s) (b, t)
consMP pab (MPempty t) = FreeMP id id pab (MPempty t)
consMP pab (FreeMP f g p fp) = FreeMP (id ? f ) (id ?g) pab (consMP p fp)

and with it, an instance of MonoPro for the free structure can be defined as

instance Profunctor p⇒MonoPro (FreeMP p) where
mpempty = MPempty ()
MPempty t ?q = dimap snd (λx→ (t,x)) q
q ?MPempty t = dimap fst (λx→ (x, t)) q
(FreeMP f g p fp)? fq = dimap (assoc◦ (f ? id)) ((g? id)◦assoc−1) (consMP p (fp? fq))

where assoc :: ((x,z),c)→ (z,(x,c)) and associnv′ :: (y,(w,d))→ ((w,y),d).
When p is an arrow, then FreeMP p is an arrow. In order to define this instance one needs to collapse

all parallel profunctors in order to make the sequential composition.

instance (MonoPro p,Arrow p)⇒ Category (FreeMP p) where
id = FreeMP (λx→ (x,())) fst (arr id) (MPempty ())
mp◦mq = toFreeMP (fromFreeMP mpK.◦ fromFreeMP mq)

instance (MonoPro p,Arrow p)⇒ Arrow (FreeMP p) where
arr f = FreeMP (λx→ (x,())) fst (arr f ) (MPempty ())
(∗∗∗) = (?)

It is good to remember that the type class Category is the one that has the two methods id and (◦),
which represents the notion of a category in Haskell.
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6 Monoidal profunctor optics - Monocles

Data accessors are an essential part of functional programming. They allow reading and writing a whole
data structure or parts of it [19]. In Haskell, one needs to deal with Algebraic Data Types (ADTs) such as
products (fields), sums, containers, function types, to name a few. For each of these structures, the action
of handling can be a hard task and not compositional at all. To circumvent this problem, different type
of data accessors were created, such as lenses, prisms, and traversables [9, 8]. These different notions of
modular (composable) data accessors [19] were grouped together and called optics. Optics help to tackle
the data accessor problem with the help of some category-theoretic constructions such as profunctors.

An optic is a general denotation to locate parts (or even the whole) of a data structure in which
some action needs to be performed. Each optic deals with a different ADT, for example, the well-known
lenses deal with product types, prisms with sum types, traversals with traversable containers, grates with
function types, isos deals with any type but cannot change its shape, and so on. A general optic is a
polymorphic type on a binary type constructor type with a typeclass restriction r on it.

type Optic r s t a b = ∀p.r p⇒ p a b→ p s t

The idea of an optic is to have an in-depth look into get/set operations, for example, if one has a “big”
data structure s, it is possible to extract a piece of it, say a, which can be written as a function get ::s→ a.
Whereas, if one provides a “big” structure s, and a value b (which is a part of s), we can modify s into
another “big” structure t (the structure might not change and the data still be s). This description is
modelled by the function set :: s→ b→ t.

Both functions (get and set) are specializations of Optic Strong yielding the type

type Lens s t a b = ∀p.Strong p⇒ p a b→ p s t

Here, Strong is a profunctor dependent typeclass having the method first′ :: p a b→ p (a,x) (b,x) (it
also has a method second′). For example, one can recover a get function using a lens [19, 17], and to
achieve that we use the profunctor Forget that is just the contravariant hom-functor:

newtype Forget r a b = Forget {runForget :: a→ r}
get :: Lens s t a b→ s→ a
get lens = runForget (lens (Forget id))

Lenses help to give the intuition behind this profunctorial optics machinery, but this work will solely
focus on the optic derived from a monoidal profunctor with⊗=×, which combines grates and traversals.
It will be called a monocle.

type Monocle s t a b = ∀p.MonoPro p⇒ p a b→ p s t

A Monocle locates every position of a product (tuple) type (which can be generalized to a finite
vector [6]) while a Lens locates parts of it. We now list some basic monocles to observe their behavior.
Furthermore, one can observe that those monocles can be generalized if dependent types are used.

each2 :: MonoPro p⇒ p a b→ p (a,a) (b,b)
each2 p = p?p
each3 :: MonoPro p⇒ p a b→ p (a,a,a) (b,b,b)
each3 p = dimap flat3i flat3l (p?p?p)
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each4 :: MonoPro p⇒ p a b→ p (a,a,a,a) (b,b,b,b)
each4 p = dimap flat4i flat4l (p?p?p?p)

As one can observe, each2 deals with parallel composition of the argument p with itself using the
MonoPro interface. The focus is on tuples of size 2. The monocles each3 and each4 deal with tuples of
size 3 and 4 and depend on the tuple flattening functions.

flat3l :: ((a,b),c)→ (a,b,c)
flat3l ((a,b),c) = (a,b,c)

flat3i :: (a,b,c)→ ((a,b),c)
flat3i (a,b,c) = ((a,b),c)

flat4l :: (((a,b),c),d)→ (a,b,c,d)
flat4l (((a,b),c),d) = (a,b,c,d)

flat4i :: (a,b,c,d)→ (((a,b),c),d)
flat4i (a,b,c,d) = (((a,b),c),d)

To have a better understanding of those Monocles we adapt the representation theorem of Jaskelioff
and O’Connor [6] from functors to profunctors.

Theorem 6.1 ([6]). (Unary representation for profunctors) Consider an adjunction between profunctors
−∗ `U : E →F , where F is small and E is a full subcategory of Pro f (Set,Set), the family of profunc-
tors IsoA,B(S,T ) = (S→ A)× (B→ T ) gives the following isomorphism natural in A,B, and dinatural
in S,T . ∫

P
UP(A,B)→UP(S,T )∼= Iso∗A,B(S,T ),

where Iso∗ is the free profunctor generated by Iso. Whenever the left-hand side end exists, the isomor-
phism holds.

Since the free monoidal profunctor exists and is of the form

P∗(S,T ) = (J+P?P∗)(S,T ),

this theorem helps us find the unary representation for monoidal profunctors.

Proposition 6.2. The unary representation for monoidal profunctors is given by the isomorphism:∫
P

P(A,B)→ P(S,T )∼= ∑
n∈N

(S→ An)× (Bn→ T )

where P ranges over all monoidal profunctors.

Proof Sketch. By theorem 6.1, it is enough to show that

U(Iso∗A,B)(S,T )∼= ∑
n∈N

(S→ An)× (Bn→ T ).

This is proven using Yoneda, the fact that Day convolution preserves coproducts, and induction on n.
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The right-hand side of the above isomorphism tells us that the source type can be split as a finite
number of copies of a type a, and a finite number of copies of a type b can be amalgamated in a type t,
which gives us a semantic for Monocles such as each2. Using categorical tools to reason about each2
(the other functions can be understood similarly), one can rewrite it as follows.

each2 :: MonoPro p⇒ (s→ (a,a))→ ((b,b)→ t)→ p a b→ p s t
each2 f g p = dimap f g (p?p)

Since theorem 6.1 holds, one can interchangeably use the Monocle or a more easy to reason type as
(s→ (a,a),(b,b)→ t), but the limitation of the latter is obvious.

Actions can now be performed on a monocle, given the desired location; one can read/write any
product (tuple) type.

foldOf :: Monoid a⇒Monocle s t a b→ s→ a
foldOf monocle = runForget (monocle (Forget id))

This action tells that given a Monocle (location) one can monoidally collect many parts a from the
big structure s (in this case, tuples). For example,

foldOf each3 :: Monoid a⇒ (a,a,a)→ a

behaves in the same way as the function fold does with lists, its evaluation on the value ("AA","BB","CC")
gives "AABBCC" as expected. The list function foldMap has a corresponding Monocle called foldMapOf ,

foldMapOf :: Monoid r⇒Monocle s t a b→ (a→ r)→ s→ r
foldMapOf monocle f = runForget (monocle (Forget f ))

which can locate all elements of a 3-element tuple with the expression

foldMapOf each3 :: Monoid r⇒ (a→ r)→ (a,a,a)→ r

as expected.
Every profunctorial optic has a so-called van Laarhoven [18] functorial representation. For a mono-

cle, this representation can be obtained by the following function.

convolute :: (Applicative g,Functor f )⇒Monocle s t a b→ (f a→ g b)→ f s→ g t
convolute monocle f = unSISO (monocle (SISO f ))

If we specialize convolute using the identity functor f = Id, one gets the definition of a Traversal,
which is a defined in the lens package [8].

traverseOf :: Applicative g⇒Monocle s t a b→ (Id a→ g b)→ (Id s→ g t)
traverseOf monocle = convolute monocle

One can specialize convolute using the applicative functor g = Id, to get the van Laarhoven represen-
tation for grates (which depends on a Closed type class of Profunctors) [17].

class Profunctor p⇒ Closed p where
closed :: p a b→ p (x→ a) (x→ b)

zipFWithOf :: Functor f ⇒Monocle s t a b→ (f a→ Id b)→ (f s→ Id t)
zipFWithOf monocle = convolute monocle

Monoidal profunctors with ⊗ = × capture the essence of a grate and a traversal. Grates have a
structured contravariant part (input) while traversals, the covariant one (output), while a monocle has
both structures.
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7 Effectful Monoidal Profunctors

The typeclass for monoidal profunctors MonoPro is defined in terms of a profunctor p over the (fictitious)
base category of Haskell types and functions usually known as Hask. However, the Day convolution
allows us to use morphisms from other categories, instead of using Hask everywhere. This section
presents a generalization of the class MonoPro which allows to use morphisms from other categories. We
illustrate its use by applying it to morphisms from a Kleisli category, hence allowing effects to be lifted
into the structure. The profunctor class will also have a modified form to lift two abstract morphisms
instead of pure functions.

class Category k⇒ CatProfunctor k p where
catdimap :: k a b→ k c d→ p b c→ p a d

A CatProfunctor represents a profunctor working with morphisms on an arbitrary category C instead
of Hask, and provides an interface to lift two of those abstract morphisms defined by the binary type
constructor k. This new class needs to be a multi-parameter type class because of the added constraint
Category.

class (Category k,CatProfunctor k p)⇒ CatMonoPro k p | p→ k where
cmpunit :: k s ()→ k () t→ p s t
convolute :: k s (a,c)→ k (b,d) t→ p a b→ p c d→ p s t

It is good to remember that in the CatMonoPro class, the type of cmunit is isomorphic to p () (), and
the type of convolute is isomorphic to p (a,c) (b,d). The functional dependency p→ k allows to write
the unit cmpempty having the same role as mpempty, and ?? also having the same role as MonoPro’s ?
satisfying the same laws as seen before.

cmpempty :: p () ()
cmpempty = unitmp id id

(??) :: CatMonoPro k p⇒ p a b→ p c d→ p (a,c) (b,d)
p ?? q = convolute id id p q

As an example, one can work with CatProfunctor and CatMonoPro alongside a Kleisli arrow. That
is, objects are types but morphisms are Kleisli arrows. The CatProfunctor instance in this example will
permit computations to be lifted covariantly and contravariantly. The CatMonoPro gives a convolutional
effect for computations and not just pure functions (as in MonoPro’s rlmap).

The Kleisli arrow is just a wrapped type:

newtype Kleisli m a b = Kleisli {runKleisli :: a→ m b}

having a lawful Category instance as follows.

instance Monad m⇒ Category (Kleisli m) where
id = Kleisli return
(Kleisli bmc)◦ (Kleisli amb) = Kleisli (λa→ (amb a)>>=bmc)

A datatype called Lift is a CatProfunctor with respect to the Kleisli arrow.

newtype Lift t m a b = Lift {runLift :: m a→ t m b}
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This polymorphic type represents a general version of the function lift used to lift monadic computations
into a monad transformer [3]. A monad transformer is a way to stack two or more monads together in
order to enable more than one effectful computation together [7, 11]. By packing lift into a profunctor
concerning the Kleisli arrow, one gets ways to precompose and post-compose computations with a monad
transformer’s inner monad. For example, suppose a monad transformer FooT t m (where m is a monad).
It is possible to use catdimap to compose effectful computations in m having its results in the monad
transformer.

instance (MonadT t,Monad m,Monad (t m))⇒ CatProfunctor (Kleisli m) (Lift t m) where
catdimap (Kleisli f ) (Kleisli g) (Lift h) = Lift $ λma→ let k = h (ma>>= f )

l = lift ◦g
in k>>= l

As an important note, Lift is a SISO with f = m, and g = t m. For a plain profunctor, m works only
with a Functor, t need not be a monad transformer, and t m needs only to be an Applicative. Hence this
instance is substantially different from the mentioned one.

To work with a CatMonoPro instance with respect to the Kleisli arrow, a notion of reordering effects
(commutativity) is needed.

instance (CommT t,Traversable m,Monad m,Monad (t m))⇒
CatMonoPro (Kleisli m) (Lift t m) where

cmpunit (Kleisli f ) (Kleisli g) = Lift (λm→ lift (m>>= f >>g ()))
convolute (Kleisli f ) (Kleisli g) (Lift h) (Lift l) =

Lift $ λms→ let (ma,mc) = unzip′ (ms>>= f )
in comm (fmap g (zip′ ((h ma),(l mc))))

After the fmap of function g, the remaining expression will have the type t m (m a). This can be
fixed by building a class giving a function comm :: (Monad m,Traversable m)⇒ t m (m a)→ t m a to
reorder those effects. A traversable instance is used here to provide that swap but other commutativity
notions [7] may be used.

class MonadT t⇒ CommT t where
comm :: (Monad m,Traversable m)⇒ t m (m a)→ t m a

This setup provides a use of the maybe monad transformer MaybeT with a monad like Writer which
is traversable (all necessary type class instances can be found in the mtl [3]).

instance CommT MaybeT where
comm (MaybeT mna) = MaybeT (mna>>= sequence)

Using the monoidal profunctor Lift helps us deal with multiple monads at once, enabling us to deal
with product types’ computations. Consider the effectful function lsplit, in writer monad, that splits in
two a list of String (or any Ord instance) by its order (in this case, lexicographical). One list for elements
less or equal to the head, and the other has bigger elements than the head. The effect is logging, telling
what the function is doing for debugging purposes.

lsplit :: [String ]→Writer [String] ([String ], [String])
lsplit (z : zs) = do
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xs← return (filter (<z) zs)
ys← return (filter (> z) zs)
tell ["Splitting: "++ show zs++" into "++ show xs++", "++ show ys ]
return (xs,ys)

The function rsplit below just concats two lists and logs this action.

rsplit :: String→ ([String], [String ])→Writer [String ] [String ]
rsplit l (xs,ys) = do

tell ["Merging: "++ show xs++", "++ l++", and "++ show ys ]
return (xs++[l ]++ ys)

A quicksort can be logged and stopped if an invalid value is found while keeping the logs of what the
algorithm did (in this case an empty string). The instance of CatMonoPro helps with the splitting, and
merging the sorted results inside this MaybeT/Writer context easily.

qsort :: [String ]→MaybeT (Writer [String ]) [String ]
qsort [ ] = return [ ]
qsort xs = do

guard (head xs 6≡ "")
(ls,rs) ← runLift (lconvolute (Kleisli lsplit) lift′ lift′) (return xs)
(ls′,rs′)← runKleisli ((Kleisli qsort)? (Kleisli qsort)) (ls,rs)
ss ← runLift (rconvolute (Kleisli (rsplit (head xs))) lift′ lift′) (return (ls′,rs′))
return ss

The functions lconvolute and rconvolute have id (from typeclass Category) function in the left and
right similar as lmap2 and rmap2. For example, lconvolute f = convolute f id and the right convolution
is similar changing the id order. It is also possible to observe the use of a plain monoidal profunctor
by using its multiplication since qsort is a Kleisli arrow which has a trivial MonoPro instance (it is
isomorphic to a SISO with f = Identity and g = MaybeT (Writer [String ])). Finally, the expression lift′

is Lift lift, that is, the monad transformer’s lift in the monoidal profunctor setting.

8 Related Work

Several of the results collected in this article are folklore. In the following, we point out the cases where
a publication mentioning them is known to us. Rivas and Jaskelioff introduce notions of computation
as monoids [20], and this work follows their path presenting another notion that is not in that work and
that has not been well explored in the community. The type class MonoPro is defined by Pickering,
Gibbons, and Wu [19], but it was not their main focus. The representation of Monocles is also found
in the work of Pickering, Gibbons and Wu [19] which states the relationship between a Monocle and
Traversals by using an optic called TraversalP. A similar representation of a Monocle was found in
the work of O’Connor [17] and is called FiniteGrate. This representation relies on a type class called
Power, isomorphic to MonoPro, which deals with tuples that use type-level naturals. Also in O’Connor’s
work, there is a mention of the type (Functor f ,Applicative g)⇒ f a→ g b which is called SISO here.
A profunctor optic called Traversables is defined by Román [21] which is also similar to Monocles.
However, in this work we study for the first time the monoidal profunctor semantics of the mentioned
optics. The effectful monoidal profunctor and its examples are also new.
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9 Conclusion

We have studied monoidal profunctors as monoids in a monoidal category of profunctors, shown that
such category is symmetric closed, and obtained the free monoidal profunctor. We have shown how
to implement monoidal profunctors in Haskell and have shown some applications related to optics and
a generalization to apply monoidal profunctors in a Kleisli category that we call effectful monoidal
profunctors. We would like to investigate applications of this extension to parallel and concurrent algo-
rithms.
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