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We develop a compositional approach for automatic and symbolic differentiation based on categor-
ical constructions in functional analysis where derivatives are linear functions on abstract vectors
rather than being limited to scalars, vectors, matrices or tensors represented as multi-dimensional
arrays.

We show that both symbolic and automatic differentiation can be performed using a differential
calculus for generating linear functions representing Fréchet derivatives based on rules for primitive,
constant, linear and bilinear functions as well as their sequential and parallel composition. Linear
functions are represented in a combinatory domain-specific language.

Finally, we provide a calculus for symbolically computing the adjoint of a derivative without
using matrices, which are too inefficient to use on high-dimensional spaces. The resulting symbolic
representation of a derivative retains the data-parallel operations from the input program. The com-
bination of combinatory differentiation and computing formal adjoints turns out to be behaviorally
equivalent to reverse-mode automatic differentiation. In particular, it provides opportunities for opti-
mizations where matrices are too inefficient to represent linear functions.

1 Introduction

Automatic differentiation (AD) [21] is the discipline of computing derivatives for functions given by
programs. It is used in gradient-based optimization, neural networks, probabilistic inference [3, sec. 4]
and has numerous applications in computer vision, natural language processing, computational science,
bioinformatics, quantitative finance, computational economics, and in many other areas. For example,
backpropagation, which is used in machine learning to train neural networks, is an instance of reverse
mode AD. Building tools to implement and compute derivatives from programs automatically, efficiently,
and precisely, has far-reaching impact potential.

1.1 Contributions

In this paper we develop a general framework for expressing and reasoning about functions, their deriva-
tives and the adjoints of these in combinatory form.

We make the following novel contributions:

• We present a general framework for constructing Hilbert spaces. The constructions freely combine
tensor products and direct sums. Direct sums generalize both homogeneous data types, such as
order-k tensors (scalars, vectors, matrices, and so on) and inhomogeneous types such as tuple
and record types. Abstract tensor products express tensor decomposition of matrices, which are
asymptotically more efficient than using matrices for low-rank matrices.
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2 Combinatory Adjoints and Differentiation

• We identify five general differentiation rules for calculating Fréchet derivatives, which represent
derivatives as linear functions, by structural recursion on functions given in combinatory form. The
combinatory form of a function thus distills its differential properties. Intuitively, differentiating a
function in point-full notation consists mostly of (implicitly) turning it into combinatory form.

• We exhibit the generalized product rule, which is applicable to arbitrary bilinear functions oper-
ating on spaces of any dimension as a general rule not previously exploited. Bilinear functions
on high-dimensional data are common, including matrix multiplication, outer product, dot prod-
uct, zip (Hadamard) product and any composition of a linear function with a bilinear function.
To differentiate a bilinear function we only need to know that it is bilinear since its derivative is
expressed in terms of itself.

• We provide affine interpretation of a function in combinatory form, which computes both the
output value of a function at a given input and returns a symbolic (term) representation of its
Fréchet derivative. Symbolic rather than functional representations facilitate optimization using
(multi)linear and tensor algebra equalities.

• We further demystify reverse-mode automatic differentiation by identifying its essence as sym-
bolically computing the adjoint of the Fréchet derivative in combinatory form. The adjoint of a
linear function f is a representation of its transpose, the continuation passing style version of f .
In adjoints linear continuations are represented by their duals, ordinary first-order vectors, which
facilitates and explains how a linear function can be executed efficiently in reverse.

• We provide an adjoint calculus for symbolically calculating the adjoints of linear functions in
combinatory form. We identify relational reduction and tensor contraction as natural parallel
linear operations since they provide their own adjoints.

• We illustrate how combinatory differentiation and combinatory adjoint calculation can be used to
derive the backpropagation code for neural networks such that all data parallelism is preserved.

More speculatively, we believe our combinatory setting is useful for a differential and adjoint calculus on
functions and linear functions. The Hilbert space setting seems to provide a promising setting in which
both database and analytic functions can be specified, differentiated and reversed by taking adjoints.

1.2 Outline

We assume basic familiarity with functional analysis, which, as a framework, generalizes both mul-
tivariate and tensor calculus by operating on arbitrary elements of structured vector spaces instead of
restricting them to tuples of scalars or multi-dimensional arrays that represent tensors. The relevant
notions are introduced in the remainder of this and the next section.

In Section 3 we informally present a list of primitive, constant, linear and bilinear analytic functions
that can be combined freely by sequential and parallel composition to complex analytic functions in
point-free notation. In Section 4 we then formulate a calculus for symbolically differentiating functions
in combinatory form such that the derivatives of parallel functions are rendered in point-free notation, as
parallel linear functions. In Section 5 we show how this gives rise to affine interpretation of an analytic
function in combinatory form: The interpreter returns not only the value of a function on its input, but
also a compact combinatory representation of its derivative whose size is largely independent of the
dimensionality of the vector spaces involved. In Section 6 we show how the inner product operator
can be used to uniquely represent linear continuations by ordinary first-order vectors. This gives rise
to symbolically computed adjoints, which run a linear function efficiently “in reverse” and thus provide
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reverse-mode AD. We illustrate combinatory differentiation on neural networks in Section 7 and discuss
related work in Section 8.

1.3 Background

Definition 1.1 (Fréchet derivative). For a function f : V →W on Banach spaces V,W , the linear function
A ∈V (W is the Fréchet derivative of f at v if it satisfies

f (v+dv)≈ f (v)+A(dv),

that is

lim
||dv||V→0

|| f (v+dv)− ( f (v)+A(dv))||W
||dv||V

= 0

where || . . . ||U is the norm that comes with the Banach space U .
The Fréchet derivative of f : V →W is the partial function f ′ : V → (V (W ) that maps a vector

v ∈V to the Fréchet derivative of f at v.

See Appendix A for other notions of derivatives, including Gateaux derivatives.

2 Sets and spaces

We provide general constructions for defining inner product spaces over R and their implicit completions
to real Hilbert spaces. These provide a model of symbolic derivatives as Fréchet derivatives.

An inner product space over R is a vector space V over R equipped with an inner product

� : V ×V →2 R

that is symmetric, v1� v2 = v2� v1, and positive definite, v� v > 0 for all v 6= 0. A real Hilbert space is
an inner product space over R that is also a complete metric space with respect to the distance function
d(v,w) = ‖v−w‖ where ‖v‖=

√
v� v.

A continuous function f : V →W on real Hilbert spaces V,W is linear if f (u+v) = f (u)+ f (v) and
f (k · v) = k · f (v); we write f : V (W if f is continuous and linear.

A continuous binary function � : U×V →W is bilinear if (u�) : V ( W and (�v) : U ( W are
linear for all u ∈ U,v ∈ V where (u�) and (�v) are defined by (u�)(v) = u � v = (�v)(u). We write
f : U×V →2 W if f is continuous and bilinear.

Proviso: Henceforth all functions will implicitly be continuous.

2.1 Sets

We provide a language for defining index sets. These are used to construct direct sum spaces.

X ,Y ::= n | X×Y | X +Y

where n∈N, n is the initial segment {1, . . . ,n} of natural numbers; S×T and S+T the Cartesian product,
respectively disjoint union of S and T .

The constructible index sets are finite, which ensure that the constructions are metrically complete.
We believe the theory, being essentially algebraic, can be extended to infinite denumerable sets. We stick
to finite index sets and thus finite-dimensional Hilbert spaces in this paper, however.
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2.2 Spaces

Below we provide constructions for Hilbert spaces generated by the following terms:

U,V,W ::= 0 | K | ⊕x∈XVx |V ⊗W

where Vx may depend on x ∈ X .

2.2.1 Atomic spaces

The trivial vector space 0 consists of the single element 0.
K stands for the underlying field of our vector spaces, here R. Its elements are the elements of R as

a field. Its operations as a vector space are the corresponding field operations.

2.2.2 Direct sum space

The Hilbert space V = ⊕x∈XVx for denumerable X is the (external) direct sum of a family of Hilbert
spaces Vx indexed by x ∈ X . Its elements are maps m from X such that m(x) ∈ Vx and ∑x∈X(m(x)�Vx

m(x)) < ∞. We write mx for the result of applying the map to highlight that x is an element of an index
set, not a vector. Its operations are defined by component-wise lifting, where the inner product is

(v�V v′) = ∑
x∈X

(vx�Vx v′x)

The summation is defined since ∑x∈X(vx�Vx v′x) ≤ ∑x∈X(vx�Vx vx)+∑x∈X(v′x�Vx v′x) < ∞. Note it is
trivially well-defined for finite X .

V comes with linear injection and projection functions

ι
X
y : Vy (⊕x∈XVx

π
X
y : ⊕x∈XVx (Vy

for y ∈ X , and the zipped apply operator

Πx∈X fx : ⊕x∈XVx→⊕x∈XWx

for a family of functions fx ∈Vx→Wx indexed by x ∈ X . They satisfy

π
X
y ◦Πx∈X fx ◦ ι

X
y = fy

π
X
z ◦Πx∈X fx ◦ ι

X
y = 0yz if y 6= z

where 0yz : Vy (Wz maps all vx ∈Vx to 0 ∈Wz. The zipped apply operator preserves linearity, that is

Πx∈X fx : ⊕x∈XVx (⊕x∈XWx

for fx : Vx (Wx. A special case of this is

∆ : ⊕x∈X(Vx (Wx)( (⊕x∈XVx (⊕x∈XWx)

defined by

∆(⊕x∈X fx)(⊕x∈X vx) = ⊕x∈X( fx(vx))

which will later play the role of gathering derivatives acting on the individual differentials of a collection
into a derivative that acts on all differentials in parallel.

We write V1× . . .×Vn or V1⊕ . . .⊕Vn for ⊕i∈nVi. In particular, V1×V2 = V1⊕V2 = ⊕i∈2Vi is the
direct sum of V1 and V2, whose elements are the pairs (v1,v2) such that v1 ∈V1 and v2 ∈V2.
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2.2.3 Copower space

For set X and space V , the copower V X is the direct sum, where each space in the family is the same
Vx =V :

V X =⊕x∈XV.

As special cases we have Rn as the space of n-ary vectors of scalars. In particular, V ×V = V 2. Note
that the exponents are sets, not numbers. This is reflected in the notation Rn: an element is a finite
map m from n to R, which can conveniently be written using tuple notation (m1, . . . ,mn). For example
(5,8,22) ∈ R3 is syntactic sugar for {1 7→ 5,2 7→ 8,3 7→ 22}.

For relation R⊆ X×Y where X ,Y are finite we define relational reduction

redR : V X (VY

(redR(v))y = ∑
(x,y)∈R

vx

Many useful functions can be defined in terms of relational reduction. Let Y ⊆ X be finite. The
functions

f X : V X →W X if f : V →W
repY : V (V X

∑Y : V X (V
+ : V 2 (V

dup : V (V 2

scann : V n (V n

〈 fy〉y∈Y : U (⊕y∈YVy if fy : U (Vy

[gx]x∈X : ⊕x∈XVx (W if gx : Vx (W

are defined by

f X = Πx∈X f

repY = red1×Y •ι1
1

∑
Y

= π
1
1 • redY×1

+ = ∑
2

dup = rep2

scann = red{(i, j)|1≤i≤ j≤n}

〈 fy〉y∈Y = Πy∈Y fy • repY

[gx]x∈X = ∑
X
•Πx∈X gx

2.2.4 Tensor product space

W =U⊗V is the tensor product space of U and V . Its finite elements are the formal terms generated by

w ::= 0 | k ·w | w1 +w2 | u⊗ v
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where k ∈ R,u ∈U,v ∈V that are identified modulo the vector space axioms and the equalities

(k · v)⊗w = k · (v⊗w) = v⊗ (k ·w)
(v1 + v2)⊗w = (v1⊗w)+(v2⊗w)

v⊗ (w1 +w2) = (v⊗w1)+(v⊗w3).

We write [w]⊗ for the equivalence class of w under these equalities and define

0W = [0]⊗
v1 +W v2 = [v1 + v2]⊗

k ·W v = [k · v]⊗

W is metrically complete for finite-dimensional U,V ; otherwise metric completion of the equivalence
classes [w]⊗ is required. The equalities guarantee that the functions are well-defined and (W,0W ,+W , ·W )
forms a Hilbert space such that

⊗ : U×V →2 W

is bilinear, that is pointwise linear in each of its arguments. Indeed, the operation ⊗ and the space U⊗V
are constructed to be universal: For every bilinear function � : U ×V →2 T there exists a unique linear
function �̄ : U⊗V ( T such that �= �̄ ◦⊗.

Furthermore, we define the inner product

� : W ×W →2 R

to be the unique bilinear function that satisfies

(u1⊗ v1)� (u2⊗ v2) = (u1�u2) · (v1� v2).

3 Functions in combinatory form

We provide a domain-specific language for specifying analytic functions on Hilbert spaces in combi-
natory form, that is in point-free notation. In combinatory form, all subterms are closed functions; in
particular, a subterm does not have implicit dependencies on an environment. This facilitates formulation
of a compositional differential calculus for calculating Fréchet derivatives.

3.1 Tensor contraction

We provide a language constant for a single bilinear function. It would be sufficient to provide the
tensor product ⊗ as sole bilinear function since it is universal in the sense that all bilinear functions
f : U×V →2 W factor into f = f̄ •(⊗) for a unique f̄ : U⊗V (W , the characteristic universal property
of ⊗. For reasons to become clear later, we provide tensor contraction

∗ : (W ⊗V )× (V ⊗U)→2 (W ⊗U)

instead. It is defined as the unique bilinear function satisfying

(w⊗ v)∗ (v′⊗u) = (v� v′) · (w⊗u)
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3.2 Unitary operators

We have a large number of useful natural unitary operators; these are natural linear isomorphisms that
are isometric, i.e. preserve norms. We list a few of them here.

〈〈〈 : V ←→1 R⊗V : | |
〉〉〉 : V ←→1 V ⊗R : | |

T : (V ⊗W )←→1 (W ⊗V ) : T

assoc : ((U⊗V )⊗W )←→1 (U⊗ (V ⊗W )) : assoc−1

distrib : (⊕x∈XVx)⊗W ←→1 ⊕x∈X(Vx⊗W ) : distrib−1

zip : (⊕x∈XVx)⊕ (⊕x∈XWx)←→1 ⊕x∈X(Vx⊕Wx) : unzip

They are defined by

〈〈〈v = 1⊗ v

|k⊗ v| = k · v
v〉〉〉 = v⊗1

|v⊗ k| = k · v
(v⊗w)T = w⊗ v

assoc((u⊗ v)⊗w) = u⊗ (v⊗w)

assoc−1(u⊗ (v⊗w)) = (u⊗ v)⊗w

distrib((⊕x∈X vx)⊗w) = ⊕x∈X(vx⊗w)

(zip(v,w))x = (vx,wx)

where ⊕x∈X vx is notation for the element of ⊕x∈XVx that maps x to the value vx ∈Vx. It turns out that the
inverse of a unitary operator is also its adjoint; this will be useful later.

A derived isometric isomorphism is

V X ⊗WY ←→1 (V ⊗W )X×Y

and in particular
Rm⊗Rn←→1 Rm×n.

In other words, all the elements of the tensor product of Rm and Rn can be represented by m×n matrices.
Our construction of Rm⊗Rn using symbolic operators 0, ·, + and ⊗ provides more space efficient
representations for low-rank matrices, however. For example, every rank-1 m×n matrix corresponds to
v⊗w, its tensor decomposition, for some v ∈ Rm,w ∈ Rn. This term representation is of size O(m+
n) rather than requiring m · n entries in a matrix. (Note that a rank-1 matrix may have no 0-entries.)
Matrix/vector multiplication can be performed with only n multiplications instead of m ·n multiplications
when using the matrix representation.

The tensor and inner product operators are special cases of tensor contraction via the 〈〈〈 and 〉〉〉 unitary
operators:

v⊗w = v〉〉〉 ∗ 〈〈〈w
v1� v2 = |〈〈〈v1 ∗ v2 〉〉〉|

Note that these are parsed as (v〉〉〉)∗ (〈〈〈w) and |(〈〈〈v)∗ (w〉〉〉)|, respectively.
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3.3 Linear functions

In addition to the unitary operators, the following are linear functions:

(v∗) : V ⊗U (W ⊗U if v ∈W ⊗V
(∗w) : W ⊗V (W ⊗U if w ∈V ⊗U
0V,W : V (W

ιX
y : Vy (⊕x∈XVx if y ∈ X

πX
y : ⊕x∈XVx (Vy if y ∈ X

Πx∈X fx : ⊕x∈XVx (⊕x∈XWx if fx : Vx (Wx

∆ f : ⊕x∈XVx (⊕x∈XWx if f :⊕x∈X(Vx (Wx)
〈 fx〉x∈X : V (⊕x∈XWx if fx : V (Wx

redR : V X (VY if R⊆ X×Y is compact
f X : UX (V X if f : U (V

idV : V (V
g• f : U (W if f : U (V,g : V (W

3.4 Constant functions

We have the constant functions
Kw : V →W if w ∈W

defined by Kw(v) = w.

3.5 Primitive functions

We furthermore assume we have named primitive functions p1, . . . , pn denoting analytic functions with
associated derivative functions that are expressible as combinator expressions. For example, for each
k ∈ Z/{0} we have the function k : R→ R with associated derivative ( k)

′
(x) = ((k · xk−1)·). Note

the · at the end; it is there since the Fréchet derivative at x is not a value from R, but an element of
R(R, which is isomorphic with, but not the same as, R. Similarly, we have ln : R→R with associated
ln′(x) = (x−1·); sin : R→ R with sin′(x) = ((cosx)·); cos : R→ R with cos′(x) = ((−sinx)·) and so on.
Note that ln is only defined on R+ = {x ∈ R | x > 0} and is thus, in particular, not analytic on all of R.

We defer the subtleties of handling partially defined and not-everywhere differentiable functions in
this paper to future work and assume henceforth for simplicity that our primitive functions are analytic
on their entire domain.

In practice almost all primitive functions are functions on scalars and returning scalars. Primitive
operators and functions on high-dimensional spaces are typically linear or bilinear.

3.6 Function composition

Every constant, linear, bilinear and primitive function constructed so far is an analytical function.
Finally we have sequential and parallel composition of analytical functions:

g◦ f : U →W if f : U →V,g : V →W
Πx∈X fx : ⊕x∈XVx→⊕x∈XWx if fx : Vx→Wx for all x ∈ X ,X finite
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4 Fréchet differential calculus

Recall that f ′ : V → (V (W ) denotes the Fréchet derivative of f : V →W . The linear function f ′(v) is
the tangent of f at v. We provide differentiation rules for functions in combinatory form.

Theorem 4.1. The following differentiation rules are valid for analytic functions on Hilbert spaces:

(g◦ f )′(v) = g′( f (v))• f ′(v) (1)

Kw
′(v) = 0 (2)

h′(v) = h if h : V (W (3)

�′(u,v) = (u�)•π2 +(�v)•π1 if � : U×V →2 W (4)

(Πx∈X fx)
′(v) = ∆((Πx∈X fx

′)(v)) if fx : Vx→Wx (5)

Rule 1 is the chain rule for sequential composition. It expresses that the derivatives of g at f (v) and
of f at v are combined by composition • of linear functions.

Rules 2, 3 and 4 are for constant, linear and bilinear functions, respectively. Note in particular
Rule 4, the generalized product rule. It is applicable to any bilinear function. The derivative of any
bilinear function can be written in terms of the function itself; we do not need access to its definition,
only its name. The same is true for linear functions; they are their own derivatives. All we need to know
is that a function is linear to differentiate it. We will see that adjoint differentiation, which underlies
reverse-mnode AD, requires processing its definition, however.

Finally, Rule 5 is for differentiating parallel composition. It is worth looking at special cases of it.
Let X = 2, that is Πx∈2 fx = f1× f2 : V1×V2→W1×W2. We can calculate

( f1× f2)
′(v1,v2) = ∆(( f1

′× f2
′)(v1,v2))

= ∆( f1
′(v1), f2

′(v2))

= f1
′(v1)× f2

′(v2)

Let us consider f X = Πx∈X f where f ∈V →W .

( f X)
′
(v) = (Πx∈X f )′(v)

= ∆((Πx∈X f ′)(v))

= ∆( f ′X(v))

In words, to differentiate f X at value v ∈V X , we need to compute the derivative of f at each element vx

of V X . This yields an element of (V (W )X ; finally, ∆ gathers these component-wise derivatives into a
single derivative.

5 Affine interpretation

A function h : V →W is affine if it is the sum of a constant and a linear function, that is

h(v) = w+g(v)

for some w ∈W and g ∈ V ( W . Note that w and g are uniquely determined by h. We call them the
constant and linear component of h, respectively, and write h ∈V →≤1 W if h is affine.
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(g◦ f )[1](x) = let (fx, f ′x) = f [1](x) in
let (gfx,g′fx) = g[1](fx) in

(gfx,g′fx• f ′x)
Kw

[1](x) = (w,0)
h[1](x) = (h(x),h) if h : V (W
�[1](x) = let (u,v) = x in

(u� v,(u�)•π2 +(�v)•π1) if � : U×V →2 W
(Πy∈Y fy)

[1](x) = let (w,d) = unzip((Πy∈Y (λx. fy
[1](x)))(x)) in

(w,∆(d)) if fy : Vy→Wy

Figure 1: Affine interpretation of functions in combinatory form. See Section 5.2 for an explanation of
the underlined let .

We say that g : V →≤1 W is the affine approximation of f : V →W at v ∈V and write f (v)≈ g if

lim
||dv||V→0

|| f (v+dv)−g(dv)||W
||dv||V

= 0

Proposition 5.1. A function has at most one affine approximation at v, written f [1](v), where f [1](v)(dv)=
f (v)+ f ′(v)(dv).

Thinking about differentiation in terms of computing affine approximations is useful since computing
derivatives compositionally requires computing a function’s value paired with its derivative [13]. The
components of the affine approximation of a function in combinatory form can be computed by structural
recursion. See Figure 1.

The parallel composition rule specializes to tuples and copowers as follows:

( f1× f2)
[1](x1,x2) = let (fx1, f

′x1) = f1
[1](x1),(fx2, f

′x2) = f2
[1](x2) in ((fx1, fx2),(f

′x1, f
′x2))

f X [1]
(v) = let (w,d) = unzip( f [1]

X
(v)) in (w,∆(d))

Note that unzipping the outputs of each component is the price we pay for separating the collective output
into a value and a derivative component.

Theorem 5.2. Assume p[1](v) = (p(v), p′(v)) for all primitive functions. Then f [1](v) = ( f (v), f ′(v)) for
all functions in combinatory form.

5.1 Automatic differentation

The affine approximation rules give rise to an interpreter

eval[1][[ ]] : Term(V →W )→V → Term(W × (V (W ))

where Term(V →W ) is a language for representing functions in combinatory form, including Term(V (
W ) as a (sub)language for representing linear functions in combinatory form: Just replace t [1] in Figure 1
by eval[1][[t]]. When applied to a combinatory term t denoting f and a concrete value v, it returns a term
containing the value w = f (v) and a combinatory representation t ′ denoting the derivative f ′(v). This
term t ′ can be optimized using the rules of linear and tensor algebra prior to applying an interpreter
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eval(0)[[ ]] : Term(V ( W )→ V →W to t ′ and an input differential value dv, which yields the output
differential f ′(v)(dv).

Behaviorally this corresponds to forward-mode automatic differentiation (AD), but is essentially
different. In elemental and tensor-based forward-mode AD [18, 1] we have an interpreter eval(f)[[ ]] for
a term t : Term(⊕i∈n(Vi

2)→⊕ j∈m(Vj
2)) representing f such that

eval(f)[[t]] : ⊕i∈n(Vi
2)→⊕ j∈m(Vj

2).

requires both values and associated differentials as inputs at the same time. It computes

eval(f)[[t]]((v1,dv1), . . . ,(vn,dvn)) = ((y1,dy1), . . . ,(ym,dym)).

where (y1, . . . ,ym) = f (v1, . . . ,vn) and (dy1, . . . ,dym) = f ′(v1, . . . ,vn)(dv1, . . . ,dvn).
The type of eval(f)[[t]] camouflages that the output values y1, . . . ,yn do not depend on the second

components dv1, . . . ,dvn, and that for fixed v1, . . . ,vn the dy1, . . . ,dym are linear functions of dv1, . . . ,dvn.
Note, in particular, that both values and differentials must be provided before execution can start.

In our formulation eval[1][[t]] requires no input differentials to run the code, only the input values
v1, . . . ,vn, which manifests that the output values do not depend on any differentials. Furthermore, the
derivative is returned as a term in a language that guarantees that it denotes a linear function.

5.2 Symbolic differentiation

The affine approximation rules are carefully written to facilitate symbolic differentiation by applying
eval[1][[t]] to a symbolic variable x. This amounts to specializing the code of eval[1][[ ]] to the concrete t
by partial evaluation.

The let -expressions without underlining can be eliminated by substitution, that is rewriting let (u,v)=
( f ,g) in g to g[ f/u,g/v] during partial evaluation. Since the let-bound variables have single occurrences
the size of the expression does not grow. The let -expression for bilinear functions should not be elimi-
nated, however, since its let-bound variables are used twice. Substituting them would cause expression
swell. Conversely, not substituting them avoids expression swell: The size of the symbolically differen-
tiated expression is linear in the size of the input expression. Retaining let in the output is the reason for
having

eval[1][[ ]] : Term(V →W )→V → Term(W × (V (W ))

rather than
eval[1][[ ]] : Term(V →W )→V → (W ×Term(V (W )).

This supports and generalizes to non-elemental symbolic differentiation that expression swell is a myth
[33]: Retaining sharing when applying the (generalized) product rule is both necessary and sufficient to
avoid it.

6 Adjoints

The dual vector space V ∗ of vector space V is the vector space of linear functionals, also called covectors,
V ( R where R is the underlying field of V . By the Riesz representation theorem, the inner product
induces an isomorphism dual defined by

dual : V (V ∗

dual(v) = (�v).
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In particular, dual−1(�v) = v, and v and (�v) are called duals of each other.1

Some applications require computing the dual of a covector. For example, given a scalar function
f : V → R, the gradient ∇ f : V →V is defined by

∇ f (v) = dual−1( f ′(v)).

If we implement covectors as functions that can only be applied, the only way of implementing dual−1

is by applying it to each of the base vectors of V , which is problematic if V is of high dimension, say a
million or a billion.

Similarly, sometimes we may want to implement the transpose

f † : W ∗(V ∗

f † = (• f )

of f : V (W . The transpose is the continuation-passing style version of f where a linear continuation
is passed as the first argument. To wit, we have f †(κ)(v) = κ( f (v)) where κ is the continuation.

A general idea permeating mathematical and computer science applications of linear algebra is rep-
resenting a covector by its dual vector v with an indication that it represents (�v) (“I am contravariant”),
not v itself.

We would thus like to find a linear function f ∗ : W ( V that implements the transpose f † by using
ordinary vectors rather than covectors to represent linear continuations; that is, it should be the case that
f ∗(w) = v whenever f †(�w) = (�v).

Definition 6.1. f ∗ : W (V is the adjoint of f : V (W if

f †(�w) = (�v)⇔ f ∗(w) = v

By the Riesz representation theorem we immediately have that

Proposition 6.2. f ∗ exists and is unique for Hilbert spaces.

The defining property of an adjoint can be restated as the familiar property where f is pushed from
one argument to the other argument of the inner product.

Proposition 6.3. f ∗ : W ( V is the adjoint of f : V ( W if and only if f (v)�w = v� f ∗(w) for all
v ∈V,w ∈W.

We can implement dual−1 using the adjoint:

Proposition 6.4. Let f : V (R, that is f ∈V ∗. Then dual−1( f ) = f ∗(1) and thus ∇ f (v) = ( f ′(v))∗(1).

Linear functions are built from other linear functions. We provide general rules for calculating ad-
joints symbolically of linear functions in combinatory form.

6.1 Adjoint calculation

Adjoints can be calculated symbolically for linear functions in combinatory form.

1For finite index sets the constructible Hilbert spaces are finite-dimensional. Note that the Riesz representation theorem also
holds for infinite-dimensional Hilbert spaces.
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Theorem 6.5. Let X ,Y be finite sets,R⊆ X×Y , and RT = {(y,x) | (x,y) ∈ R}. Then:

id∗ = id

(g• f )∗ = f ∗ •g∗

0∗ = 0

(v∗)∗ = (vT∗)
(∗w)∗ = (∗wT )

(ιX
x )
∗

= π
X
x

(Πx∈X fx)
∗ = Πx∈X fx

∗

redR
∗ = redRT

Furthermore, the inverses of unitary operators are also their adjoints.

These rules are not accidentally symmetric; indeed the above language of linear functions has been
designed to yield these symmetries, where each construct has an adjoint construct. This is the reason for
using tensor contraction ∗ instead of ⊗ as the primitive universal bilinear function.

The adjoint of a partially applied tensor contraction (v∗) is the transpose2 vT of v. Recall that
T : V ⊗W (W ⊗V swaps components of formal tensor product sums.

Note also that the adjoint of redR is redRT ; in particular, if R is a function, RT is generally not a
function. Allowing for R to be a relation rather than restricting it to be a function makes expressing its
adjoint in terms of red possible.

The adjoints for other operations can be derived from their definitions in terms of these primitive
functions and constructs. For example, we can derive

(k·)∗ = (k·)
(·v)∗ = (�v)

6.2 Adjoint differentiation

The adjoint derivative of f : V →W at v ∈ V is ( f ′(v))∗. We can compute it by employing our affine
interpreter eval[1][[ f ]]; applying it to v; extracting the term representing f ′(v); applying the adjoint calcu-
lation rules of Theorem 6.5 to calculate a term representating ( f ′(v))∗; and finally applying the derived
adjoint to output differentials to compute input differentials.3 Alternatively, we can construct the adjoint
derivative during affine interpretation; see Figure 2.

This provides us with a method behaviorally equivalent to reverse-mode automatic differentiation. In
the first phase, the value of f at v and the term of ( f ′(v))∗, which includes all—and only— the relevant
intermediate results of f (v) are computed by f [1r] from v alone. Only in the second phase, the output
term representing ( f (v))∗ is interpreted as a function by applying it to output differentials. After the first
phase, the adjoint derivative can be optimized using algebraic simplications, and it can be compiled for
efficient data parallel execution on a GPU.

Going one step further, the first phase can be done symbolically, which amounts to a specialization of
the adjoint affine interpreter to the particular source code for f . The result of doing so can be compiled
for efficient data parallel execution before the values of v and output differential dy are available.

2Not to be confused with the transpose of a linear function, which it is related, but different.
3When used in the adjoint direction, from output to input, the variables containing differentials are often called adjoint

variables.
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(g◦ f )[1r](x) = let (fx, f ′xa) = f [1r](x) in
let (gfx,g′fxa) = g[1r](fx) in

(gfx, f ′xa•g′fxa)
Kw

[1r](x) = (w,0)
h[1r](x) = (h(x),h∗) if h : V (W
�[1r](x) = let (u,v) = x in

(u� v, ι2
2 • (u�)

∗+ ι2
1 • (�v)

∗) if � : U×V →2 W
(Πy∈Y fy)

[1r](x) = let (w,d) = unzip((Πy∈Y (λx. fy
[1r](x)))(x)) in

(w,∆(d)) if fy : Vy→Wy

Figure 2: Adjoint affine interpretation of functions in combinatory form

7 Applications

We illustrate combinatory differentiation by applying it to neural networks. Additional examples show-
ing the application of equational reasoning to derive derivatives (sic!) can be found in Appendix B.

Example 7.1. A k-layer neural network Nk consists of a composition of k layers with the i-th layer given
by

gi(xi,Wi,bi) = hi
mi (Wi ? xi +bi),

where Wi ∈ Rmi×mi−1 , bi ∈ Rmi , and xi ∈ Rmi−1 along with a loss function l(v,y) : Rmk → R:

Nk : Rm0×Rm1×m0×Rm1×Rm2×m1×Rm2×·· ·×Rmk×mk−1×Rmk ×Rmk → R
Nk(x,W1,b1,W2,b2, . . . ,Wk,bk,y) = l(gk(Wk,bk(· · ·(g2(W2,b2(g1(W1,b1,x)))))),y).

For simplicity, we use l(v,y) = (v−y)� (v−y) for the loss function. In point-free form, the i-th layer of
the network must propagate the inputs for all subsequent layers; gi and l in point-free form are

gi = 〈hi
mi ◦ ((?)◦ 〈πni

2 ,πni
1 〉+π

ni
3 ),πni

4 , . . . ,πni
ni
〉,

l = (�)◦dup◦ (π2
1 −π

2
2 ),

where ni = 2(k+2− i). Hence, the entire network is constructed as

Nk = l ◦gk ◦ · · ·g2 ◦g1.
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Applying the differentiation rules of Theorem 4.1, we differentiate gi and l

g′i(xi,Wi,bi, . . . ,Wk,bk,y)

= {definition of gi}
〈hi

mi ◦ ((?)◦ 〈πni
2 ,πni

1 〉+π
ni
3 ),πni

4 , . . . ,πni
ni
〉′(xi,Wi,bi, . . . ,Wk,bk,y)

= {by Rules 1, 3, and 5}
〈(hi

mi)′(Wi ? xi +bi) • ((?)′(〈Wi,xi〉)• 〈πni
2 ,πni

1 〉+π
ni
3 ),πni

4 , . . . ,πni
ni
〉

= {by Rules 5 and 4 }
〈∆(h′i

mi(Wi ? xi +bi)) • (((Wi?)•π
2
2 +(?xi)•π

2
1 )• 〈π

ni
2 ,πni

1 〉+π
ni
3 ),πni

4 , . . . ,πni
ni
〉,

l′(v,y)

= {definition of l}
((�)◦dup◦ (π2

1 −π
2
2 ))
′(v,y)

= {by Rule 1}
(�)′(v− y,v− y)• (dup◦ (π2

1 −π
2
2 ))
′(v,y)

= {by Rules 1, 4, and 3}
(((v− y)�)•π

2
2 +(�(v− y))•π

1
1 )• (dup• (π2

1 −π
2
2 )).

Repeated application of Rule 1 now yields the entire differentiated network

N′k(x,W1,b1,W2,b2, . . . ,Wk,bk,y) = l′((gk ◦ · · · ◦g1)(x,W1,b1,W2,b2, . . . ,Wk,bk,y))

• g′k((gk−1 ◦ · · · ◦g1)(x,W1,b1,W2,b2, . . . ,Wk,bk,y))

• · · · • g′1(x,W1,b1,W2,b2, . . . ,Wk,bk,y).

Straight-forward application of Theorem 6.5 may subsequently be used to obtain the adjoint of N′k,
(N′k(x,W1,b1,W2,b2, . . . ,Wk,bk,y))

∗ : R( Rm0×Rm1×m0×·· ·×Rmk .

8 Discussion

We have provided a functional-analysis based compositional framework for differentiation and adjoint
differentiation that encompasses both symbolic and automatic differentiation. It highlights that, very
generally, adjoint differentiation is the combination of symbolic Fréchet differentiation and symbolic
calculation of adjoints over Hilbert spaces, where both derivatives and adjoints retain the data parallelism
in their input functions.

Why Hilbert spaces? A Hilbert space is a vector space that is equipped with an inner product � and
is metrically complete. The inner product is crucial: it establishes an isomorphism with the dual space
such that ordinary first-order vectors can be used to represent linear functionals rather than having to
code these as procedures in a programming language. This representation trick is the essence of adjoints,
which run linear functions in reverse, from output differential to input differential and, in particular,
compute gradients as the input differentials resulting from a single evaluation of the adjoint derivative to
the output differential 1.

The metric completness is, in some sense, irrelevant: it only pops up in the definition of Fréchet
derivative and checking that it constitutes a valid model of the differentiation rules.
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Why symbolic tensor products? We could define the tensor product of Rm and Rn to be the matrix
space Rm×n, but matrices as data structures for derivatives are too inefficient for large values of m,n.
Symbolic tensor decompositions can provide more efficient representations [16].

For example, Griewank [19] gives f : Rn→ Rm defined by

f (x) = bsin(aT x)

with a ∈Rn and b ∈Rn as an example where computing the Jacobian derivative of f at x0 requires m ·n
multiplications, whereas the original function requires only n+m multiplications. But this is only due
to insisting on representing the derivative as a Jacobian matrix. Translated into combinatory form and
employing our differentiation rules we arrive at a corresponding representation of the matrix as

c · (b⊗a)

where c = cos(aT x0). Note that this is the output: itt uses symbolic scalar product and tensor product
operators. This representation can be computed using only n scalar multiplications. Furthermore, ap-
plying it to a vector dx ∈ Rn produces the term d · b where d = c · (a� dx), which requires only n+ 1
multiplications. Using the matrix equivalent of c · (b⊗a) takes m ·n multiplications.

8.1 Related work

The origin of symbolic differentiation using electronic computers for functions on scalar variables dates
back to the 1950s [30]. Forward-mode AD for scalar variables was discovered independently by a num-
ber of researchers in the 1950s and 1960s [21]. The history of reverse-mode AD dates back to the early
1970s and is surveyed by Griewank [19]. Linnainmaa [34, 35] observed early on that reverse-mode AD
on scalar variables consists of building a computation graph [2] and then reversing its dependency arrows,
which is tantamount to transposing sparse matrices in a sequential composition of matrix multiplications.
This observation has since been made repeatedly in both elemental and tensor settings.

Derivatives of functions on scalar variables are conventionally represented by Jacobian matrices.
Computing the matrix with a minimum number of steps is NP-hard, however [40]. As we have shown,
matrices are often not even a good data structure for derivatives, however. As we have shown, they can be
represented more compactly and efficiently using a combinatory language for linear functions, including
symbolic operators for scalar multiplication, addition and tensor product [37, 25].

Functional languages have served well for exploring AD techniques both as a host language for
capturing AD techniques [31, 32], and as the language under investigation, featuring, for instance, multi-
variate functions, higher-dimensional data, higher-order functions, higher-degree differentiation (e.g.,
through a lazy infinite tower of derivatives) [15, 22], and even differentiation of formal languages [14].
Whereas many of the above-mentioned features are well-suited for forward-mode AD (no memoization
of primal values is needed), capturing the essence of reverse-mode AD has proven difficult. We believe
this is due to using λ -calculus formulation [45] rather than a combinatory formulation, representing the
“tape” as (the code of) a function or procedure [13, 51] and/or employing matrices to represent linear
functions instead of asymptotically more compact and efficient data structures made possible by symbolic
tensor products and useful constants (identity, projections and injections).

Reverse-mode AD for higher-order languages has been studied by Mazza [38] and on capturing
reverse-mode AD by building a library for functional representation general differentiation based on the
specifications of the functionality . Our work follows Elliott’s [13] lead:4 It is also based on adjoint affine

4While inspired by Elliott’s elegant presentation of Fréchet derivatives in a Haskell framework [15], our work on functional-
analysis based AD started in 2015 and developed independently of Elliott’s work, but has so far remained unpublished except
for a presentation at a Workshop in honor of Tom Reps’s 60th birthday in 2016 [24].
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interpretation, but additionally employs specialized and efficient representations for linear functions,
supports sums, tensor products and copowers, avoids expression swell, identifies and exploits general
differentiation rules for bilinear operators, and supports relational reduction and parallel composition.

Other work has focused on exploring how AD techniques can be applied in a functional parallel set-
ting while preserving the parallel properties of functions, also in the differentiated code [43, 44]. Recent
work [46] on reverse- and forward-mode AD operators embedded in Futhark [26] has shown that even
nested parallelism can be handled in reverse mode effectively with excellent GPU-utilization and perfor-
mance. Our combinatory language features powerful parallel operations and general differentiation and
adjoint rules that retain semantic data parallelism, but does not devise a general implementation method
for compact representation of relations and efficient parallel implementation of relational reduction. This
is future work.

An approach to combinatory differentiation based on category theory rather than linear algebra is
differential categories [6, 10] and its many variations (e.g., [7, 9, 11]). In brief, a differential category
is an additive monoidal category with a differential combinator and a modality allowing differentiable
morphisms to be identified by their signature. The variation most closely resembling the one presented
here is that of reverse derivative categories [11], as they can be thought of as categories of smooth maps
equipped with the ability to take adjoints (a “dagger”). This approach is ultimately closer to symbolic
differentiation rather than AD, though it could be interesting to integrate our approach into a notion of
differential category with a distinction between semantic and syntactic data (see also [12]).

The categorical semantics of both forward and reverse mode AD with higher types was recently given
a unified treatment in [50], with models based on so-called biadditive categories: indexed categories
with biproducts at each index, preserved by reindexing. Interestingly, when applying the Grothendieck
construction

∫
(−) to a biadditive category C, the resulting fibred category

∫
C describes forward mode

AD, while its dual
∫

Cop describes reverse mode AD. This highlights the formal connection between
duality (via adjoints) and reverse mode AD, as also argued in [11] and in Section 6.2.

On the practical side, a variety of systems provide tooling for automatically differentiating source
code. These tools include (but are far from limited to) Python tools such as Autograd [36], JAX [8,
47], C/C++ tools such as Adept [27], ADOL-C [20] and Tapenade [23], DiffSharp for F# [3], tools for
MATLAB [5, 41], Julia [28], FutharkAD [46] and even tools for the LLVM IR [39]. Most of these
tools feature both forward-mode and backward-mode AD and are therefore applicable for a variety of
domains and applications, including physics simulation [47], finance [22, 4, 17] and economics [49].
AD has also received renewed attention due to its application to deep learning, where backpropagation
is reverse-mode AD for scalar functions, as shown in Example 7.1. AD techniques have therefore been
incorporated, either directly or indirectly (through library APIs), into most of the major general machine
learning frameworks, including Caffe [29], TensorFlow [1], and PyTorch [42]. For a general overview,
consult [3]. Work has also been done at benchmarking many of the commonly used AD tools [48].
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A Derivatives

Informally, the derivative of a function f at a particular input value x is a mathematical object that
describes how infinitesimal changes dx to x incur changes dy to the result y = f (x) of f at x. There
are multiple notions of increasing generality and abstraction in mathematics that make “describing”,
“infinitesimal” and “changes” precise.

A.1 Leibniz derivative

For a scalar function of one (scalar) variable f : R→ R, the Leibniz derivative of f at x is the number
a ∈ R that satisfies

f (x+dx)≈ f (x)+a ·dx

where · is multiplication on R and ≈ expresses that the error on the right-hand side vanishes as dx
becomes infinitesimally small. Specifically, a is the derivative of f at x if

lim
|dx|→0

| f (x+dx)− ( f (x)+a ·dx)|
|dx|

= 0.

For example, for f (x) = x2 we have that 8 is the derivative of f at 4, and 14 is the derivative of f at 7.
The Leibniz derivative of f is the function f ′ that maps x to the derivative of f at x. For example, for

f (x) = x2 we have f ′(x) = 2 · x.

A.2 Jacobi derivative

For a vector-valued function f : Rn → Rm, the Jacobi derivative of f at v is the m× n-matrix M that
satisfies

f (v+dv)≈ f (v)+M ?dv.

Here ? is matrix/vector multiplication and ≈ generalizes the case of scalar functions:

lim
||dv||→0

|| f (v+dv)− ( f (v)+M ?dv)||
||dv||

= 0

where || . . . || is the Euclidean norm. We call Mi j, the (i, j)-th entry of M, the partial derivative of the j-th
output of f with respect to its i-th input at v.

For example, for

f

x1
x2
x3

=

[
x1 + x2
x1 · x3

]
: R3→ R2

http://dx.doi.org/10.1007/978-3-030-72019-3_22
http://dx.doi.org/10.1145/3341700
http://dx.doi.org/10.1145/355586.364791
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the matrix
[

1 1 0
−2 0 4

]
is the derivative of f at

 4
0
−2

.

The Jacobi derivative of f is the function f ′ that maps a vector v to the Jacobi derivative of f at v.
For example, for f as above we have

f ′(x1,x2,x3) =

[
1 1 0
x3 0 x1

]
.

The partial derivative of the j-th output of f with respect to its i-th input is the function ∂ fi j(v) =
f ′(v)i j. This is usually written ∂ f j

∂xi
or even ∂y j

∂xi
.5

The Leibniz derivative is the special case of a Jacobi derivative for m = n = 1.

A.3 Fréchet derivative

Jacobi derivatives are restricted to functions of the form f : Rn → Rm, that is, finite-dimensional Eu-
clidean spaces over the real numbers. Sometimes it is convenient or even necessary to write functions
where inputs are not tuples of scalars, but elements of possibly high-dimensional (or even infinite-
dimensional) vector spaces.

Example A.1. A layer of a neural network is parameterized by a weight matrix W ∈ Rm×n and bias
vector b ∈ Rm and takes a data vector v ∈ Rn as input, where |m|, |n| � 0 may be in the millions or
billions. It can be defined in a single line by

g(W,b,v) = maph(W ? v+b)

where maph applies h to each element of a vector, h : R→ R is an activation function such as tanh, ? is
matrix/vector multiplication and + is vector addition. It can be straightforwardly evaluated using data-
parallel implementations of these operations. Trying to write such a function using only scalar variables
would be a bad idea for multiple reasons.

Definition A.2 (Fréchet derivative). For a function f : V →W on Banach spaces V,W , the linear function
A ∈V (W is the Fréchet derivative of f at v if it satisfies

f (v+dv)≈ f (v)+A(dv),

that is

lim
||dv||V→0

|| f (v+dv)− ( f (v)+A(dv))||W
||dv||V

= 0

where || . . . ||U is the norm that comes with the Banach space U .
The Fréchet derivative of f : V →W is the partial function f ′ : V → (V (W ) that maps a vector

v ∈V to the Fréchet derivative of f at v.

Example A.3. Consider the function

gW,b(v) = maph(W ? v+b).

5We avoid this notation since the choi.ce of variable names for inputs and outputs of a function has nothing to do with the
notion of derivative.
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Its Fréchet derivative is
gW,b

′(v) = ∆(maph′ (W ? v+b))• (W?)

where ∆( f1, . . . fm)(x1, . . . ,xm) = ( f1(x1), . . . , fm(xm)) is zip-apply and • is linear function composition.
For h = tanh we have

tanh′(x) = ((1− tanh2(x))·).

Note that tanh′(x) : R ( R, which explains the use of the section notation ((1− tanh2(x))·). Since
R( R is isomorphic to R, the Leibniz derivative is tanh′(x) = 1− tanh2(x) via implicit application of
the isomorphism to its Fréchet derivative.6 In particular we can rewrite gW,b

′ as

gW,b
′(v) = ∆(maph′ (W ? v+b))• (W?)

= ∆(map(λx.(1− tanh2(x))·)(W ? v+b))• (W?)

= zipWith(·)(map(λx.(1− tanh2(x)))(W ? v+b))• (W?)

Note that the right-hand side is built by composing linear functions into a linear function: zipWith(·) is
bilinear and thus zipWith(·)(map(λx.(1− tanh2(x)))) is linear; likewise, ? is bilinear and thus the section
(W?) defined by (W?)(v) =W ?v is linear; and functional composition of linear functions by • preserves
linearity.

We can η-expand the combinatory expression on the right-hand side into a more familiar looking
term representation:

gW,b
′(v)(dv) = zipWith(·) (map(λx.(1− tanh2(x)))(W ? v+b)) (W ?dv)

This holds for any dimensions of W and can be computed entirely symbolically, based on general differ-
entiation rules for composition (chain rule), constant, linear and bilinear function, general second-order
operators such as map and a dictionary of derivatives for primitive functions such as tanh.

The Fréchet derivative generalizes the Jacobi derivative. If M is the Jacobi derivative of f at x then
A = (M?) is its Fréchet derivative.

A.4 Gateaux derivative

Definition A.4 (Gateaux differential, Gateaux derivative). For a function f : V →W on Banach spaces
V,W over field K (either R or C), v an interior point of V , dv ∈ V an input differential, the output
differential dy ∈W is the Gateaux differential of f at v in the direction dv if

dy = lim
t→0

|| f (v+ t ·dv)− f (v)||W
||t||K

where || . . . ||W is the norm that comes with the Banach space W and the underlying field K, respectively.
The Gateaux derivative of f : V →W is the partial function f ′ : V ×V →W that maps v,dv ∈ V to

the Gateaux differential f ′(v,dv).
Function f is Gateaux differentiable at v if its Gateaux differential exists at v for all directions dv.

6The pleasant compositional nature and applicability of Fréchet derivatives arrives from not performing this isomorphism
such that the chain rule is always functional composition of linear functions, no matter which vector space the arguments and
results of functions belong to.
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Gateaux derivatives generalize directional derivatives in multivariate analysis analogous to Fréchet
derivatives generalizing total derivatives. They are more general than Fréchet derivatives in the sense
that a function may be Gateaux differentiable at v without also being Fréchet differentiable, but if the
Fréchet derivative exists then it determines the Gateaux derivative:

f ′Gateaux(v,dv) = f ′Fréchet(v)(dv).

There are more general notions of derivatives. Some distinguish the spaces of vectors and differen-
tials, some apply to continuous functions that that are not conventionally differentiable everywhere such
as the absolute-value function f (x) = |x|. For the purposes of this paper, Fréchet and Gateaux derivatives
are sufficient.

A.5 Gateaux versus Fréchet derivatives for automatic differentiation

Gateaux derivatives are conceptually the basis of forward-mode automatic differentiation, since they give
rise to interpreting a term (or program) representation of a function as operating on dual numbers/dual
tensors (v,dv):

f [fad]
Gateaux(v,dv) = ( f (v), f ′(v,dv)),

which preserves functional composition

(g◦ f )[fad]
Gateaux = g[fad]

Gateaux ◦ f [fad]
Gateaux

and is thus easy to implement by replacing the ordinary implementation of numbers and tensors by dual
numbers and tensors, respectively. This camouflages, however, that the first component, called the primal
value, of the output only depends on the primal value of the input and that the second component, called
the tangent value, always depends linearly on the input tangent value. These universal properties can
be partially recovered by partially evaluating f [fad] with static v and dynamic dv, which, by definition
of f [fad], always succeeds with statically computing the primal value and leaving a partially evaluated
program representing the derivative behind, but rendered in an expressive programming language that
does not inherently capture that this is always a linear function. For example, in elemental and tensor-
based automatic differentiation, the partially evaluated output will result in a data structure corresponding
to a computation graph [2, 35, 34], also called tape7 or trace. Reversing its edges amounts to forming
the adjoint of the linear function represented by the computation graph.

First employing Gateaux derivatives underlying the dual number/tensor interpretation of a program
just to recover Fréchet derivatives by partial evaluation seems like an unnecessary detour. Following
Henglein [24] and Elliott [13], we argue that Fréchet derivatives are better suited for both symbolic and
automatic differentiation since they capture and reify that the output value of a function only depends on
its input value and the output differential depends on both input value and input differential, but always
linearly on the input differential:

f [fad]
Fréchet(v) = ( f (v), f ′Fréchet(v)) ∈W × (V (W ).

Since the derivative is always a linear function, it can be represented in a combinatory domain-specific
language (DSL) that is closed under linear functions and thus syntactically guarantees linearity of all

7It is sometimes referred to as a Wengert tape, which we find surprising since Wengert describes only forward-mode AD in
his 2-page article [52].



Elsman, Henglein, Kaarsgaard, Mathiesen, Schenck 25

constructed functions. This facilitates not only universal applicability of properties of linear functions,
such as f (x+ y) = f (x) + f (y) for any f , but also symbolically computing adjoints, which are only
defined for linear functions. Linear functions generated during differentiation or adjoint differentiation
(generating the adjoint of the derivative during differentiation) can be represented as ordinary functions
(λ -abstractions) [13], of course, but this eliminates the possibility of subsequent optimization using linear
and tensor algebra.

Executing adjoint derivatives, possibly after algebraic optimization, as ordinary functions (programs)
provides computation of “cheap” gradients [19] for scalar functions. We believe that the functional-
analysis based approach including tensor products in this paper provides an implementation and data
structure framework for not only cheap parallel computation of gradients for scalar functions, but also for
cheap adjoint derivatives for non-scalar functions, where tensor decomposition (formal tensor products),
tensor contraction and relational reduction have important roles to play.

B Applications

We consider a series of examples of increasing complexity to illustrate how the functions are represented
in point-free notation and how their derivative is computed symbolically.

Example B.1. Let h(x) = ln(sinx), that is h = ln◦sin in point-free notation. Thus

h′(x) = ln′y• sin′(x)

where y = sinx by Rule 1, the chain rule. Since ln′y = (·1y ) and sin′x = (· cosx) we get

h′(x) = (ln◦sin)′(x)

= ln′(sinx)• sin′(x)

= (
1

sinx
·)• (cosx ·)

= (
1

sinx
· cosx ·)

= (
cosx
sinx
·)

Example B.2. Consider y = f (x1,x2) = ln(x1)+ x1 · x2− sin(x2) [3, p.9]. It can be written in point-free
form as

f = ln◦π1 +π1 ·̂π2− sin◦π2
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where ·̂ is · lifted to functions: ( f ·̂g)(x) = f (x) ·g(x). Employing our rules of differentation we obtain

f ′(x1,x2) = (ln◦π1 +π1 ·̂π2− sin◦π2)
′(x1,x2)

= (ln◦π1)
′(x1,x2)+(π1 ·̂π2)

′(x1,x2)− (sin◦π2)
′(x1,x2)

= ln′(π1(x1,x2))•π1
′(x1,x2)+

(π1(x1,x2)) ·)•π2
′(x1,x2))+(·π2(x1,x2))•π1

′(x1,x2)−
sin′(π2(x1,x2))•π2

′(x1,x2)

= ln′(x1)•π1 +

(x1 ·)•π2 +(·x2)•π1−
sin′(x2)•π2

= (
1
x1
·)•π1 +

(x1 ·)•π2 +(·x2)•π1−
(cosx2 ·)•π2

The last line is easily transformed into a familiar looking expressing by recognizing that ∂x1 = (•π1) and
∂x2 = (•π2):

f ′(x1,x2)(∂x1,∂x2) = (
1
x1
·)(∂x1)+(x1 ·)(∂x2)+(·x2)(∂x1)− (cosx2 ·)(∂x2)

=
1
x1
·∂x1 + x1 ·∂x2 +∂x1 · x2− cosx2 ·∂x2

In Leibniz notation, we can get the partial derivative f ′(x1,x2)
∂x1

by setting ∂x2 = 0 and formally dividing

the righthand side by ∂x1. Aanalogously we can compute f ′(x1,x2)
∂x2

. Finally, writing ∂ f instead of f ′ we
get the familiar looking:

∂ f (x1,x2)

∂x1
=

1
x1

+ x2

∂ f (x1,x2)

∂x2
= x1− cosx2

The derivative for the unreadable version of f is as follows:

f ′(x1,x2) = ((+)◦ ((+)× ((−)◦ sin))◦ 〈〈ln◦π1,(·)〉,π2〉)′(x1,x2)

= ( +′ )◦ (( +′ )× (−′ ◦ sin′x2))◦ 〈〈ln′x1 ◦π1
′ ,x1·′x2〉,π2

′ 〉

= (+)◦ ((+)× ((−)◦ (cosx2·)))◦ 〈〈(
1
x1
·)◦π1,(+)◦ ((x2·)× (x1·))〉,π2〉

Since the right-hand side in this example is constructed from linear functions and combinators that
preserve linearity we can see that it is linear, as it should be. (The derivative at any point is linear by
definition.) More specifically, the code for the derivative is parametric in x1,x2: it is the same for each
point (x1,x2) ∈ R×R. It is not a definitional requirement that the derivative at one point have the same
expression as the derivative at another point, but when it does it is useful in practice: If we need to
compute the derivative at many different points and the derivative is described by the same program at
each point, it makes sense to optimize that program prior to executing it. What makes this extra intriguing
is that derivatives, always denoting linear functions, are essentially first-order data with strong algebraic
properties admitting powerful optimizations.
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