
Sam Lindley and Max S. New (Eds.): Eighth
Workshop on Mathematically Structured
Functional Programming (MSFP 2020)
EPTCS 317, 2020, pp. 39–56, doi:10.4204/EPTCS.317.3

c© Anne Baanen and Wouter Swierstra
This work is licensed under the
Creative Commons Attribution License.

Combining predicate transformer semantics for effects:
a case study in parsing regular languages

Anne Baanen
Vrije Universiteit Amsterdam

Wouter Swierstra
Utrecht University

This paper describes how to verify a parser for regular expressions in a functional programming
language using predicate transformer semantics for a variety of effects. Where our previous work
in this area focused on the semantics for a single effect, parsing requires a combination of effects:
non-determinism, general recursion and mutable state. Reasoning about such combinations of effects
is notoriously difficult, yet our approach using predicate transformers enables the careful separation
of program syntax, correctness proofs and termination proofs.

1 Introduction

There is a significant body of work on parsing using combinators in functional programming langua-
ges [33, 12, 8, 30, 17, 15, 9, 21], among many others. Yet how can we ensure that these parsers are
correct? There is notably less work that attempts to answer this question [5, 7].

Reasoning about such parser combinators is not at all trivial. They use a variety of effects: state
to store the string being parsed; non-determinism to handle backtracking; and general recursion to deal
with recursive grammars. Proof techniques, such as equational reasoning, that are commonly used when
reasoning about pure functional programs, are less suitable when verifying effectful programs [10, 13].

In this paper, we explore a novel approach, drawing inspiration from recent work on algebraic ef-
fects [3, 35, 20]. We demonstrate how to reason about all parsers uniformly using predicate trans-
formers [32]. We extend our previous work that uses predicate transformer semantics to reason about a
single effect, to handle the combinations of effects used by parsers. Our semantics is modular, meaning
we can introduce new effects (Rec in Section 4), semantics (hParser in Section 5) and specifications
(terminates-in in Section 6) when they are needed, without having to rework the previous definitions. In
particular, our careful treatment of general recursion lets us separate partial correctness from the proof of
termination cleanly. Most existing proofs require combinators to guarantee that the string being parsed
decreases, conflating these two issues.

In particular, the sections of this paper make the following contributions:

• After quickly revisiting our previous work on predicate transformer semantics for effects (Sec-
tion 2), we show how the non-recursive fragment of regular expressions can be correctly parsed
using non-determinism (Section 3).

• By combining non-determinism with general recursion (Section 4), support for the Kleene star can
be added without compromising our previous definitions.

• Although the resulting parser is not guaranteed to terminate, we can define another implementation
using Brzozowski derivatives (Section 5), introducing an additional effect and its semantics in the
process.

• Finally, we show that the derivative-based implementation terminates and refines the original
parser (Section 6).

http://dx.doi.org/10.4204/EPTCS.317.3
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

40 Combining predicate transformer semantics for effects

The goal of our work is not so much the verification of a parser for regular languages, which has been
done before [11, 16]. Instead, we aim to illustrate the steps of incrementally developing and verifying
a parser using predicate transformers and algebraic effects. This work is in the spirit of a Theoretical
Pearl [11]: we begin by defining a match function that does not terminate. The remainder of the paper
then shows how to fix this function, without having to redo the complete proof of correctness.

All the programs and proofs in this paper are written in the dependently typed language Agda [23].
The full source code, including lemmas we have chosen to omit for sake of readability, is available
online.1 Apart from postulating function extensionality, we remain entirely within Agda’s default theory.

2 Recap: algebraic effects and predicate transformers

Algebraic effects separate the syntax and semantics of effectful operations. In this paper, we will model
them by taking the free monad over a given signature [14], describing certain operations. Signatures are
represented by the type Sig, as follows:

record Sig : Set where
constructor mkSig
field

C : Set
R : C → Set

This is Agda syntax for defining a type Sig with constructor mkSig : (C : Set) → (C → Set) →
Sig and two fields, C : Sig → Set and R : (e : Sig) → C e → Set. Here the type C contains the
‘commands’, or effectful operations that a given effect supports. For each command c : C, the type R c
describes the possible responses. The structure on a signature is that of a container [1]. The following
signature describes two commands: the non-deterministic choice between two values, Choice; and a
failure operator, Fail. The response type RNondet is defined by pattern matching on the command. If the
command is Choice, the response is a Bool; the Fail command gives no response, indicated by the empty
type ⊥.

data CNondet : Set where
Choice : CNondet
Fail : CNondet

RNondet : CNondet → Set
RNondet Choice = Bool
RNondet Fail = ⊥
Nondet = mkSig CNondet RNondet

We represent effectful programs that use a particular effect using the corresponding free monad:

data Free (e : Sig) (a : Set) : Set where
Pure : a → Free e a
Op : (c : C e) → (R e c → Free e a) → Free e a

This gives a monad, with the bind operator defined as follows.

1https://github.com/Vierkantor/refinement-parsers

https://github.com/Vierkantor/refinement-parsers

Anne Baanen and Wouter Swierstra 41

>>= : Free e a → (a → Free e b) → Free e b
Pure x >>= f = f x
Op c k >>= f = Op c (λ x → k x >>= f)

To facilitate programming with effects, we define the following smart constructors, sometimes referred
to as generic effects in the literature [25]:

fail : Free Nondet a
fail = Op Fail (λ ())
choice : Free Nondet a → Free Nondet a → Free Nondet a
choice S S = Op Choice (λ b → if b then S else S)

The empty parentheses () in the definition of fail are Agda syntax for an argument in an uninhabited
type, hence no body for the lambda is provided.

In this paper, we will assign semantics to effectful programs by mapping them to predicate trans-
formers. Each semantics will be computed by a fold over the free monad, mapping some predicate
P : a → Set to a predicate of the entire computation of type Free (mkSig C R) a → Set.

J K : (alg : (c : C) → (R c → Set) → Set) → Free (mkSig C R) a → (a → Set) → Set
JPure xKalg P = P x
JOp c kKalg P = alg c (λ x → Jk xKalg P)

The predicate transformer nature of these semantics becomes evident when we assume the type of re-
sponses R does not depend on the command c : C. The type of alg : (c : C) → (R c → Set) → Set
then becomes C → (R → Set) → Set, which is isomorphic to (R → Set) → (C → Set). Thus, alg
has the form of a predicate transformer from postconditions of type R → Set into preconditions of type
C → Set.

Two considerations lead us to define the types as alg : (c : C) → (R c → Set) → Set and J Kalg :
Free (mkSig C R) a → (a → Set) → Set. By passing the command c : C as first argument to alg,
we allow R to depend on c. Moreover, J Kalg computes semantics, so it should take a program S :
Free (mkSig C R) a as its argument and return the semantics of S, which is then of type (a → Set) → Set.

In the case of non-determinism, for example, we may want to require that a given predicate P holds
for all possible results that may be returned:

ptAll : (c : CNondet) → (RNondet c → Set) → Set
ptAll Fail P = >
ptAll Choice P = P True ∧ P False

A different semantics may instead require that P holds on any of the return values:

ptAny : (c : CNondet) → (RNondet c → Set) → Set
ptAny Fail P = ⊥
ptAny Choice P = P True ∨ P False

Predicate transformers provide a single semantic domain to relate programs and specifications [22].
Throughout this paper, we will consider specifications consisting of a pre- and postcondition:

42 Combining predicate transformer semantics for effects

record Spec (a : Set) : Set where
constructor [,]
field

pre : Set
post : a → Set

Inspired by work on the refinement calculus, we can assign a predicate transformer semantics to speci-
fications as follows:

J , Kspec : Spec a → (a → Set) → Set
Jpre,postKspec P = pre ∧ (∀ o → post o → P o)

This computes the ‘weakest precondition’ necessary for a specification to imply that the desired post-
condition P holds. In particular, the precondition pre should hold and any possible result satisfying the
postcondition post should imply the postcondition P.

Finally, we use the refinement relation to compare programs and specifications:

v : (pt1 pt2 : (a → Set) → Set) → Set
pt1 v pt2 = ∀ P → pt1 P → pt2 P

Together with the predicate transformer semantics we have defined above, this refinement relation can
be used to relate programs to their specifications. The refinement relation is both transitive and reflexive.

3 Regular languages without recursion

To illustrate how to reason about non-deterministic code, we will define and verify a regular expression
matcher. Initially, we will restrict ourselves to non-recursive regular expressions; we will add recursion
in the next section.

We begin by defining the Regex datatype for regular expressions. An element of this type represents
the syntax of a regular expression.

data Regex : Set where
Empty : Regex
Epsilon : Regex
Singleton : Char → Regex
| : Regex → Regex → Regex
· : Regex → Regex → Regex
? : Regex → Regex

The Empty regular expression corresponds to the empty language, while the Epsilon expression only
matches the empty string. Furthermore, our language for regular expressions is closed under choice (|),
concatenation (·) and linear repetition denoted by the Kleene star (?).

The input to the regular expression matcher will be a String together with a Regex denoting the lan-
guage to match the string against. What should our matcher return? A Boolean value is not particularly
informative; yet we also choose not to provide an intrinsically correct definition, instead performing
extrinsic verification using our predicate transformer semantics. The Tree data type below captures a
potential parse tree associated with a given regular expression:

Anne Baanen and Wouter Swierstra 43

Tree : Regex → Set
Tree Empty = ⊥
Tree Epsilon = >
Tree (Singleton) = Char
Tree (l | r) = Either (Tree l) (Tree r)
Tree (l · r) = Pair (Tree l) (Tree r)
Tree (r ?) = List (Tree r)

In the remainder of this section, we will develop a regular expression matcher with the following type:

match : (r : Regex) (xs : String) → Free Nondet (Tree r)

Before we do so, however, we will complete our specification. Although the type above guarantees that
we return a parse tree matching the regular expression r, there is no relation between the tree and the input
string. To capture this relation, we define the following Match data type. A value of type Match r xs t
states that the string xs is in the language given by the regular expression r as witnessed by the parse tree
t:

data Match : (r : Regex) → String → Tree r → Set where
Epsilon : Match Epsilon Nil tt
Singleton : Match (Singleton x) (x :: Nil) x
OrLeft : Match l xs x → Match (l | r) xs (Inl x)
OrRight : Match r xs x → Match (l | r) xs (Inr x)
Concat : Match l ys y → Match r zs z → Match (l · r) (ys ++ zs) (y , z)
StarNil : Match (r ?) Nil Nil
StarConcat : Match (r · (r ?)) xs (y , ys) → Match (r ?) xs (y :: ys)

Note that there is no constructor for Match Empty xs ms for any xs or ms, as there is no way to match
the Empty language with a string xs. Similarly, the only constructor for Match Epsilon xs ms is where xs
is the empty string Nil. There are two constructors that produce a Match for a regular expression of the
form l | r, corresponding to the choice of matching either l or r.

The cases for concatenation and iteration are more interesting. Crucially the Concat constructor
constructs a match on the concatenation of the strings ys and zs – although there may be many possible
ways to decompose a string into two substrings. Finally, the two constructors for the Kleene star, r ?,
match zero (StarNil) or many (StarConcat) repetitions of r.

We will now turn our attention to the match function. The complete definition, by induction on the
argument regular expression, can be found in Figure 1. Most of the cases are straightforward—the most
difficult case is that for concatenation, where we non-deterministically consider all possible splittings of
the input string xs into a pair of strings ys and zs. The allSplits function, defined below, computes all
possible splittings:

allSplits : (xs : List a) → Free Nondet (List a × List a)
allSplits Nil = Pure (Nil , Nil)
allSplits (x :: xs) = choice

(Pure (Nil , (x :: xs)))
(allSplits xs >>= λ {(ys , zs) → Pure ((x :: ys) , zs)})

44 Combining predicate transformer semantics for effects

match : (r : Regex) (xs : String) → Free Nondet (Tree r)
match Empty xs = fail
match Epsilon Nil = Pure tt
match Epsilon (::) = fail
match (Singleton c) Nil = fail
match (Singleton c) (x :: Nil) with c ?= x
match (Singleton c) (c :: Nil) | yes refl = Pure c
match (Singleton c) (x :: Nil) | no p = fail
match (Singleton c) (:: ::) = fail
match (l | r) xs = choice (Inl 〈$〉 match l xs) (Inr 〈$〉 match r xs)
match (l · r) xs = do (ys , zs) ← allSplits xs

y ← match l ys
z ← match r zs
Pure (y , z)

match (r ?) xs = fail

Figure 1: The definition of the match function

Finally, we cannot yet implement the case for the Kleene star. We could attempt to mimic the case
for concatenation, attempting to match r · (r ?). This definition, however, is rejected by Agda as it is not
structurally recursive. For now we choose to simply fail on all such regular expressions. In Section 4 we
will fix this issue, after introducing the auxiliary definitions.

Still, we can prove that the match function behaves correctly on all regular expressions that do not
contain iteration. We introduce a hasNo? predicate, which holds of all such iteration-free regular expres-
sions:

hasNo? : Regex → Set

To verify our matcher is correct, we need to prove that it satisfies the specification consisting of the
following pre- and postcondition:

pre : (r : Regex) (xs : String) → Set
pre r xs = hasNo? r
post : (r : Regex) (xs : String) → Tree r → Set
post = Match

The main correctness result can now be formulated as follows:

matchSound : ∀ r xs → J(pre r xs),(post r xs)Kspec v Jmatch r xsKptAll

This lemma guarantees that all the parse trees computed by the match function satisfy the Match relation,
provided the input regular expression does not contain iteration. The proof goes by induction on the
regular expression r. Although we have omitted the proof, we will sketch the key lemmas and definitions
that are necessary to complete it.

In most of the cases for r, the definition of match r is uncomplicated and the proof is similarly simple.
As soon as we need to reason about programs composed using the monadic bind operator, we quickly run

Anne Baanen and Wouter Swierstra 45

into issues. In particular, when verifying the case for l · r, we would like to use our induction hypotheses
on two recursive calls. To do so, we prove the following lemma that allows us to replace the semantics
of a composite program built using the monadic bind operation with the composition of the underlying
predicate transformers:

consequence : ∀ pt (mx : Free es a) (f : a → Free es b) →
JmxKpt (λ x → Jf xKpt P) ≡ Jmx >>= f Kpt P

Substituting along this equality gives us the lemmas we need to deal with the >>= operator:

wpToBind : (mx : Free es a) (f : a → Free es b) →
JmxKpt (λ x → Jf xKpt P) → Jmx >>= f Kpt P

wpFromBind : (mx : Free es a) (f : a → Free es b) →
Jmx >>= f Kpt P → JmxKpt (λ x → Jf xKpt P)

Not only does match (l · r) result in two recursive calls, it also makes a call to a helper function
allSplits. Thus, we also need to formulate and prove the correctness of that function, as follows:

allSplitsPost : String → String × String → Set
allSplitsPost xs (ys , zs) = xs ≡ ys ++ zs
allSplitsSound : ∀ xs → J>,(allSplitsPost xs)Kspec v JallSplits xsKptAll

Using wpToBind, we can incorporate the correctness proof of allSplits in the correctness proof of match.
We refer to the accompanying code for the complete details of these proofs.

4 General recursion and non-determinism

The matcher we have defined in the previous section is incomplete, since it fails to handle regular expres-
sions that use the Kleene star. The fundamental issue is that the Kleene star allows for arbitrarily many
matches in certain cases, that in turn, leads to problems with Agda’s termination checker. For example,
matching Epsilon ? with the empty string "" may unfold the Kleene star infinitely often without ever
terminating. As a result, we cannot implement match for the Kleene star using recursion directly.

Instead, we will deal with this (possibly unbounded) recursion by introducing a new effect. We
will represent a recursively defined dependent function of type (i : I) → O i as an element of the
type (i : I) → Free (Rec I O) (O i). Here Rec I O is a synonym of the the signature type we saw
previously [20]:

Rec : (I : Set) (O : I → Set) → Sig
Rec I O = mkSig I O

Intuitively, you may want to think of values of type (i : I) → Free (Rec I O) (O i) as computing a (finite)
call graph for every input i : I. Instead of recurring directly, the ‘effects’ that this signature supports
require an input i : I corresponding to the argument of the recursive call; the continuation abstracts over
a value of type O i, corresponding to the result of a recursive call. Note that the functions defined in this
style are not recursive; instead we will need to write handlers to unfold the function definition or prove
termination separately. A handler for the Rec effect, under the intended semantics, thus behaves like a
fixed-point combinator, introducing recursion to an otherwise recursion-free language by substituting the
function body in each recursive call.

46 Combining predicate transformer semantics for effects

We cannot, however, define a match function of the form Free (Rec) directly, as our previous
definition also used non-determinism. To account for both non-determinism and unbounded recursion,
we need a way to combine effects. Fortunately, free monads are known to be closed under coproducts;
there is a substantial body of work that exploits this to (syntactically) compose separate effects [35, 31].

Rather than restrict ourselves to the binary composition using coproducts, we modify the Free monad
to take a list of signatures as its argument, taking the coproduct of the elements of the list as its signature
functor. The Pure constructor remains unchanged, while the Op constructor additionally takes an index
into the list to specify the effect that is invoked.

data Free (es : List Sig) (a : Set) : Set where
Pure : a → Free es a
Op : (i : e ∈ es) (c : C e) (k : R e c → Free es a) → Free es a

By using a list of effects instead of allowing arbitrary disjoint unions, we have effectively chosen that
the disjoint unions canonically associate to the right. We choose to use the same names and (almost) the
same syntax for this new definition of Free, since all the definitions that we have seen previously can be
readily adapted to work with this data type instead.

Most of this bookkeeping involved with different effects can be inferred using Agda’s instance argu-
ments [6]. Instance arguments, marked using the double curly braces {{ }}, are automatically filled in by
Agda, provided a unique value of the required type can be found. For example, we can define the generic
effects that we saw previously as follows:

fail : {{ iND : Nondet ∈ es}} → Free es a
fail {{ iND}} = Op iND Fail (λ ())
choice : {{ iND : Nondet ∈ es}} → Free es a → Free es a → Free es a
choice {{ iND}} S S = Op iND Choice (λ b → if b then S else S)

call : {{ iRec : Rec I O ∈ es}} → (i : I) → Free es (O i)
call {{ iRec}} i = Op iRec i Pure

These now operate over any free monad with effects given by es, provided we can show that the list
es contains the Nondet and Rec effects respectively. For convenience of notation, we introduce the

es
notation for the type of generally recursive functions with effects in es, i.e. Kleisli arrows into

Free (Rec :: es).

: (I : Set) (es : List Sig) (O : I → Set) → Set

I
es
O = (i : I) → Free (Rec I O :: es) (O i)

With the syntax for combinations of effects defined, let us turn to semantics. Since the weakest
precondition predicate transformer for a single effect is given as a fold over the effect’s signature, the
semantics for a combination of effects can be given by a list of such semantics.

record PT (e : Sig) : Set where
constructor mkPT
field

pt : (c : C e) → (R e c → Set) → Set
mono : ∀ c P P′ → (∀ x → P x → P′ x) → pt c P → pt c P′

Anne Baanen and Wouter Swierstra 47

data PTs : List Sig → Set where
Nil : PTs Nil
:: : PT e → PTs es → PTs (e :: es)

The record type PT not only contains a predicate transformer pt, but also a proof that this predicate
transformer is monotone. Several lemmas throughout this paper, such as the terminates-fmap lemma
of Section 6, rely on the monotonicity of the underlying predicate transformers; for each semantics we
present, the proof of monotonicity is immediate.

Given such a list of predicate transformers, defining the semantics of an effectful program is a
straightforward generalization of the previously defined semantics. The Pure case is identical, and in
the Op case we can apply the predicate transformer returned by the lookupPT helper function.

lookupPT : (pts : PTs es) (i : mkSig C R ∈ es) → (c : C) → (R c → Set) → Set
lookupPT (pt :: pts) ∈Head = PT.pt pt
lookupPT (pt :: pts) (∈Tail i) = lookupPT pts i

This results in the following definition of the semantics for combinations of effects.

J K : (pts : PTs es) → Free es a → (a → Set) → Set
JPure xKpts P = P x
JOp i c kKpts P = lookupPT pts i c (λ x → Jk xKpts P)

The effects that we will use for our match function consist of a combination of non-determinism
and general recursion. Although we can reuse the ptAll semantics of non-determinism, we have not yet
given the semantics for recursion. However, it is not as easy to give a predicate transformer semantics for
recursion in general, since the intended semantics of a recursive call depend on the function that is being
defined. Instead, to give semantics to a recursive function, we assume that we have been provided with a
relation of the type (i : I) → O i → Set, reminiscent of a loop invariant in an imperative program. The
semantics then establishes whether or not the recursive function adheres to this invariant or not:

ptRec : ((i : I) → O i → Set) → PT (Rec I O)
PT.pt (ptRec R) i P = ∀ o → R i o → P o

As we shall see shortly, when revisiting the match function, the Match relation defined previously will
fulfill the role of this ‘invariant.’

To deal with the Kleene star, we rewrite match as a generally recursive function using a combination
of effects. Since match makes use of allSplits, we also rewrite that function to use a combination of
effects. The types become:

allSplits : {{ iND : Nondet ∈ es}} → List a → Free es (List a × List a)

match : {{ iND : Nondet ∈ es}} → (x : Regex × String)
es
Tree (Pair.fst x)

Since the index argument to the smart constructor is inferred by Agda, the only change in the defi-
nition of match and allSplits will be that match now does have a meaningful branch for the Kleene star
case:

match ((r ?) , Nil) = Pure Nil
match ((r ?) , xs@ (::)) = do

(y , ys) ← call ((r · (r ?)) , xs)
Pure (y :: ys)

48 Combining predicate transformer semantics for effects

The effects we need to use for running match are a combination of non-determinism and general
recursion. As discussed, we first need to give the specification for match before we can verify a program
that performs a recursive call to match.

matchSpec : (r,xs : Pair Regex String) → Tree (Pair.fst r,xs) → Set
matchSpec (r , xs) ms = Match r xs ms

J Kmatch : Free (Rec (Pair Regex String) (Tree ◦ Pair.fst) :: Nondet :: Nil) a →
(a → Set) → Set

JSKmatch = JSKptRec matchSpec :: ptAll :: Nil

We can reuse exactly our proof that allSplits is correct, since we use the same semantics for the non-
determinism used in the definition of allSplits. Similarly, the partial correctness proof of match will be
the same on all cases except the Kleene star. Now we are able to prove correctness of match on a Kleene
star.

matchSound ((r ?) , Nil) P (preH , postH) = postH StarNil
matchSound ((r ?) , (x :: xs)) P (preH , postH) o H = postH (StarConcat H)

At this point, we have defined a matcher for regular languages and formally proven that when it
succeeds in recognizing a given string, this string is indeed in the language generated by the argument
regular expression. However, the match function does not necessarily terminate: if r is a regular expres-
sion that accepts the empty string, then calling match on r ? and a string xs will diverge. In the next
section, we will write a new parser that is guaranteed to terminate and show that this parser refines the
match function defined above.

5 Derivatives and handlers

Since recursion on the structure of a regular expression does not guarantee termination of the parser, we
can instead perform recursion on the string to be parsed, changing the regular expression to be matched
based on the characters we have seen.

The Brzozowski derivative of a formal language L with respect to a character x consists of all strings
xs such that x :: xs ∈ L [4]. Crucially, if L is regular, so are all its derivatives. Thus, let r be a regular
expression, and d r /d x an expression for the derivative with respect to x, then r matches a string x :: xs
if and only if d r /d x matches xs. This suggests the following implementation of matching an expression
r with a string xs: if xs is empty, check whether r matches the empty string; otherwise remove the head
x of the string and try to match d r /d x.

The first step in implementing a parser using the Brzozowski derivative is to compute the derivative
for a given regular expression. Following Brzozowski [4], we use a helper function ε? that decides
whether an expression matches the empty string.

ε? : (r : Regex) → Dec (∑ (Tree r) (Match r Nil))

The definition of ε? is given by structural recursion on the regular expression, just as the derivative
operator is:

Anne Baanen and Wouter Swierstra 49

d /d : Regex → Char → Regex
d Empty /d c = Empty
d Epsilon /d c = Empty
d Singleton x /d c with c ?= x
... | yes p = Epsilon
... | no p = Empty
d l · r /d c with ε? l
... | yes p = ((d l /d c) · r) | (d r /d c)
... | no p = (d l /d c) · r
d l | r /d c = (d l /d c) | (d r /d c)
d r ? /d c = (d r /d c) · (r ?)

To use the derivative of r to compute a parse tree for r, we need to be able to convert a tree for d r /d x
to a tree for r. As this function ‘inverts’ the result of differentiation, we name it integralTree:

integralTree : (r : Regex) → Tree (d r /d x) → Tree r

Its definition closely follows the pattern matching performed in the definition of d /d .
The description of a derivative-based matcher is stateful: we perform a step by removing a character

from the input string. To match the description, we introduce new effect Parser which provides a parser-
specific interface to this state. The Parser effect has one command Symbol that returns a Maybe Char.
Calling Symbol will return just the head of the unparsed remainder (advancing the string by one character)
or nothing if the string has been totally consumed.

data CParser : Set where
Symbol : CParser

RParser : CParser → Set
RParser Symbol = Maybe Char
Parser = mkSig CParser RParser

symbol : {{ iP : Parser ∈ es}} → Free es (Maybe Char)
symbol {{ iP}} = Op iP Symbol Pure

The code for the new parser, dmatch, is now only a few lines long. When the input contains at least
one character, we use the derivative to match the first character and recurse; when the input string is
empty, we check that the expression matches the empty string.

dmatch : {{ iP : Parser ∈ es}} {{ iND : Nondet ∈ es}} → Regex
es
Tree

dmatch r = symbol >>= maybe
(λ x → integralTree r 〈$〉 call (d r /d x))
(if p ← ε? r then Pure (Sigma.fst p) else fail)

Here, maybe f y takes a Maybe value and applies f to the value in just, or returns y if it is nothing.
Although the parser is easily seen to terminate in the intended semantics (since a character is removed
from the input string between each recursive call), a semantics where the call to symbol always returns
just a character causes dmatch to diverge. The termination of dmatch is not a syntactical property, as
reflected by the use of the recursive call in its definition, and the custom arrow used in the type of
functions defined using general recursion.

50 Combining predicate transformer semantics for effects

Adding the new effect Parser to our repertoire thus requires specifying its semantics. We gave the
effects Nondet and Rec predicate transformer semantics in the form of a PT record. After introducing
the Parser effect, the pre- and postcondition become more complicated: not only do they reference
the ‘pure’ arguments and return values (here of type r : Regex and Tree r respectively), there is also
the current state, containing a String, to keep track of. With these augmented predicates, the predicate
transformer semantics for the Parser effect can be given as:

ptParser : (c : CParser) → (RParser c → String → Set) → String → Set
ptParser Symbol P Nil = P nothing Nil
ptParser Symbol P (x :: xs) = P (just x) xs

In this article, we want to demonstrate the modularity of predicate transformer semantics, allowing us
to introduce new notions without having to rework existing constructions. To illustrate how the semantics
mesh well with other forms of semantics, we do not use ptParser as semantics for Parser in the remainder.
We give denotational semantics, in the form of an effect handler for Parser [26, 35]:

hParser : {{ iND : Nondet ∈ es}} (c : CParser) → String → Free es (RParser c × String)
hParser Symbol Nil = Pure (nothing , Nil)
hParser Symbol (x :: xs) = Pure (just x , xs)

The function handleRec folds a given handler over a recursive definition, allowing us to handle the Parser
effect in dmatch.

handleRec : ((c : C) → s → Free es (R c × s)) →

a
mkSig C R :: es

b → (x : a × s)
es
b (Pair.fst x)

dmatch′ : {{ iND : Nondet ∈ es}} → (x : Regex × String)
es
Tree (Pair.fst x)

dmatch′ = handleRec hParser (dmatch)

Note that dmatch′ has exactly the type of the previously defined match, conveniently allowing us to re-
use the J Kmatch semantics. In this way, the handler hParser “hides” the implementation detail that the
Parser effect was used.

6 Proving total correctness

We finish the development process by proving that dmatch is correct. The first step in this proof is
that dmatch always terminates. To express the termination of a recursive computation, we define the
following predicate, terminates-in:

terminates-in : (pts : PTs es) (f : I
es
O) (S : Free (Rec I O :: es) a) → N → Set

terminates-in pts f (Pure x) n = >
terminates-in pts f (Op ∈Head c k) Zero = ⊥
terminates-in pts f (Op ∈Head c k) (Succ n) = terminates-in pts f (f c >>= k) n
terminates-in pts f (Op (∈Tail i) c k) n =

lookupPT pts i c (λ x → terminates-in pts f (k x) n)

Given a program S that calls the recursive function f : I
es
#O, we check whether the computation requires

no more than a fixed number of steps to terminate.

Anne Baanen and Wouter Swierstra 51

Since dmatch always consumes a character before recurring, we can bound the number of recursive
calls with the length of the input string. We formalize this argument in the lemma dmatchTerminates.
Note that dmatch′ is defined using the hParser handler, showing that we can mix denotational and pred-
icate transformer semantics. The proof goes by induction on this string. Unfolding the recursive call
gives integralTree r 〈$〉 dmatch′ (d r /d x , xs), which we rewrite using the associativity monad law in a
lemma called terminates-fmap.

dmatchTerminates : (r : Regex) (xs : String) →
terminates-in (ptAll :: Nil) (dmatch′) (dmatch′ (r , xs)) (length xs)

dmatchTerminates r Nil with ε? r
dmatchTerminates r Nil | yes p = tt
dmatchTerminates r Nil | no p = tt
dmatchTerminates r (x :: xs) = terminates-fmap (length xs) (dmatch′ ((d r /d x) , xs))

(dmatchTerminates (d r /d x) xs)
where

terminates-fmap : {f : I
es
O} {g : a → b} (n : N) (S : Free (Rec I O :: es) a) →

terminates-in pts f S n → terminates-in pts f (g 〈$〉 S) n

Apart from termination, correctness consists of soundness and completeness: the parse trees re-
turned by dmatch should satisfy the specification given by the original Match relation, and for any string
that matches the regular expression, dmatch should return a parse tree. In the ptAll semantics, a non-
deterministic program S is refined by T if and only if the output values of T are a subset of the output
values of S; conversely S is refined by T in the ptAny semantics if and only if the output values of S are
a subset of the output values of T . These properties allow us to express program correctness in terms of
refinement.

We can show soundness of dmatch by proving it refines match. Transitivity of the refinement relation
then allows us to conclude that it also satisfies the specification given by our original Match relation. The
first step is to show that the derivative operator is correct, i.e. d r /d x matches those strings xs such that
r matches x :: xs.

derivativeCorrect : ∀ r → Match (d r /d x) xs y → Match r (x :: xs) (integralTree r y)

The proof is straightforward by induction on the derivation of type Match (d r /d x) xs y.
Using the preceding lemmas, we can prove the partial correctness of dmatch.

dmatchSound : ∀ r xs → Jmatch (r , xs)Kmatch v Jdmatch′ (r , xs)Kmatch

Since we need to perform the case distinctions of match and of dmatch, the proof is longer than that
of matchSound. Despite the length, most of it consists of this case distinction, then giving a simple
argument for each case.

Although we successfully proved dmatch is sound with respect to the Match relation, it is not com-
plete: the function dmatch never makes a non-deterministic choice. It will not return all possible parse
trees that satisfy the Match relation, only the first tree that it encounters. We can, however, prove that
dmatch will find a parse tree if it exists. To express that dmatch returns any result at all, we use a trivially
true postcondition; by furthermore replacing the demonic choice of the ptAll semantics with the angelic
choice of ptAny, we require that dmatch must return a result:

52 Combining predicate transformer semantics for effects

dmatchComplete : ∀ r xs y → Match r xs y →
Jdmatch′ (r , xs)KptRec matchSpec :: ptAny :: Nil (λ → >)

The proof is short, since dmatch can only fail when it encounters an empty string and a regular expression
that does not match the empty string, which contradicts the assumption Match r xs y:

dmatchComplete r Nil y H with ε? r
... | yes p = tt
... | no p = p (, H)
dmatchComplete r (x :: xs) y H y′ H′ = tt

In the proofs of dmatchSound and dmatchComplete, we demonstrate the power of predicate trans-
former semantics for effects: by separating syntax and semantics, we can easily describe different aspects
(soundness and completeness) of the one definition of dmatch. Since the soundness and completeness
result we have proved imply partial correctness, and partial correctness and termination imply total cor-
rectness, we can conclude that dmatch is a totally correct parser for regular languages.

7 Discussion

Related work

The refinement calculus has traditionally been used to verify imperative programs [22]. In this paper,
however, we show how many of the ideas from the refinement calculus can also be used in the verification
of functional programs [32]. The Dijkstra monad, introduced in the language F?, also uses a predicate
transformer semantics for verifying effectful programs by collecting the proof obligations for verifica-
tion [29, 2, 19]. This paper demonstrates how similar verification efforts can be undertaken directly in an
interactive theorem prover such as Agda. The separation of syntax and semantics in our approach allows
for verification to be performed in several steps, such as we did for dmatchTerminates, dmatchSound and
dmatchComplete, adding new effects as we need them.

Our running example of the regular expression parser is inspired by the development of a regular
expression parser by Harper [11]. More recently, Korkut, Trifunovski, and Licata [16] adapted the Func-
tional Pearl to Agda. A direct translation of Harper’s definitions is not possible: they are rejected by
Agda’s termination checker because they are not structurally recursive. Korkut, Trifunovski, and Licata
show how the defunctionalization of Harper’s matcher, written in continuation-passing style, is accepted
by Agda’s termination checker.

Formally verified parsers for a more general class of languages have been developed before: Daniels-
son [5], Firsov [7], and Ridge [27], among others, have previously shown how to verify parsers developed
in a functional language. In these developments, semantics are defined specialized to the domain of pars-
ing, while our semantics arise from combining a generic set of effect semantics. Furthermore, we allow
our parsers to be written using general recursion directly, whereas most existing approaches deal with
termination syntactically, either by incorporating delay and force operators in the grammar, or explicitly
passing around a proof of termination in the definition of the parser. The modularity of our setup allows
us to separate partial and total correctness cleanly.

There are various ways to represent a combination of effects such as used in parsers. A traditional
approach is to use monad transformers to add each effect in turn, producing a complicated monad that
incorporates all required operations [18]. More recently, graded monads were introduced as a way to
indicate more precisely the effects used in a specific computation [24, 34]. With some slight changes

Anne Baanen and Wouter Swierstra 53

to the types of Pure and >>= , the Free monad can be viewed as graded over the free monoid List Sig
generated by the type of effect signatures. As this monad containing the computation is freely generated,
it does not require us to assign any semantics to the effects ahead of time.

Open issues

This paper builds upon our previous results [32] by demonstrating their use in non-trivial development.
In the process, we show how to combine predicate transformer semantics and reason about programs
using a combination of effects.

Our approach relies on using coproducts to combine effect syntax. The interaction between different
effects means applying handlers in a different order can result in different semantics. We assign predicate
transformer semantics to a combination of effects all at once, specifying their interaction explicitly—but
we would still like to explore how to handle effects one-by-one, allowing for greater flexibility when
assigning semantics to effectful programs [28, 35].

Conclusions

In conclusion, we have illustrated the approach to developing verified software in a proof assistant using
a predicate transformer semantics for effects for a non-trivial example. We believe this approach enables
us to add new effects in a modular fashion, while still being able to re-use any existing proofs. Along the
way, we demonstrated how to combine different effects and define different semantics for these effects,
without impacting existing definitions. As a result, the verification effort—while conceptually more
challenging at times—remains fairly modular.

Acknowledgements T. Baanen has received funding from the NWO under the Vidi program (project
No. 016.Vidi.189.037, Lean Forward).

References

[1] Michael Abbott, Thorsten Altenkirch, and Neil Ghani. “Categories of Containers”. In: Proceed-
ings of Foundations of Software Science and Computation Structures. 2003. DOI: 10.1007/3-54
0-36576-1_2.

[2] Danel Ahman et al. “Dijkstra Monads for Free”. In: Proceedings of the 44th ACM SIGPLAN Sym-
posium on Principles of Programming Languages. POPL 2017. New York, NY, USA: Association
for Computing Machinery, 2017, pp. 515–529. ISBN: 9781450346603. DOI: 10.1145/3009837
.3009878.

[3] Andrej Bauer and Matija Pretnar. “Programming with algebraic effects and handlers”. In: Journal
of Logical and Algebraic Methods in Programming 84.1 (2015). Special Issue: The 23rd Nordic
Workshop on Programming Theory (NWPT 2011) Special Issue: Domains X, International work-
shop on Domain Theory and applications, Swansea, 5-7 September, 2011, pp. 108–123. ISSN:
2352-2208. DOI: 10.1016/j.jlamp.2014.02.001.

[4] Janusz A. Brzozowski. “Derivatives of Regular Expressions”. In: JACM 11.4 (Oct. 1964), pp. 481–
494. ISSN: 0004-5411. DOI: 10.1145/321239.321249.

[5] Nils Anders Danielsson. “Total Parser Combinators”. In: SIGPLAN Not. 45.9 (Sept. 2010), pp. 285–
296. ISSN: 0362-1340. DOI: 10.1145/1932681.1863585.

https://doi.org/10.1007/3-540-36576-1_2
https://doi.org/10.1007/3-540-36576-1_2
https://doi.org/10.1145/3009837.3009878
https://doi.org/10.1145/3009837.3009878
https://doi.org/10.1016/j.jlamp.2014.02.001
https://doi.org/10.1145/321239.321249
https://doi.org/10.1145/1932681.1863585

54 Combining predicate transformer semantics for effects

[6] Dominique Devriese and Frank Piessens. “On the Bright Side of Type Classes: Instance Argu-
ments in Agda”. In: Proceedings of the 16th ACM SIGPLAN International Conference on Func-
tional Programming. ICFP 11. New York, NY, USA: Association for Computing Machinery, 2011,
pp. 143–155. ISBN: 9781450308656. DOI: 10.1145/2034773.2034796.

[7] Denis Firsov. “Certification of Context-Free Grammar Algorithms”. PhD thesis. Institute of Cy-
bernetics at Tallinn University of Technology, 2016.

[8] Jeroen Fokker. “Functional Parsers”. In: Advanced Functional Programming, First International
Spring School on Advanced Functional Programming Techniques-Tutorial Text. Berlin, Heidel-
berg: Springer, 1995, pp. 1–23. ISBN: 3540594515. DOI: 10.1007/3-540-59451-5_1.

[9] Richard A. Frost, Rahmatullah Hafiz, and Paul Callaghan. “Parser Combinators for Ambiguous
Left-Recursive Grammars”. In: Proceedings of the 10th International Conference on Practical
Aspects of Declarative Languages. PADL08. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 167–
181. ISBN: 3540774416. DOI: 10.1007/978-3-540-77442-6_12.

[10] Jeremy Gibbons and Ralf Hinze. “Just Do It: Simple Monadic Equational Reasoning”. In: SIG-
PLAN Not. 46.9 (Sept. 2011), pp. 2–14. ISSN: 0362-1340. DOI: 10.1145/2034574.2034777.

[11] Robert Harper. “Proof-directed debugging”. In: Journal of Functional Programming 9.4 (1999),
pp. 463–469. DOI: 10.1017/S0956796899003378.

[12] Graham Hutton. “Higher-order functions for parsing”. In: Journal of Functional Programming 2.3
(1992), pp. 323–343. DOI: 10.1017/S0956796800000411.

[13] Graham Hutton and Diana Fulger. “Reasoning about effects: Seeing the wood through the trees”.
In: Proceedings of the Ninth Symposium on Trends in Functional Programming. 2008.

[14] Oleg Kiselyov, Amr Sabry, and Cameron Swords. “Extensible Effects: An Alternative to Monad
Transformers”. In: Proceedings of the 2013 ACM SIGPLAN Symposium on Haskell. Haskell ’13.
New York, NY, USA: ACM, 2013, pp. 59–70. ISBN: 978-1-4503-2383-3. DOI: 10.1145/250377
8.2503791.

[15] Pieter W. M. Koopman and Marinus J. Plasmeijer. “Efficient Combinator Parsers”. In: Selected
Papers from the 10th International Workshop on 10th International Workshop. IFL 98. Berlin,
Heidelberg: Springer-Verlag, 1998, pp. 120–136. ISBN: 3540662294. DOI: 10.1007/3-540-485
15-5_8.

[16] Joomy Korkut, Maksim Trifunovski, and Daniel R. Licata. “Intrinsic Verification of a Regular
Expression Matcher”. preprint available at http://dlicata.web.wesleyan.edu/pubs/ktl1
6regexp/ktl16regexp.pdf. Jan. 2016.

[17] Daan Leijen and Erik Meijer. Parsec: Direct style monadic parser combinators for the real world.
Tech. rep. UU-CS-2001-27. 2001.

[18] Sheng Liang, Paul Hudak, and Mark Jones. “Monad Transformers and Modular Interpreters”.
In: Proceedings of the 22Nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. POPL ’95. New York, NY, USA: ACM, 1995, pp. 333–343. ISBN: 0-89791-692-1.
DOI: 10.1145/199448.199528.

[19] Kenji Maillard et al. “Dijkstra Monads for All”. In: Proc. ACM Program. Lang. 3.ICFP (July
2019). DOI: 10.1145/3341708.

[20] Conor McBride. “Turing-Completeness Totally Free”. In: Mathematics of Program Construction.
Ed. by Ralf Hinze and Janis Voigtlnder. Cham: Springer International Publishing, 2015, pp. 257–
275. ISBN: 978-3-319-19797-5. DOI: 10.1007/978-3-319-19797-5_13.

https://doi.org/10.1145/2034773.2034796
https://doi.org/10.1007/3-540-59451-5_1
https://doi.org/10.1007/978-3-540-77442-6_12
https://doi.org/10.1145/2034574.2034777
https://doi.org/10.1017/S0956796899003378
https://doi.org/10.1017/S0956796800000411
https://doi.org/10.1145/2503778.2503791
https://doi.org/10.1145/2503778.2503791
https://doi.org/10.1007/3-540-48515-5_8
https://doi.org/10.1007/3-540-48515-5_8
http://dlicata.web.wesleyan.edu/pubs/ktl16regexp/ktl16regexp.pdf
http://dlicata.web.wesleyan.edu/pubs/ktl16regexp/ktl16regexp.pdf
https://doi.org/10.1145/199448.199528
https://doi.org/10.1145/3341708
https://doi.org/10.1007/978-3-319-19797-5_13

Anne Baanen and Wouter Swierstra 55

[21] Matthew Might, David Darais, and Daniel Spiewak. “Parsing with Derivatives: A Functional
Pearl”. In: Proceedings of the 16th ACM SIGPLAN International Conference on Functional Pro-
gramming. ICFP 11. New York, NY, USA: Association for Computing Machinery, 2011, pp. 189–
195. ISBN: 9781450308656. DOI: 10.1145/2034773.2034801.

[22] Caroll Morgan. Programming from Specifications. 2nd ed. Prentice Hall, 1998.
[23] Ulf Norell. “Towards a practical programming language based on dependent type theory”. PhD

thesis. Chalmers University of Technology, 2007.
[24] Dominic Orchard and Tomas Petricek. “Embedding Effect Systems in Haskell”. In: Proceedings

of the 2014 ACM SIGPLAN Symposium on Haskell. Haskell 14. New York, NY, USA: Association
for Computing Machinery, 2014, pp. 13–24. ISBN: 9781450330411. DOI: 10.1145/2633357.2
633368.

[25] Gordon Plotkin and John Power. “Algebraic Operations and Generic Effects”. In: Applied Cate-
gorical Structures 11.1 (Feb. 2003), pp. 69–94. ISSN: 1572-9095. DOI: 10.1023/A:1023064908
962.

[26] Gordon Plotkin and Matija Pretnar. “Handlers of Algebraic Effects”. In: Proceedings of the 18th
European Symposium on Programming Languages and Systems: Held as Part of the Joint Euro-
pean Conferences on Theory and Practice of Software, ETAPS 2009. ESOP 09. Berlin, Heidelberg:
Springer-Verlag, 2009, pp. 80–94. ISBN: 9783642005893. DOI: 10.1007/978-3-642-00590-9
_7.

[27] Tom Ridge. “Simple, Functional, Sound and Complete Parsing for All Context-Free Grammars”.
In: Certified Programs and Proofs. Ed. by Jean-Pierre Jouannaud and Zhong Shao. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2011, pp. 103–118. ISBN: 978-3-642-25379-9. DOI: 10.100
7/978-3-642-25379-9_10.

[28] Tom Schrijvers et al. “Monad Transformers and Modular Algebraic Effects: What Binds Them
Together”. In: Proceedings of the 12th ACM SIGPLAN International Symposium on Haskell.
Haskell 2019. New York, NY, USA: Association for Computing Machinery, 2019, pp. 98–113.
ISBN: 9781450368131. DOI: 10.1145/3331545.3342595.

[29] Nikhil Swamy et al. “Verifying Higher-order Programs with the Dijkstra Monad”. In: Proceedings
of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation.
PLDI ’13. Seattle, Washington, USA: ACM, 2013, pp. 387–398. ISBN: 978-1-4503-2014-6. DOI:
10.1145/2491956.2491978.

[30] S. Doaitse Swierstra and Luc Duponcheel. “Deterministic, Error-Correcting Combinator Parsers”.
In: Advanced Functional Programming. Springer-Verlag, 1996, pp. 184–207. DOI: 10.1007/3-5
40-61628-4_7.

[31] Wouter Swierstra. “Data types la carte”. In: Journal of Functional Programming 18.4 (2008),
pp. 423–436. DOI: 10.1017/S0956796808006758.

[32] Wouter Swierstra and Tim Baanen. “A predicate transformer semantics for effects (Functional
Pearl)”. In: Proceedings of the 24th ACM SIGPLAN International Conference on Functional Pro-
gramming. ICFP ’19. 2019. DOI: 10.1145/3341707.

[33] Philip Wadler. “How to Replace Failure by a List of Successes”. In: Proc. Of a Conference on
Functional Programming Languages and Computer Architecture. New York, NY, USA: Springer-
Verlag New York, Inc., 1985, pp. 113–128. DOI: 10.1007/3-540-15975-4_33.

[34] Philip Wadler and Peter Thiemann. “The Marriage of Effects and Monads”. In: ACM Trans. Com-
put. Logic 4.1 (Jan. 2003), pp. 1–32. ISSN: 1529-3785. DOI: 10.1145/601775.601776.

https://doi.org/10.1145/2034773.2034801
https://doi.org/10.1145/2633357.2633368
https://doi.org/10.1145/2633357.2633368
https://doi.org/10.1023/A:1023064908962
https://doi.org/10.1023/A:1023064908962
https://doi.org/10.1007/978-3-642-00590-9_7
https://doi.org/10.1007/978-3-642-00590-9_7
https://doi.org/10.1007/978-3-642-25379-9_10
https://doi.org/10.1007/978-3-642-25379-9_10
https://doi.org/10.1145/3331545.3342595
https://doi.org/10.1145/2491956.2491978
https://doi.org/10.1007/3-540-61628-4_7
https://doi.org/10.1007/3-540-61628-4_7
https://doi.org/10.1017/S0956796808006758
https://doi.org/10.1145/3341707
https://doi.org/10.1007/3-540-15975-4_33
https://doi.org/10.1145/601775.601776

56 Combining predicate transformer semantics for effects

[35] Nicolas Wu, Tom Schrijvers, and Ralf Hinze. “Effect Handlers in Scope”. In: Proceedings of the
2014 ACM SIGPLAN Symposium on Haskell. Haskell ’14. New York, NY, USA: ACM, 2014,
pp. 1–12. ISBN: 978-1-4503-3041-1. DOI: 10.1145/2633357.2633358.

https://doi.org/10.1145/2633357.2633358

	1 Introduction
	2 Recap: algebraic effects and predicate transformers
	3 Regular languages without recursion
	4 General recursion and non-determinism
	5 Derivatives and handlers
	6 Proving total correctness
	7 Discussion

