
Atkey & Krishnaswami (Eds.): MSFP 2016
EPTCS 207, 2016, pp. 23–56, doi:10.4204/EPTCS.207.2

c© M. Piróg
This work is licensed under the
Creative Commons Attribution License.

Eilenberg–Moore Monoids and
Backtracking Monad Transformers

Maciej Piróg
Department of Computer Science

KU Leuven, Belgium

maciej.pirog@cs.kuleuven.be

We develop an algebraic underpinning of backtracking monadtransformers in the general setting
of monoidal categories. As our main technical device, we introduceEilenberg–Moore monoids,
which combine monoids with algebras for strong monads. We show that Eilenberg–Moore monoids
coincide with algebras for the list monad transformer (‘done right’) known from Haskell libraries.
From this, we obtain a number of results, including the factsthat the list monad transformer is
indeed a monad, a transformer, and an instance of theMonadPlus class. Finally, we construct an
Eilenberg–Moore monoid of endomorphisms, which, via the codensity monad construction, yields a
continuation-based implementation à la Hinze.

1 Introduction

In monadic functional programming, the most straightforward approach to backtracking is realised by
the list monad [9, 30]. More advanced structures are used forefficient implementation or for combining
backtracking with other computational effects [13, 20]. This paper is concerned with a category-theoretic
explanation of such more advanced structures.

Historically, there has been some dispute over the ‘correct’ definition of the monad transformer
associated with the list monad. First, a popular Haskell library mtl1 proposed the following definition
(in a pseudo-Haskell syntax):

type ListT m a = m [a]

The idea behind this type is that each computation first performs some effects inm, and then returns a
list of results. This structure is not entirely satisfactory. One problem with it is strictly mathematical:
the list monad transformer defined in this way is not really a monad transformer, since it does not satisfy
the required equations in general (it does when the transformed monadm is commutative). A conceptual
disadvantage is that it does not fully reflect the backtracking aspect of list computations: if we want to
look only for the first result, we are not necessarily interested in the effects associated with the subsequent
results of the computation, while in this implementation all m-effects are performed immediately.

In this paper, we consider an alternative definition of the list monad transformer, known as ‘ListT

done right’, which is provided by the Haskell packageslist-t, List, andpipes. It can be implemented
as follows:

data ListT m a = ListT (m (Maybe (a, ListT m a)))

The idea is that a value of this type is a list in which each tailis guarded bym. Intuitively, if we want to
extract then-th result from the computation, we first have to perform the effects guarding the elements 1

1Documentation for each Haskell package is available onlineat http://hackage.haskell.org/package/

PACKAGE-NAME.

http://dx.doi.org/10.4204/EPTCS.207.2
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
http://hackage.haskell.org/package/PACKAGE-NAME
http://hackage.haskell.org/package/PACKAGE-NAME

24 Eilenberg–Moore Monoids and Backtracking Monad Transformers

to n. Jaskelioff and Moggi [18] propose an equational presentation of this monad, on which we expand
and generalise in this paper (in particular, we abstract to general monoidal categories).

Another approach to backtracking transformers—taken, forexample, by Hinze [13] and Kiselyovet
al. [20]—is to employ continuations. Hinze proposes the following monad, which uses a pair of success
and failure continuations:

type Backtr m a = forall x. (a -> m x -> m x) -> m x -> m x

Hinze derives this monad using Hughes’s [15] ‘context-passing’ technique. As one of our contributions,
we relate it to the list monad transformer using the codensity monad construction [14].

In this paper, we model structures like those mentioned above in a monoidal categoryC (or, when
the continuation-based structures are involved, a closed monoidal category), starting with an algebraic
specification of backtracking. As our point of departure, wedefineEilenberg–Moore monoids, which
combine the theory of a strong monad (the ‘transformed’ monad), the theory of monoids (which gives
us choice and failure), and a coherence condition that specifies the order in which computations are
executed. We construct the free monad induced by Eilenberg–Moore monoids, which coincides with
the list monad transformer ‘done right’, and introduce a ‘Cayley representation’, which gives us an
isomorphic continuation-based implementation. In detail, our contributions are the following:

• In Section 3, given a strong monadM, we introduceEilenberg–Moore M-monoids. They are tu-
ples〈A,a,m,u〉, where〈A,a〉 is an Eilenberg–MooreM-algebra, and〈A,m,u〉 is a monoid in the
ambient monoidal category, that satisfy a coherence condition bringing together the algebra struc-
ture, the monoid structure, and the strength of the monad. Then, assuming certain algebraically
free monads exist, we construct free Eilenberg–Moore monoids. The monadUF induced by the
free–underlying adjunctionF ⊣U is the list monad transformer applied toM.

• In Section 4, we show that the category of Eilenberg–MooreM-monoids is isomorphic to the
category of Eilenberg–Moore algebras for the list monad transformer applied toM. As an applica-
tion of this result, we employ a correspondence between monad morphisms and functors between
Eilenberg–Moore categories to obtain a monad transformer structure.

• In Section 5, assuming that the ambient category is closed, we introduce an Eilenberg–Moore
monoid of endomorphismsMA ⇒ MA. We prove that it is a Cayley representation of a certain
subcategory of Eilenberg–Moore monoids. Since this subcategory contains all free Eilenberg–
Moore monoids, this gives us, via the codensity monad construction [14], a continuation-based
monad transformer isomorphic to the list monad transformer. It turns out to coincide with the
mentioned construction introduced by Hinze [13].

• In Section 6, to show that the used techniques can be applied more universally, we revisit the
transformer for commutative monadsm [a]. We characterise its algebras, which turn out to form
a subcategory of Eilenberg–MooreM-monoids for a commutative monadM. We introduce a
Cayley representationA ⇒ MA of a sufficient subcategory of these monoids, and obtain a novel
continuation-based implementation.

Thus, we relate a number of existing constructions and introduce one new ‘commutative monad’
transformer. We take a high-level approach—for example, weuse the resumption monad and its uni-
versal properties to describe free Eilenberg–Moore monoids, which liberates us from tedious proofs by
structural induction. The seemingly arbitrary structure related to the list monad transformer (like the
lift monad morphism or the instance of theMonadPlus class) is simply a corollary of the general
results, and is not only correct by construction, but also recognised as canonically related to the free–
underlying adjunctionF ⊣U . The category-theoretic approach allows us to split the tackled constructions

M. Piróg 25

into more fine-grained pieces; for example, the role of monadic strength becomes apparent, although in
Haskell, where all monads are canonically strong, it is usually used implicitly, obfuscating equational
reasoning.

2 Background

We denote categories byC , D , We work in a monoidal category〈C ,⊗, I〉 (we additionally assume
that it is closed in Section 5, and symmetric closed in Section 6). We use the symbol∼= for the structural
natural isomorphisms of monoidal categories (instead of the more traditionalλ , ρ , andα). We always
give types explicitly, so no confusion should arise. Also, we skip the subscripts in natural transforma-

tions when the component is obvious from the type (so, for example, we writeMMA
µ
−→ MA instead of

MMA
µA
−→ MA).

2.1 Monoids in monoidal categories

A monoidin C is a triple〈A, A⊗A
m
−→ A, I

u
−→ A〉, wherem andu are called themultiplication and the

unit respectively, such that the following diagrams commute:

I ⊗A A⊗A A⊗ I

A

u⊗ id

∼= m ∼=

id⊗u
(A⊗A)⊗A

A⊗ (A⊗A) A⊗A A

A⊗A
m⊗ id

∼=

id⊗m m

m

A morphism between monoids〈A,mA
,uA〉 and 〈B,mB

,uB〉 is a morphismh : A → B in C such that
h·mA = mB · (h⊗h) andh·uA = uB. The category of monoids and morphisms between monoids is called
Mon. If the obvious forgetful functorUMon : Mon → C has a left adjointFMon , the induced monad is a
generalisation of the list monad.

2.2 Monads and strength

To set the notation, we give a number of basic definitions of monads and some related concepts. A

monadon C is a triple 〈M, MM
µ
−→ M, Id

η
−→ M〉 such that it is a monoid in the monoidal category

of endofunctors onC with natural transformations as morphisms, and the monoidal tensor given by
composition of endofunctors. We denote a monad simply by itscarrierM, and the monadic structure,
that is, the multiplication and the unit, are always denotedµ andη respectively. If there are a number of
monads in the context, we sometimes put the name of the monad in superscript, for exampleµM andηM.
The category of monads onC and monad morphisms (that is, morphism between appropriatemonoids)
is denotedMnd .

An Eilenberg–Moore algebra(or simply analgebra) for a monadM on C is a pair〈A, MA
a
−→ A〉,

whereA is an object inC , while a is a morphism such thata·Ma= a·µA anda·ηA = idA. If a : MA→ A
is a morphism such that the pair〈A,a〉 is an Eilenberg–Moore algebra, we say thata has the Eilenberg–
Moore property. A morphism between two Eilenberg–Moore algebras〈A,a〉 and〈B,b〉 is a morphism
h : A → B such thatb ·Mh = h · a. The category of such algebras and such morphisms is called the
Eilenberg–Moore categoryof M.

26 Eilenberg–Moore Monoids and Backtracking Monad Transformers

For a monadM on C there is an adjunction betweenC and the Eilenberg–Moore category ofM
given on objects asA 7→ 〈MA,µA〉 in one direction and〈A,a〉 7→ A in the other direction. For every other
adjunctionL ⊣ R : C → D that inducesM, there exists a functor (called thecomparison functor) from D

to the Eilenberg–Moore category ofM. It is defined on objects as

X 7→ 〈RX, MRX
=
−→ RLRX

Rε
−→ RX〉,

whereε is the counit of the adjunctionL⊣R. If the comparison functor is an isomorphism, we say that the
adjunctionL ⊣ R is strictly monadic. An example of a strictly monadic adjunction isFMon ⊣UMon. This
entails that the Eilenberg–Moore category of the list monadis isomorphic to the category of monoids.

An endofunctorG is strongif it is equipped with a transformationτ : GA⊗B→ G(A⊗B) (called a
strengthof G) natural inA andB such that the following diagrams commute:

GA⊗ I G(A⊗ I)

GA

τ

∼=
∼=

GA⊗ (B⊗C)

(GA⊗B)⊗C G(A⊗B)⊗C G((A⊗B)⊗C)

G(A⊗ (B⊗C))
τ

∼=

τ ⊗ id τ

∼=

A monadM is strongif it is strong as an endofunctor, and additionally the following diagrams commute:

A⊗B MA⊗B

M(A⊗B)

η ⊗ id

η
τ

MMA⊗B

M(MA⊗B) MM(A⊗B) M(A⊗B)

MA⊗B
µ ⊗ id

τ

Mτ µ

τ

While a monad can have more than one strength, inSet(and in Haskell), every monad is equipped with
a canonical strength given by〈m,b〉 7→ (M(λa.〈a,b〉))(m). A strong monad onC can be turned into a
monoid inC :

Theorem 1(Wolff [32]) . Let M be a strong monad onC . Then, the tuple〈MI ,m, u〉, where

m=
(

MI ⊗MI
τ
−→ M(I ⊗MI)

∼=
−→ MMI

µ
−→ MI

)
and u=

(
I

η
−→ MI

)
,

is a monoid.

2.3 Strongly generated algebraically free monads

Given an endofunctorG on C , consider the category ofG-algebras, that is, pairs〈A, GA
a
−→ A〉, and

morphisms〈A,a〉 → 〈B,b〉 given byC -morphismsh : A → B such thatb ·Gh= h · a. If the obvious
forgetful functor from the category ofG-algebras toC has a left adjoint, we denote the free algebra
generated by an objectA as〈G∗A, GG∗A

cons
−−→ G∗A〉, and call the induced monadG∗ thealgebraically

free monad generated byG. This adjunction is strictly monadic, which entails that the category ofG-
algebras is the Eilenberg–Moore category ofG∗. We denote the monadic structure of the algebraically
free monad asµF andηF . The freeness property of〈G∗A,cons〉 can be described as follows, where the

morphismemb is given byGA
GηF

−−−→ GG∗A
cons
−−→ G∗A.

M. Piróg 27

Theorem 2. For a morphism GA
g
−→A, there exists a unique morphism G∗A

JgK
−−→A such that the following

diagram commutes:

GA G∗A

A

emb

g
JgK

If C has coproducts, the carrier of the free algebra〈G∗A,cons〉 can be given as the carrier of the
initial (G(–)+A)-algebra (if it exists), that is,G∗A= µX.GX+A. For endofunctorsG andH, if both G∗

andH∗ exist, every natural transformationh : G→ H induces a monad morphismh∗ : G∗ → H∗ given as

G∗A
G∗ηF

−−−→ G∗H∗A
Jcons·hK
−−−−→ H∗A. Note that we use the notation(–)∗ as if it was a functor, although in

general not all endofunctors induce algebraically free monads. IfG is strong, we define in what wayG∗

can inherit the strength ofG in a coherent fashion:

Definition 3. Let G be a strong endofunctor such thatG∗ exists. We say thatG∗ is strongly generatedif
for all morphismsf : A⊗B→C and aG-algebra〈C,c〉, there exists a unique morphism̂f that makes the
following diagram commute:

GG∗A⊗B

G∗A⊗B

A⊗B

G(G∗A⊗B) GC

C

τ

cons⊗ id

ηF ⊗ id

f̂

f

G f̂

c

A strongly generated monad is strong with the strength givenby η̂ for η : A⊗B → M(A⊗B).
Moreover, for a natural transformationh : G→H, the monad morphismh∗ : G∗ →H∗ preserves strength,
that is,h∗ · τ = τ · (h∗⊗ id). If the categoryC is closed (for example,Set), all algebraically free monads
generated by strong endofunctors are strongly generated (see Fiore [11, Theorem 4.4]). In this paper, we
assume that all the algebraically free monads that we deal with are strongly generated.

2.4 The resumption monad

Another construction that we use is theresumption monadintroduced by Moggi [24], also known as
the free monad transformer. Given a monadM and an endofunctorG, it is given as the composition
M(GM)∗ if (GM)∗ exists. In the case of the free monad given by initial algebras, it becomesA 7→
M(µX.GMX+A). Using the rolling lemma [5], it is isomorphic toA 7→ µX.M(GX+A).

We notice that the endofunctor part of the list monad transformer that we work with in this paper can
be given by initial algebrasA 7→ µX.M((A⊗X)+ I)∼= M(A⊗M(–))∗I , which are similar in shape to the
resumption monad for the endofunctor(A⊗–) applied to the objectI (and this is how it is implemented
in the Haskell packagepipes). Although the monadic structure ofLMTM is not given directly by the
monadic structure of the resumption monad, the two are related.

Hyland, Plotkin, and Power [16] show two important properties of the resumption monad. The first
one is that it is induced by a distributive lawλ : (GM)∗M → M(GM)∗. Thus, its monadic structure can

28 Eilenberg–Moore Monoids and Backtracking Monad Transformers

be defined asµR = µMµF ·Mλ (GM)∗ andηR = ηMηF . Moreover, a natural transformationh : G→H
induces a monad morphismM(hM)∗ : M(GM)∗ → M(HM)∗. In general, the composition of two strong
endofunctors is strong, and the composition of two strong monads via a distributive law is strong. Thus,
if M andG are strong, and(GM)∗ is strongly generated, the resumption monadM(GM)∗ is strong.

The other important property of the resumption monad is thatM(GM)∗ is the coproduct inMnd
of M and G∗. A classical result by Kelly [19] states that the coproduct in Mnd of two monadsM
andT is always given by the free–underlying adjunction between the base category and the category
of tuples〈A, MA

m
−→ A, TA

t
−→ A〉, where bothm andt have the Eilenberg–Moore property. Moreover,

this adjunction is strictly monadic. Thus, using the correspondence between Eilenberg–Moore algebras
for algebraically free monads and algebras for endofunctors, Hyland, Plotkin, and Power describe the
Eilenberg–Moore category of the resumption monad for an endofunctorG and a monadM as consisting
of tuples〈A, MA

a
−→ A, GA

g
−→ A〉 such thata has the Eilenberg–Moore property. Adapting Kelly’s result,

the freeness property of the resumption monad can be stated as follows, where the natural transformation
INF (injection of the functor) is defined as:

INF =
(

G
GηM

−−−→ GM
emb
−−→ (GM)∗

ηM

−−→ M(GM)∗
)

Theorem 4. Given an Eilenberg–Moore algebra〈B, MB
b
−→ B〉, an algebra〈B, GB

g
−→ B〉, and a mor-

phism h: A → B, there exists a unique morphism〈〈b,g,h〉〉 : M(GM)∗A → B such that the following
diagrams commute:

M(GM)∗AMM(GM)∗A M(GM)∗M(GM)∗A GM(GM)∗A

BMB GB

〈〈b,g,h〉〉

µM

b

M〈〈b,g,h〉〉

INFµR

G〈〈b,g,h〉〉

g

M(GM)∗AA

B

ηR

〈〈b,g,h〉〉h

Morphisms〈〈–,–,–〉〉 enjoy some equational properties that we find useful in the remainder of this
paper:

Lemma 5. Given b, g, and h as in the previous theorem, the following hold:

1. The morphism〈〈b,g,h〉〉 can be expressed as M(GM)∗A
M(GM)∗h
−−−−−→ M(GM)∗B

〈〈b,g,id〉〉
−−−−→ B.

2. The morphism〈〈b,g, id〉〉 has the Eilenberg–Moore property, and it is equal to M(GM)∗B
MJg·GbK
−−−−−→

MB
b
−→ B.

3. The morphism GA
INF
−−→ M(GM)∗A

〈〈b,g,h〉〉
−−−−→ B is equal to GA

Gh
−→ GB

g
−→ B.

3 Eilenberg–Moore monoids

In this section, we introduce Eilenberg–Moore monoids, which serve as an algebraic specification of
backtracking combined with other effects. Then, we construct free Eilenberg–Moore monoids, which
induce the list monad transformer.

Definition 6. Let M be a strong monad on a monoidal categoryC . An Eilenberg–Moore M-monoidis a
tuple

〈A, MA
a
−→ A, A⊗A

m
−→ A, I

u
−→ A〉

such that the following hold:

M. Piróg 29

1. 〈A,a〉 is an Eilenberg–MooreM-algebra,

2. 〈A,m,u〉 is a monoid,

3. coherence: the following diagram commutes:

MA⊗A

M(A⊗A)

A⊗A

MA A

a⊗ id

τ

Mm a

m

A morphism between two Eilenberg–MooreM-monoids is a morphism inC that is both a morphism
betweenM-algebras and between monoids. We call the category of Eilenberg–MooreM-monoids and
such morphismsEMMon M.

Example 7. Let C beSet. Let M = G∗ be the free monad generated by the functorGX= X×X, that is,
G∗ is the free monad of the theory of a single binary operation. Consider the tuple〈N, J(+)K : G∗

N→
N, (∗) : N×N→ N, λx.1 : I → N〉, in which we interpret the monad operation as addition, while the
monoid is given by natural numbers with multiplication. It is an Eilenberg–Moore monoid. In this case,
the coherence condition amounts to the right-distributivity of multiplication over addition.

Although to the author’s best knowledge Eilenberg–MooreM-monoid is a new concept, it is an
obvious generalisation of the concept ofF-monoid:

Definition 8 (Fiore, Plotkin, and Turi [12]). F-monoidsare similar to Eilenberg–Moore monoids, but we
drop the condition (1) from Definition 6 and the assumption that the endofunctor is a monad (that is, it is
merely a strong endofunctor).

We also need the following technical lemma, which relatesF-monoids to Eilenberg–Moore monoids
for free monads. Note that it could be used for a simple proof that the tuple from Example 7 is an
Eilenberg-Moore monoid.

Lemma 9. Let G be a strong endofunctor that strongly generates a free monad G∗. Then, each G-monoid

〈A, GA
g
−→ A, A⊗A

m
−→ A, I

u
−→ A〉 gives rise to an Eilenberg–Moore G∗-monoid〈A, G∗A

JgK
−−→ A, m, u〉.

From the perspective of algebraic effects (see Hyland and Power [17]), Eilenberg–MooreM-monoids
can be seen as the right-distributive tensor of the theory ofmonoids over the theory of the monadM. Each
Eilenberg–Moore monoid consists of a monoid and an interpretation of operations provided byM, while,
denoting the monoid multiplication as∨, for ann-ary M-operation f , the coherence diagram becomes
the following equation:

f (x1, . . . ,xn)∨y= f (x1∨y, . . . ,xn∨y)

Intuitively, it states that when making a choice between twovalues, the effects in the left-hand argument
are always executed first. This differentiates backtracking from plain nondeterminism, where no order of
execution is imposed. Note that the list monad is used for backtracking usually in lazy languages, where
laziness is the effect that defines the order in which elements arrive. In eager languages, backtracking
can be implemented usinglazy lists, in which laziness is an explicit effect. Indeed, the type oflazy lists
is an instance of the list monad transformer (see Section 7).

30 Eilenberg–Moore Monoids and Backtracking Monad Transformers

3.1 Free Eilenberg–Moore monoids

Now, we describe free Eilenberg–Moore monoids, which give us the monadic structure of the list monad
transformer. First, we need an auxiliary definition:

Definition 10. For a monadM and aC -objectA, we define the functor(A⋉M)X = A⊗MX.

Note that each morphismf : A → B induces a natural transformationf⋉M : A⋉M → B⋉M. If M

is strong, the functorA⋉M is strong via(A⊗MB)⊗C
∼=
−→ A⊗ (MB⊗C)

id⊗τ
−−→ A⊗M(B⊗C). If the

monad(A⋉M)∗ exists and is strongly generated, we denote the resulting strength as̃τ : (A⋉M)∗B⊗C→
(A⋉M)∗(B⊗C). Our main result follows.

Theorem 11. Let M be a strong monad. Assume that there exists a strongly generated algebraically
free monad(A⋉M)∗ for all objects A. Then, the obvious forgetful functor U: EMMon M → C has a left
adjoint F : C → EMMon M given as follows:

FA= 〈M(A⋉M)∗I , µM
, m, u〉

F(f : A→ B) = M(f⋉M)∗I ,

where〈M(A⋉M)∗I ,m, u〉 is the monoid induced by the resumption monad as described inTheorem 1.

In detail, the associated natural isomorphism⌊–⌋ : EMMon M(FA,〈B,b,mB
,uB〉) ∼= C (A,B) : ⌈–⌉ is

defined as follows. Letf : FA→ 〈B,b,mB
,uB〉 be a morphism between Eilenberg–MooreM-monoids.

TheC -morphism⌊ f ⌋ : A→ B is defined as:

A
∼=
−→ A⊗ I

INF
−−→ M(A⋉M)∗I

f
−→ B

In the other direction, letg : A → U〈B,b,mB
,uB〉 be aC -morphism. Then, theEMMon M-morphism

⌈g⌉ : FA→ 〈B,b,mB
,uB〉 is defined as:

M(A⋉M)∗I
〈〈MB

b
−→B, A⊗B

g⊗id
−−→B⊗B

mB
−→B, I

uB
−→B〉〉

−−−−−−−−−−−−−−−−−−−−−−−−→ B

Definition 12. We call the monadUF induced by the adjunction above thelist monad transformerand
denote it asLMTM.

To get a more direct definition of the monadic structure ofLMTM, let ε〈A,a,mA
,uA〉 = ⌈A

id
−→ A⌉ be the

counit of the adjunction. The monad multiplication is thus given as follows:

(
UFUF

UεF
−−→UF

)
=

(
M(M(A⋉M)∗⋉M)∗I

⌈id⌉=〈〈µM
,m,u〉〉

−−−−−−−−−→ M(A⋉M)∗I
)

The unit ofLMTM is given as:⌊id⌋=
(

A
∼=
−→ A⊗ I

INF
−−→ M(A⋉M)∗I

)
.

We can also verify that the morphismsm andu form aMonadPlus structure [29]. They obviously
form a monoid, so it is left to verify two additional laws: left distributivity and left zero (or, in the
language of Plotkin and Power [27], thatm and u are algebraic). The desired laws are simply the
preservation of the multiplication and the unit byUεF, which follows from the fact thatεF is a morphism
between Eilenberg–Moore monoids.

M. Piróg 31

4 Algebras for the list monad transformer

The previous section shows a construction of an adjunctionF ⊣U that gives rise to the monadLMTM,
but it is not an ordinary adjunction: we show that it is strictly monadic. We use this fact to construct
some monad morphisms.

Theorem 13. The adjunction F⊣ U is strictly monadic. This entails that the categoryEMMon M is
isomorphic to the category of Eilenberg–Moore algebras of the monadLMTM.

As an application of Theorem 13, we show thatLMT is indeed a monad transformer, that is, we
construct a monad morphism from a monadM to LMTM. Instead of defining the morphism directly and
mundanely verifying the necessary properties, we utilise the following theorem (see Barr and Wells [6,
Ch. 3, Theorem 6.3]):

Theorem 14. LetEM be a category in which objects are Eilenberg–Moore categories of monads onC ,
while morphisms are carrier-preserving functors (that is,functors that commute with the forgetful func-
tors from Eilenberg–Moore categories toC). Then, there exists an isomorphismMnd ∼= EMop, where
Mnd is the category of monads onC and monad morphisms.

In detail, given two monadsT andM, consider a carrier-preserving functorF, and let〈TA, MTA
a
−→

TA〉= F〈TA,µT〉. Now, the monad morphism corresponding toF is given for an objectA asMA
MηT

−−−→

MTA
Ma
−−→ TA.

There exist obvious forgetful functors fromEMMon M to the category of monoids and to the category
of algebras forM. These give us two monad morphisms: from the list monad and from M respectively.
The latter is the desiredlift operation of monad transformers. Following the description above, it is
given as follows:

(
MA

MηLMTM
−−−−−→ MM(A⋉M)∗I

µM

−−→ M(A⋉M)∗I
)
=

(
MA

M∼=
−−→ M(A⊗ I)

Memb
−−−→ M(A⋉M)∗I

)

Moreover, there exists a forgetful functor fromEMMon M to the Eilenberg–Moore category of
the resumption monad generated by the endofunctorA 7→ A⊗A. This forgetful functor is given as
〈A,a,m,u〉 7→ 〈A,a,m〉, and it induces a monad morphism from the resumption monad toLMTM, which
flattens the tree structure into a list.

5 Continuation-based implementation

In this section, we deal with a continuation-based backtracking monad transformer à la Hinze [13] men-
tioned in the introduction. We derive it from the list monad transformer using the codensity monad
construction, thus automatically obtaining that the two monads are isomorphic. First, we discuss some
background on closed monoidal categories, which we need to model continuations.

5.1 Background: closed monoidal categories

A monoidal category〈C ,⊗, I〉 is closedif for all C -objectsB, the functor(–)⊗B has a right adjoint
B⇒ (–). The associated natural isomorphisms⌊–⌋⊗ : C (A⊗B,C) ∼= C (A,B⇒ C) : ⌈–⌉⊗ are currying
and uncurrying respectively. We call the counit of this adjunctionapp : (A⇒ B)⊗A→ B. Note that for

a morphismg : A⊗B→C, it is the case that the morphismA⊗B
⌊g⌋⊗⊗id
−−−−→ (B⇒C)⊗B

app
−−→C is equal

to g.

32 Eilenberg–Moore Monoids and Backtracking Monad Transformers

For objectsA, B, andC, we define the following morphismk:

k=
(
((B⇒C)⊗ (A⇒ B))⊗A

∼=
−→ (B⇒C)⊗ ((A⇒ B)⊗A)

id⊗app
−−−−→ (B⇒C)⊗B

app
−−→C

)

We define the ‘composition’ morphismcomp = ⌊k⌋⊗ : (B ⇒ C)⊗ (A⇒ B) → A⇒ C and the identity

morphismident= ⌊I ⊗A
∼=
−→ A⌋⊗ : I → (A⇒ A). The triple〈A⇒ A, comp, ident〉 forms a monoid.

5.2 Cayley representation of ‘Kleisli’ Eilenberg–Moore monoids

The codensity monad of a functorG : D → E is given by the right Kan extension ofG along itself
RanGG : E → E (see Mac Lane [23, Ch. X] or Leinster [22]). Using the coend representation of Kan
extensions, one can implement the codensity monad of a Haskell functor f as follows:

data Cod f a = Cod (forall x. (a -> f x) -> f x)

It is known that the codensity monad of a right adjoint is isomorphic to the monad induced by the
adjunction. Hinze [14] gives the following example of how one can use this fact to derive a continuation-
based implementation of the list monad. First, we can simulate the forgetful functor from the category
of monoids using a class constraint:

data L1 a = L1 (forall w. (Monoid w) => (a -> w) -> w)

Now, instead of relying on instances of theMonoid class, one can use the universal monoid of endomor-
phismsx -> x. A classic result by Cayley states that every monoid can be represented as a submonoid
of the universal monoid (this submonoid is called theCayley representation). Thus, we can equivalently
define the monad in question as follows:

data L2 a = L2 (forall x. (a -> x -> x) -> x -> x)

In this section, we give a similar construction to obtain a continuation-based implementation of the list
monad transformer. We start with an Eilenberg–Moore monoidof endomorphismsMA⇒ MA:

Theorem 15. LetC be closed monoidal. Then, the tuple

〈MA⇒ MA, ⌊p⌋⊗, comp, ident〉,

where
p=

(
M(MA⇒ MA)⊗MA

τ
−→ M((MA⇒ MA)⊗MA)

Mapp
−−−→ MMA

µ
−→ MA

)
,

is an Eilenberg–Moore monoid.

Unfortunately, the Eilenberg–Moore monoid defined in Theorem 15 is not universal. For that, we
would have to define a morphism〈A,a,m,u〉 → 〈MA ⇒ MA,⌊p⌋⊗,comp, ident〉 for each Eilenberg–
Moore monoid〈A,a,m,u〉, while it is in general not possible to define a morphismg : A→ (MA⇒ MA)
that is a morphism between Eilenberg–Moore algebras〈A,a〉 and 〈MA ⇒ MA,⌊p⌋⊗〉. To make the
construction work, we need to slightly restrict the domain of the forgetful functorU .

First, we give some intuition. The universal property of theadjunctionF ⊣ U described in Theo-
rem 11 is a folding property: given morphismsa : MA→ A, m : A⊗A→ A, u : I → A, andh : B→ A,
as long asa, m, andu satisfy the conditions given in the definition of Eilenberg–Moore monoids, we
obtain a unique coherentfold, that is, a morphismLMTMB→ A. It could be also understood as ‘running’
or ‘interpreting’ the monadic computation. However, in programming, when we ‘run’ a backtracking
computation, we do not interpret it as a value of some typeA. Rather, we interpret it as a value in the

M. Piróg 33

base monad, that is,MA. In other words, we fold the structure of the list, but, instead of eliminating
the monadic parts using an Eilenberg–Moore algebraa : MA→ A, we accumulate it using the monadic
multiplication µ .

Thus, we are interested in Eilenberg–Moore monoids of the shape〈MA,µ ,m,u〉, which we call,
for the sake of this article,Kleisli monoids, referring to the known fact that the full subcategory of the
Eilenberg–Moore category of a monadM that consists of algebras of the shape〈MA,µ〉 is equivalent to
the Kleisli category ofM. We call the full subcategory ofEMMon M that consists of Kleisli monoids
KlMon M. The restriction of the forgetful functorU : EMMon M → C to KlMon M is dubbedUKl :
KlMon M → C .

A useful observation is that free Eilenberg–Moore monoids defined in Theorem 11 are also Kleisli
monoids. This means thatUKl has a left adjointFKl defined in the same way asF, and that the monad
induced byFKl ⊣ UKl is the same monad as the one induced byF ⊣ U , that is,LMTM. Therefore, the
monadLMTM is also isomorphic to the codensity monad ofUKl . This way, it is enough for our purposes
to find a Cayley representation of Kleisli monoids, not necessarily all Eilenberg–Moore monoids. The
Eilenberg–Moore monoidMA⇒MA from Theorem 15, although not a Kleisli monoid itself, is universal
for Kleisli monoids:

Theorem 16. For each Kleisli monoid〈MA,µ ,m,u〉, the morphism⌊m⌋⊗ : MA→ (MA⇒ MA) has the
following properties:

• it is an Eilenberg–Moore monoid morphism〈MA,µ ,m,u〉 → 〈MA⇒ MA, ⌊p⌋⊗, comp, ident〉,

• it is a split monomorphism inC , that is, there exists a morphism r: (MA⇒ MA)→ MA in C such
that r · ⌊m⌋⊗ = id.

Using the codensity monad for this representation yields the following monad transformer:

type Backtr m a = forall x. (a -> m x -> m x) -> m x -> m x

It is the same monad transformer as obtained, although usingdifferent methods, by Hinze [13].

6 Revisiting the ‘effects-first’ transformer for commutati ve monads

Now, we revisit the commutative-monad transformerm [a] known from themtl library in Haskell. We
call it a ‘commutative-monad transformer’, as it is a monad if and only if the transformed monad is
commutative (see, for example, Mulry [25]). In this section, we derive its continuation-based isomorph,
recreating the steps for theLMTM monad presented in previous sections. We assume thatC is symmetric
closed, and thatM is commutative.

6.1 Background: symmetric monoidal categories and commutative monads

A monoidal category issymmetricif it is equipped with a natural isomorphismA⊗B
s
−→ B⊗A such that

sym is an involution (that is,sym · sym= id) and the following diagrams commute:

I ⊗A A⊗ I

A

sym

∼= ∼=

(A⊗B)⊗C

A⊗ (B⊗C) (B⊗C)⊗A

(B⊗A)⊗C

B⊗ (C⊗A)

B⊗ (A⊗C)
sym⊗ id ∼=

∼=

sym ∼=

id⊗ sym

34 Eilenberg–Moore Monoids and Backtracking Monad Transformers

In a symmetric monoidal category, we define aleft strengthfor a strong monadM:

τ ′ =
(

A⊗MB
sym
−−→ MB⊗A

τ
−→ M(B⊗A)

Msym
−−−→ M(A⊗B)

)

One can show that the appropriate mirror images of the diagrams for a strong endofunctor and a strong
monad commute forτ ′. A monad iscommutativeif it is equipped both with a (right) strength and a left
strength, and the following diagram commutes for all objects A andB:

MA⊗MB

M(A⊗MB) MM(A⊗B)

M(MA⊗B)

M(A⊗B)

MM(A⊗B)
τ ′ Mτ

τ

Mτ ′ µ

µ

If C is a closed symmetric monoidal category andM is commutative, we define the Kleisli composi-
tion. First, for all objectsA, B, andC, consider the following morphism:

w=
(
((B⇒ MC)⊗ (A⇒ MB))⊗A

∼=
−→ (B⇒ MC)⊗ ((A⇒ MB)⊗A)

id⊗app
−−−−→ (B⇒ MC)⊗MB

τ ′
−→ M((B⇒ MC)⊗B)

Mapp
−−−→ MMC

µ
−→ MC

)

We define the composition of Kleisli morphisms askcomp= ⌊w⌋⊗ : (B⇒MC)⊗(A⇒MB)→A⇒MC,

and the identity as⌊I ⊗A
∼=
−→ A

η
−→ MA⌋⊗ : I → A ⇒ MA. The triple 〈A ⇒ MA, kcomp, kident〉 is a

monoid.

6.2 Symmetric Eilenberg–Moore monoids

We now describe how the monadm [a] arises as a composition of adjoint functors. This is not a new
construction, so we skip the proofs. Consider the categoryMon of monoids in a symmetric monoidal
categoryC . Assume that the obvious forgetful functorUMon : Mon → C has a left adjointFMon : C →
Mon. The induced monadUMonFMon is the list monad. Now, given a commutative monadM on C , we
define a monadM onMon (in fact, a lifting in the sense of Beck [8]). It is given as follows:

M〈A,m,u〉= 〈MA, MA⊗MA
τ
−→ M(A⊗MA)

Mτ ′
−−→ MM(A⊗A)

µm
−−→ MA, I

u
−→ A

η
−→ MA〉

M f = M f

µM = µ ηM = η

Let FM ⊣ UM be the Eilenberg–Moore adjunction ofM. Since adjoint functors compose, we obtain an
adjunctionFMFMon ⊣UMonUM. The induced monadUMonUMFMFMon corresponds to the Haskell monad
m [a]. Here, we call this monadCLTM (‘commutative list transformer’).

Now, we take a closer look at the Eilenberg–Moore category ofM. Each object consists of a pair
〈〈A,m,u〉,a〉, where〈A,m,u〉 is a monoid, anda has the Eilenberg–Moore property, that is,a·Ma= a·µ
anda·η = id (since the monadic structure ofM is identical to the monadic structure ofM). Note thata is
a morphism inMon, so it preserves the monoid structure. That is, the following two diagrams commute:

MA⊗MA

M(A⊗MA) MM(A⊗A) MA

A⊗A

A

τ

Mτ ′ µm a

m

a⊗a

(1)

M. Piróg 35

I A MA

A

u η

a
u

(2)

Note that the diagram (2) commutes for alla with the Eilenberg–Moore property. This, together with
some rearranging of the elements of the tuples, leads us to the following equivalent definition of algebras
for M:

Definition 17. Let M be a commutative monad on a symmetric monoidal categoryC . A symmetric
Eilenberg–Moore M-monoidis a tuple〈A,a,m,u〉, such that:

• 〈A,a〉 is an Eilenberg–Moore algebra,

• 〈A,m,u〉 is a monoid,

• coherence: the diagram (1) commutes.

A morphism between two symmetric Eilenberg–MooreM-monoids is given by aC -morphism that is
both a morphism between the Eilenberg–Moore algebra parts and the monoid parts. We call the category
of symmetric Eilenberg–MooreM-monoidsSEMMonM.

The name is justified by the following theorem:

Theorem 18. Every symmetric Eilenberg–Moore M-monoid is an Eilenberg–Moore M-monoid.

Remark 19. One could also imagine a ‘twisted’ definition of Eilenberg–Moore monoids that usesτ ′

instead ofτ , and a coherence condition that equates the two corresponding morphismsA⊗MA → A.
The proof of Theorem 18 can be easily adapted to state that every symmetric Eilenberg–Moore monoid
is a ‘twisted’ Eilenberg–Moore monoid. Additionally, one can prove that a quadruple that is both an
Eilenberg–Moore monoid and a ‘twisted’ Eilenberg–Moore monoid for a commutative monadM is nec-
essarily a symmetric Eilenberg–Moore monoid.

Since the definition of symmetric Eilenberg–Moore monoids is a simple rearrangement of the defini-
tion of algebras forCLTM, the adjunctionFMFMon ⊣UMonUM gives us that the obvious forgetful functor
USEMMon : SEMMonM → C has a left adjointFSEMMon , and that the induced monad is equal toCLTM.
Although a composition of two monadic adjunctions is not always monadic, it is so in this case (it follows
form a general theorem of Beck about algebras for composite monads [8, Proposition 2]):

Theorem 20. The adjunction FSEMMon ⊣USEMMon is strictly monadic. This entails thatSEMMonM is
isomorphic to the category of algebras forCLTM.

6.3 Endomorphism representation and a continuation-basedimplementation

Now, assume thatC is a closed symmetric monoidal category. We define a symmetric Eilenberg–Moore
monoid of Kleisli endomorphisms, that is, objectsA⇒ MA:

Theorem 21. Let C be a symmetric closed monoidal category, and M be a commutative monad onC .
Then, the tuple

〈A⇒ MA, ⌊q⌋⊗, kcomp, kident〉,

where
q=

(
M(A⇒ MA)⊗A

τ
−→ M((A⇒ MA)⊗A)

Mapp
−−−→ MMA

µ
−→ MA

)
,

is a symmetric Eilenberg–Moore monoid.

36 Eilenberg–Moore Monoids and Backtracking Monad Transformers

It is left to prove that the monoidA⇒ MA is universal for the sufficient subcategory of symmetric
Eilenberg–Moore monoids:

Theorem 22. For each symmetric Eilenberg–Moore monoid of the shape〈MA,µ ,m,u〉, the morphism
⌊s⌋⊗ : MA→ (A⇒ MA), where

s=
(

MA⊗A
id⊗η
−−−→ MA⊗MA

m
−→ MA

)
,

has the following properties:

• it is a morphism〈MA,µ ,m,u〉 → 〈A⇒ MA, ⌊q⌋⊗, kcomp, kident〉 between symmetric Eilenberg–
Moore monoids,

• it is a split monomorphism inC , that is, there exists a morphism r: (A⇒ MA)→ MA in C such
that r · ⌊s⌋⊗ = id.

The codensity monad that uses the representation above can be encoded in Haskell as follows:

data CLT m a = CLT (forall x. (a -> x -> m x) -> x -> m x)

Intuitively, this type represents folds over a list-like structure. Folding a single element can produce
some effects in the monadm, but it does not depend on the effects produced by previous elements (it
can depend on the values though). The nil of the list (that is,the failure continuation) does not produce
monadic effects on its own.

7 Discussion

Equations similar to the conditions in the definition of Eilenberg–Moore monoids were previously dis-
cussed by Hinze [13], although in a different setting, that is, as equations between Haskell expressions.
Jaskelioff and Moggi [18] suggest that an equational theorylike the one discussed in Section 3 induces
the list monad transformer, but they leave this without a proof. Wand and Vaillancourt [31] use logical
relations to compare two metalanguages with backtracking:one based on streams, and the other on a
two-continuation monad. Eilenberg–Moore algebras of the resumption monad are also known asF-and-
M-algebras. They were used by Filinski and Støvring [10] (andlater by Atkeyet al. [3, 4]) to model data
structures that interleave pure data and effects.

In eager languages, the bare list monad is rarely used as a basis of backtracking computations, since
the entire list structure is always computed upfront. Thus,in ML-like languages, one uses the type of lazy
lists, which produce elements on demand. It can be implemented using the Haskell syntax as follows:

data LazyList a = LazyList (() -> Maybe (a, LazyList a))

Given a value of this type, one can force the next step of the computation by supplying the unit value(),
and only then the structure is evaluated. This is nothing else than the list monad transformer (‘done
right’) applied to the reader monad() -> a.

Some languages provide separate primitives for inductive and coinductive data. From the point of
view of semantics, it means that the language supports typesgiven by initial algebras and final coalgebras
separately. It is an interesting challenge for future work to describe the ‘coinductive’ list monad trans-
former, given by carriers of final coalgebras. In such a case,the free monad becomes thefree completely
iterative monadintroduced by Aczelet al. [1], and the resumption monad becomes thecoinductive re-
sumption monaddescribed by Piróg and Gibbons [26]. The universal properties of both constructions

M. Piróg 37

are similar to those of their inductive counterparts, but considerably more complicated (see Adámeket
al. [2] for the case of the free completely iterative monad).

Another challenge for future work is to extend the current development with control operators, such
as Prolog’scut or fair disjunction. These features can be found, for example, in Kiselyovet al.’s imple-
mentation [20]. We hope that such control structures can be obtained using the methods described in this
paper.

Acknowledgements

I would like to thank Tom Schrijvers for his remarks on an early draft of this paper, and the anonymous
reviewers for their detailed comments and helpful suggestions.

References

[1] Peter Aczel, Jiřı́ Adámek, Stefan Milius & Jiřı́ Velebil (2003): Infinite trees and completely itera-
tive theories: a coalgebraic view. Theoretical Computer Science300(1-3), p. 145, doi:10.1016/
S0304-3975(02)00728-4.

[2] Jiřı́ Adámek, Stefan Milius & Jiřı́ Velebil (2006):Elgot Algebras. Logical Methods in Computer Science
2(5), doi:10.2168/LMCS-2(5:4)2006.

[3] Robert Atkey, Neil Ghani, Bart Jacobs & Patricia Johann (2012):Fibrational Induction Meets Effects. In Lars
Birkedal, editor:Foundations of Software Science and Computational Structures, Lecture Notes in Computer
Science7213, Springer, pp. 42–57, doi:10.1007/978-3-642-28729-9_3.

[4] Robert Atkey & Patricia Johann (2015):Interleaving data and effects. Journal of Functional Programming
25, doi:10.1017/S0956796815000209.

[5] Roland Carl Backhouse, Marcel Bijsterveld, Rik van Geldrop & Jaap van der Woude (1995):Cate-
gorical Fixed Point Calculus. In: Category Theory and Computer Science, p. 159179, doi:10.1007/
3-540-60164-3_25.

[6] Michael Barr & Charles Wells (1985):Toposes, Triples, and Theories. Grundlehren der mathematischen
Wissenschaften, Springer-Verlag, New York. Available athttp://www.tac.mta.ca/tac/reprints/

articles/12/tr12abs.html, doi:10.1007/978-1-4899-0021-0.

[7] Jonathan M. Beck (1967):Triples, Algebras and Cohomology. Ph.D. thesis, Columbia University. Available
athttp://www.tac.mta.ca/tac/reprints/articles/2/tr2abs.html.

[8] Jonathan M. Beck (1969):Distributive laws. In B. Eckmann, editor:Seminar on Triples and Categorical Ho-
mology Theory, Lecture Notes in Mathematics80, Springer Berlin Heidelberg, pp. 119–140, doi:10.1007/

BFb0083084. Available athttp://www.tac.mta.ca/tac/reprints/articles/18/tr18abs.html.

[9] Richard S. Bird (2006):A program to solve Sudoku (functional pearl). Journal of Functional Programming
16(6), pp. 671–679, doi:10.1017/S0956796806006058.

[10] Andrzej Filinski & Kristian Støvring (2007):Inductive Reasoning About Effectful Data Types. SIGPLAN
Not. 42(9), pp. 97–110, doi:10.1145/1291220.1291168.

[11] Marcelo Fiore (2013):An equational metalogic for monadic equational systems. Theory and Applica-
tions of Categories27(18), pp. 465–492. Available athttp://www.tac.mta.ca/tac/volumes/27/18/
27-18abs.html.

[12] Marcelo P. Fiore, Gordon D. Plotkin & Daniele Turi (1999): Abstract syntax and variable binding. In: 14th
Annual IEEE Symposium on Logic in Computer Science, Trento,Italy, July 2-5, 1999, IEEE Computer
Society, pp. 193–202, doi:10.1109/LICS.1999.782615.

http://dx.doi.org/10.1016/S0304-3975(02)00728-4
http://dx.doi.org/10.1016/S0304-3975(02)00728-4
http://dx.doi.org/10.2168/LMCS-2(5:4)2006
http://dx.doi.org/10.1007/978-3-642-28729-9_3
http://dx.doi.org/10.1017/S0956796815000209
http://dx.doi.org/10.1007/3-540-60164-3_25
http://dx.doi.org/10.1007/3-540-60164-3_25
http://www.tac.mta.ca/tac/reprints/articles/12/tr12abs.html
http://www.tac.mta.ca/tac/reprints/articles/12/tr12abs.html
http://dx.doi.org/10.1007/978-1-4899-0021-0
http://www.tac.mta.ca/tac/reprints/articles/2/tr2abs.html
http://dx.doi.org/10.1007/BFb0083084
http://dx.doi.org/10.1007/BFb0083084
http://www.tac.mta.ca/tac/reprints/articles/18/tr18abs.html
http://dx.doi.org/10.1017/S0956796806006058
http://dx.doi.org/10.1145/1291220.1291168
http://www.tac.mta.ca/tac/volumes/27/18/27-18abs.html
http://www.tac.mta.ca/tac/volumes/27/18/27-18abs.html
http://dx.doi.org/10.1109/LICS.1999.782615

38 Eilenberg–Moore Monoids and Backtracking Monad Transformers

[13] Ralf Hinze (2000):Deriving backtracking monad transformers (functional pearl) . In Martin Odersky &
Philip Wadler, editors:Proceedings of the Fifth ACM SIGPLAN International Conference on Functional
Programming (ICFP ’00), Montreal, Canada, September 18-21, 2000., ACM, pp. 186–197, doi:10.1145/
351240.351258.

[14] Ralf Hinze (2012):Kan extensions for program optimisation or: Art and Dan explain an old trick. In Jeremy
Gibbons & Pablo Nogueira, editors:Mathematics of Program Construction - 11th International Confer-
ence, MPC 2012, Madrid, Spain, June 25-27, 2012. Proceedings, Lecture Notes in Computer Science7342,
Springer, pp. 324–362, doi:10.1007/978-3-642-31113-0_16.

[15] John Hughes (1995):The design of a pretty-printing Library. In Johan Jeuring & Erik Meijer, editors:
Advanced Functional Programming, First International Spring School on Advanced Functional Programming
Techniques, Båstad, Sweden, May 24-30, 1995, Tutorial Text, Lecture Notes in Computer Science925,
Springer, pp. 53–96, doi:10.1007/3-540-59451-5_3.

[16] Martin Hyland, Gordon D. Plotkin & John Power (2006):Combining effects: Sum and tensor. Theoretical
Computer Science357(1-3), p. 7099, doi:10.1016/j.tcs.2006.03.013.

[17] Martin Hyland & John Power (2006):Discrete Lawvere theories and computational effects. Theoretical
Computer Science366(1-2), pp. 144–162, doi:10.1016/j.tcs.2006.07.007.

[18] Mauro Jaskelioff & Eugenio Moggi (2010):Monad transformers as monoid transformers. Theoretical Com-
puter Science411(5152), p. 44414466, doi:10.1016/j.tcs.2010.09.011.

[19] Gregory M. Kelly (1980):A unified treatment of transfinite constructions for free algebras, free monoids,
colimits, associated sheaves, and so on. Bulletin of the Australian Mathematical Society22, pp. 1–83,
doi:10.1017/S0004972700006353.

[20] Oleg Kiselyov, Chung-chieh Shan, Daniel P. Friedman & Amr Sabry (2005):Backtracking, Interleaving,
and Terminating Monad Transformers: (Functional Pearl). SIGPLAN Notices40(9), pp. 192–203, doi:10.
1145/1090189.1086390.

[21] Anders Kock (1971):Closed categories generated by commutative monads. Journal of the Australian Math-
ematical Society12, pp. 405–424, doi:10.1017/S1446788700010272.

[22] Tom Leinster (2013):Codensity and the ultrafilter monad. Theory and Applications of Categories28(13),
pp. 332–370. Available athttp://www.tac.mta.ca/tac/volumes/28/13/28-13abs.html.

[23] Saunders Mac Lane (1998):Categories for the Working Mathematician. Graduate Texts in Mathematics,
Springer, doi:10.1007/978-1-4757-4721-8.

[24] Eugenio Moggi (1989):An Abstract View of Programming Languages. Technical Report, Edinburgh Univer-
sity. Available athttp://www.lfcs.inf.ed.ac.uk/reports/90/ECS-LFCS-90-113/.

[25] Philip Mulry (2013):Notions of Monad Strength. In Anindya Banerjee, Olivier Danvy, Kyung-Goo Doh &
John Hatcliff, editors:Semantics, Abstract Interpretation, and Reasoning about Programs: Essays Dedicated
to David A. Schmidt on the Occasion of his Sixtieth Birthday,Manhattan, Kansas, USA, 19-20th September
2013,Electronic Proceedings in Theoretical Computer Science129, Open Publishing Association, pp. 67–83,
doi:10.4204/EPTCS.129.6.

[26] Maciej Piróg & Jeremy Gibbons (2014):The Coinductive Resumption Monad. Electronic Notes in Theoreti-
cal Computer Science308, pp. 273–288, doi:10.1016/j.entcs.2014.10.015. Mathematical Foundations
of Programming Semantics (MFPS XXX).

[27] Gordon D. Plotkin & John Power (2003):Algebraic Operations and Generic Effects. Applied Categorical
Structures11(1), pp. 69–94, doi:10.1023/A:1023064908962.

[28] Exequiel Rivas & Mauro Jaskelioff (2014):Notions of Computation as Monoids. Available athttp://
arxiv.org/abs/1406.4823. Submitted to the Journal of Functional Programming.

[29] Exequiel Rivas, Mauro Jaskelioff & Tom Schrijvers (2015): From monoids to near-semirings: the essence
of MonadPlus and alternative. In Moreno Falaschi & Elvira Albert, editors:Proceedings of the 17th Inter-
national Symposium on Principles and Practice of Declarative Programming, Siena, Italy, July 14-16, 2015,
ACM, pp. 196–207, doi:10.1145/2790449.2790514.

http://dx.doi.org/10.1145/351240.351258
http://dx.doi.org/10.1145/351240.351258
http://dx.doi.org/10.1007/978-3-642-31113-0_16
http://dx.doi.org/10.1007/3-540-59451-5_3
http://dx.doi.org/10.1016/j.tcs.2006.03.013
http://dx.doi.org/10.1016/j.tcs.2006.07.007
http://dx.doi.org/10.1016/j.tcs.2010.09.011
http://dx.doi.org/10.1017/S0004972700006353
http://dx.doi.org/10.1145/1090189.1086390
http://dx.doi.org/10.1145/1090189.1086390
http://dx.doi.org/10.1017/S1446788700010272
http://www.tac.mta.ca/tac/volumes/28/13/28-13abs.html
http://dx.doi.org/10.1007/978-1-4757-4721-8
http://www.lfcs.inf.ed.ac.uk/reports/90/ECS-LFCS-90-113/
http://dx.doi.org/10.4204/EPTCS.129.6
http://dx.doi.org/10.1016/j.entcs.2014.10.015
http://dx.doi.org/10.1023/A:1023064908962
http://arxiv.org/abs/1406.4823
http://arxiv.org/abs/1406.4823
http://dx.doi.org/10.1145/2790449.2790514

M. Piróg 39

[30] Philip Wadler (1985):How to replace failure by a list of Successes: A method for exception handling,
backtracking, and pattern matching in lazy functional languages. In Jean-Pierre Jouannaud, editor:Func-
tional Programming Languages and Computer Architecture, FPCA 1985, Nancy, France, September 16-
19, 1985, Proceedings, Lecture Notes in Computer Science201, Springer, pp. 113–128, doi:10.1007/

3-540-15975-4_33.

[31] Mitchell Wand & Dale Vaillancourt (2004):Relating Models of Backtracking. SIGPLAN Notices39(9), pp.
54–65, doi:10.1145/1016848.1016861.

[32] Harvey Wolff (1973):Monads and monoids on symmetric monoidal closed categories. Archiv der Mathe-
matik24(1), pp. 113–120, doi:10.1007/BF01228184.

A Proofs

A.1 Lemma 9

The conditions (1) and (2) from Definition 6 are trivial. For (3), we need to show that the following
diagram commutes:

G∗A⊗A

G∗(A⊗A)

A⊗A

G∗A A

JgK⊗ id

τ̃

G∗m JgK

m

We show that both paths satisfy the universal property of strongly generated free monads, so they are
equal. The top-right path:

G∗A⊗A A⊗A A

GG∗A⊗A G(G∗A⊗A) G(A⊗A) GA

GA⊗A

A⊗A

JgK⊗ id m

cons⊗ id

τ G(JgK⊗ id) Gm

g

g⊗ id

FJgK⊗ id τ

η ⊗ id
id

➀

➁

➂

➃

➀ JgK is an algebra morphism,➁ naturality of τ , ➂ 〈A,g,m,u〉 is a G-monoid,➃ universal property
of J–K.

The left-bottom path:

G∗A⊗A G∗(A⊗A) G∗A A

GG∗A⊗A G(G∗A⊗A) GG∗(A⊗A) GG∗A GA

A⊗A A

τ̃ G∗m JgK

cons

τ Gτ̃ GG∗m GJgK

gconscons

η ⊗ id
η

m

η id

➀ ➁ ➂

➃ ➄ ➅

http://dx.doi.org/10.1007/3-540-15975-4_33
http://dx.doi.org/10.1007/3-540-15975-4_33
http://dx.doi.org/10.1145/1016848.1016861
http://dx.doi.org/10.1007/BF01228184

40 Eilenberg–Moore Monoids and Backtracking Monad Transformers

➀ definition of strongly generated free monad,➁ naturality ofcons, ➂ J–K is a morphism of algebras,➃

properties of strength,➄ naturality ofη , ➅ universal property ofJ–K.

A.2 Theorem 11

We split the proof into a number of lemmata. We need to show that F is a functor (Lemma 23), that⌊–⌋
is natural (Lemma 24), that⌈–⌉ produces morphisms between Eilenberg–Moore monoids (Lemma 26),
and that⌊–⌋ is an inverse of⌈–⌉ (Lemma 27).

Lemma 23. The assignment F is a functor.

Proof. First, we check thatFA is an Eilenberg–Moore monoid, that is, that the three conditions from
Definition 6 hold. The first two are obvious. For the third one,consider the following diagram, which is
the desired coherence diagram with the definitions ofm andu unfolded:

MM(A⋉M)∗I ⊗M(A⋉M)∗I M(A⋉M)∗I ⊗M(A⋉M)∗I

M(M(A⋉M)∗I ⊗M(A⋉M)∗I)

MM((A⋉M)∗I ⊗M(A⋉M)∗I)

MM(A⋉M)∗(I ⊗M(A⋉M)∗I)

MM(A⋉M)∗M(A⋉M)∗I

M((A⋉M)∗I ⊗M(A⋉M)∗I)

M(A⋉M)∗(I ⊗M(A⋉M)∗I)

M(A⋉M)∗M(A⋉M)∗I

M(A⋉M)∗IMM(A⋉M)∗I

µM ⊗ id

τM

MτM

MMτ̃M

∼=

τM

Mτ̃M

∼=

µRMµR

µM

µM

µM

➀

➁

➂

➀ properties of strength,➁ naturality ofµM, ➂ µR is defined via a distributive law.

To verify the morphism part, letf : A→ B be a morphism inC . It is trivial that F f is a morphism
between Eilenberg–Moore algebra parts ofFA andFB, as it amounts to the naturality ofµM. As for the
monoid parts, the preservation of the unit is simply the factthatM(f⋉M)∗I is a monad morphism. For

M. Piróg 41

the preservation of the multiplication, consider the following diagram:

M(A⋉M)∗I ⊗M(A⋉M)∗I

M((A⋉M)∗I ⊗M(A⋉M)∗I)

M(A⋉M)∗(I ⊗M(A⋉M)∗I)

M(A⋉M)∗M(A⋉M)∗I

M(A⋉M)∗I

M(A⋉M)∗I ⊗M(A⋉M)∗I

M((B⋉M)∗I ⊗M(B⋉M)∗I)

M(B⋉M)∗(I ⊗M(B⋉M)∗I)

M(B⋉M)∗M(B⋉M)∗I

M(B⋉M)∗I

τM

Mτ̃M

∼=

µR

τM

Mτ̃M

∼=

µR

M(f⋉M)∗I ⊗M(f⋉M)∗I

M((f⋉M)∗I ⊗M(f⋉M)∗I)

M(f⋉M)∗(id⊗M(f⋉M)∗)

M(f⋉M)∗M(f⋉M)∗

M(f⋉M)∗

➀

➁

➂

➃

➀ naturality ofτ , ➁ the fact that(f⋉M)∗ preserves strength, and naturality oτ̃, ➂ naturality of∼=, ➃

monad morphism.

Lemma 24. The assignment⌊–⌋ is a natural transformation.

Proof. Let f : FA→〈B,b,mB
,uB〉 andl : 〈B,b,mB

,uB〉→ 〈Y,y,mY
,uY〉 be morphisms inEMMon M, and

r : X → A be a morphism inC . The following diagram commutes, where the top-most path isequal to
⌊l · f ·Fr⌋, while the bottom-most path is equal toUl · ⌊ f ⌋ · r:

X

A

X⊗ I

A⊗ I

M(X⋉M)∗I

M(A⋉M)∗I B Y
r

∼=

∼=

INF

INF

M(r⋉M)∗I

f lr ⊗ id
➀ ➁

➀ naturality of∼=, ➁ definition ofINF.

Lemma 25. Given an Eilenberg–Moore M-monoid〈B,b,mB
,uB〉 and aC -morphism g: A→B, the tuple

〈B, A⊗MB
g⊗b
−−→ B⊗B

mB

−→ B, mB
, uB〉 is an(A⊗M(–))-monoid for A⊗M(–) understood as a functor

with strength given as(A⊗MX)⊗Y
∼=
−→ A⊗ (MX⊗Y)

id⊗τ
−−→ A⊗M(X⊗Y).

42 Eilenberg–Moore Monoids and Backtracking Monad Transformers

Proof. Since〈B,mB
,uB〉 is a monoid by definition, it is left to check the coherence diagram:

(A⊗MB)⊗B (B⊗MB)⊗B (B⊗B)⊗B B⊗B

A⊗ (MB⊗B) B⊗ (MB⊗B) B⊗ (B⊗B)

A⊗M(B⊗B) B⊗M(B⊗B)

A⊗MB B⊗MB B⊗B B

(g⊗ id)⊗ id (id⊗b)⊗ id mB⊗ id

g⊗ (id⊗ id) id⊗ (b⊗ id)

∼= ∼= ∼=

id⊗ τ id⊗ τ

id⊗MmB id⊗MmB

id⊗mB

mB

g⊗ id id⊗b mB

➀ ➁

➂

➃ ➄

➀ and➁ naturality of∼=, ➂ associativity ofmB, ➃ ⊗ is a bifunctor,➄ coherence of〈B,b,mB
,uB〉.

Lemma 26. For a C -morphism g: A→ U〈B,b,mB
,uB〉, the morphism⌈g⌉ is anEMMon M-morphism

of the type FA→ 〈B,b,mB
,uB〉 .

Proof. The fact that⌈g⌉ is a morphism between the Eilenberg–Moore algebra parts follows from the
following diagram, where the right-most edge is equal to⌈g⌉ unfolded as in Lemma 5(1):

MM(A⋉M)∗I M(A⋉M)∗I

MM(A⋉M)∗B M(A⋉M)∗B

MMB MB

MB B

µM

µM

MM(A⋉M)∗uB M(A⋉M)∗uB

µM

M〈〈b, mB · (g⊗ id), id〉〉 〈〈b, mB · (g⊗ id), id〉〉

b

b

Mb

MMJmB · (g⊗b)K MJmB · (g⊗b)K

➀

➁

➂ ➃

➄

➀ and➁ naturality ofµM, ➂ and➃ Lemma 5(2),➄ b has the Eilenberg–Moore property.

The fact that⌈g⌉ commutes with monoid multiplication follows from the following diagram, in which

M. Piróg 43

the left-most edge is the definition ofm (that is, the multiplication ofFA):

M(A⋉M)∗I ⊗M(A⋉M)∗I M(A⋉M)∗I ⊗B B⊗B

M((A⋉M)∗I ⊗M(A⋉M)∗I) M((A⋉M)∗I ⊗B)

M(A⋉M)∗(I ⊗M(A⋉M)∗I) M(A⋉M)∗(I ⊗B)

M(A⋉M)∗M(A⋉M)∗I M(A⋉M)∗B

M(A⋉M)∗I B

id⊗⌈g⌉ ⌈g⌉⊗ id

M(id⊗⌈g⌉)

M(A⋉M)∗(id⊗⌈g⌉)

τ τ

Mτ̃ Mτ̃

∼=

⌈g⌉

µR

M(A⋉M)∗⌈g⌉

∼=

mB

〈〈b, mB · (g⊗ id), id〉〉

➀

➁

➂

➃

➄

(3)

➀ naturality ofτ , ➁ naturality ofτ̃ , ➂ naturality of∼=, ➃ see below,➄ see below.
To verify that the square➃ above commutes, we unfold⌈g⌉ as in Lemma 5(1). The desired diagram

is then as follows:

M(A⋉M)∗M(A⋉M)∗I M(A⋉M)∗M(A⋉M)∗B M(A⋉M)∗B

M(A⋉M)∗I M(A⋉M)∗B B

M(A⋉M)∗M(A⋉M)∗uB M(A⋉M)∗〈〈b, mB · (g⊗ id), id〉〉

M(A⋉M)∗uB 〈〈b, mB · (g⊗ id), id〉〉

µR µR 〈〈b, mB · (g⊗ id), id〉〉➀ ➁

➀ naturality ofµR , ➁ 〈〈–,–, id〉〉 has the Eilenberg–Moore property (Lemma 5(2)).
Below, we detail➄ from the diagram (3):

M(A⋉M)∗I ⊗B M(A⋉M)∗B⊗B

M((A⋉M)∗I ⊗B) M((A⋉M)∗B⊗B)

M(A⋉M)∗(I ⊗B) M(A⋉M)∗(B⊗B)

M(A⋉M)∗B

B⊗B

MB⊗B

M(B⊗B)

MB

B

M(A⋉M)∗uB⊗ id

M((A⋉M)∗uB⊗ id)

M(A⋉M)∗(uB⊗ id)

τ τ

Mτ̃ Mτ̃

∼= M(A⋉M)∗mB

〈〈b, mB · (g⊗ id), id〉〉⊗ id

MJmB · (g⊗b)K⊗ id

b⊗ id

τ

MmB

b

mB

〈〈b, mB · (g⊗ id), id〉〉

M(JmB · (g⊗b)K⊗ id)

MJmB · (g⊗b)K

➀ ➁

➂

➃

➄ ➅

➆

➇

44 Eilenberg–Moore Monoids and Backtracking Monad Transformers

➀ and➁ naturality ofτ , ➂ Lemma 5(2),➃ coherence for〈B,b,mB
,uB〉, ➄ naturality ofτ̃ , ➅ M-image

of the coherence diagram for the Eilenberg–Moore(A⋉M)∗-monoid generated as in Lemma 9 by the
(A⋉M)-monoid〈B, mB · (g⊗b), mB

, uB〉 described in Lemma 25,➆ monoid,➇ Lemma 5(2).
It is left to show that⌈g⌉ preserves units of the monoid parts of the respective Eilenberg–Moore

monoids. The following diagram commutes, where the right-most edge is equal to⌈g⌉ via Lemma 5(1):

B M(A⋉M)∗B

B

I M(A⋉M)∗I

ηR

id
〈〈b, mB · (g⊗ id), id〉〉

u = ηR

uB M(A⋉M)∗uB➀

➁

➀ naturality ofηR, ➁ 〈〈–,–, id〉〉 has the Eilenberg–Moore property (Lemma 5(2)).

Lemma 27. The natural transformation⌊–⌋ is a natural isomorphism with the inverse given by⌈–⌉.

Proof. In one direction, letg : A→U〈B,b,mB
,uB〉 be aC -morphism. The fact that⌊⌈g⌉⌋ = g follows

from the following diagram, where the longer path of the perimeter is obtained by unfolding the defini-
tions of⌊–⌋ and⌈–⌉:

A B

B B⊗ I B⊗B

A⊗B

A⊗ I M(A⋉M)∗I

g

∼=

INF

〈〈b, mB · (g⊗ id), uB〉〉

g

∼= id⊗uB

mB

g⊗ id

id⊗uB

g⊗ id

➀

➁
➂ ➃

➀ right unit law for monoids,➁ naturality of∼=, ➂ ⊗ is a bifunctor,➃ cancellation property of〈〈–〉〉
(Lemma 5(3)).

In the other direction, we need to show that⌈⌊ f ⌋⌉ = f for f : FA → 〈B,b,mB
,uB〉. Unfolding the

definition of⌈–⌉, we obtain:

⌈⌊ f ⌋⌉= 〈〈MB
b
−→ B, A⊗B

⌊ f ⌋⊗id
−−−−→ B⊗B

mB

−→ B, I
uB

−→ B〉〉

To prove that it is equal tof , it is enough to show that the universal property of〈〈–〉〉 (given in Lemma 4)
holds for f .

The left-hand side of the first diagram in Lemma 4 commutes, since morphisms inEMMon M are
necessarily morphisms between Eilenberg–Moore algebra parts. The right-hand side of the diagram (that
is, the fact thatf is a morphisms between(A⊗(–))-algebras) is given by the following diagram, in which

M. Piróg 45

we unfold the definition of⌊ f ⌋ in mB · (⌊ f ⌋⊗ id) (the bottom edge):

A⊗M(A⋉M)∗I M(A⋉M)∗I

(A⊗ I)⊗M(A⋉M)∗I M(A⋉M)∗I ⊗M(A⋉M)∗I

A⊗B (A⊗ I)⊗B M(A⋉M)∗I ⊗B B⊗B B
∼=⊗ id INF⊗ id f ⊗ id mB

fid⊗ f

µR · INF

∼=⊗ id

INF⊗ id

f ⊗ f

m➀

➁ ➂

➀ see below,➁ ⊗ is a bifunctor,➂ f is a monoid morphism (as a morphism inEMMon M).
Below, we detail➀ from the diagram above. We unfold the definitions ofINF andm.

A⊗M(A⋉M)∗I A⊗MM(A⋉M)∗I (A⋉M)∗M(A⋉M)∗I M(A⋉M)∗M(A⋉M)∗I

M(A⋉M)∗I

(A⊗ I)⊗M(A⋉M)∗I

(A⊗MI)⊗M(A⋉M)∗I

(A⋉M)∗I ⊗M(A⋉M)∗I

M(A⋉M)∗I ⊗M(A⋉M)∗I M((A⋉M)∗I ⊗M(A⋉M)∗I)

M(A⋉M)∗(I ⊗M(A⋉M)∗I)

A⊗ (I ⊗M(A⋉M)∗I)

A⊗ (MI ⊗M(A⋉M)∗I)

A⊗M(I ⊗M(A⋉M)∗I)

(A⋉M)∗(I ⊗M(A⋉M)∗I)

µR

id⊗ηM
emb ηM

∼=⊗ id

(id⊗ηM)⊗ id

emb⊗ id

ηM ⊗ id

∼=

Mτ̃

τ

ηM

id⊗ (ηM ⊗ id)

id⊗ τ

emb

id⊗∼=

∼=

∼=

τ̃ ηM

id⊗ηM

∼=

➀

➁

➂

➃

➄
➅

➆ ➇

➀ monoidal category,➁ naturality of∼=, ➂ the fact that(A⋉M)∗ is strongly generated and the definition
of strength ofA⋉M, ➃ properties of strength,➄ naturality of ηM and emb, ➅ naturality of ηM, ➆

properties of strength,➇ naturality ofηM.
It is left to show that the following diagram commutes:

I M(A⋉M)∗I

B

ηR

uB
f

It commutes, sinceηR = u, and f is a morphism between the monoid parts ofFA and〈B,b,mB
,uB〉.

46 Eilenberg–Moore Monoids and Backtracking Monad Transformers

A.3 Theorem 13

We use the strict version of Beck’s monadicity theorem [7] (see Mac Lane [23, Sec. VI.7]). Leth0,h1 :
〈A,a,mA

,uA〉 → 〈B,b,mB
,uB〉 be a pair of morphisms between Eilenberg–Moore monoids. Assume that

g : B→ C is a split coequaliser ofUh0 andUh1, that is, the following diagram commutes, and the top
and bottom paths are both equal toid:

B A B

C B C

t h0

s

g h1

g

g

By Beck’s theorem, it is enough to show that there exists a unique Eilenberg–Moore monoid〈C,c,mC
,uC〉

such thatg is a morphism of Eilenberg–Moore monoids〈B,b,mB
,uB〉 → 〈C,c,mC

,uC〉 and a coequaliser
of h0 andh1.

We notice thath0 andh1 are also morphisms of Eilenberg–Moore algebras〈A,a〉→ 〈B,b〉. Hence, by
the fact that the Eilenberg–Moore adjunction is monadic, there exists a unique Eilenberg–Moore algebra
〈C,c〉 such thatg : 〈B,b〉→ 〈C,c〉 is a unique coequaliser ofh0 andh1 understood as morphisms between
Eilenberg–Moore algebras. In detail, the algebra〈C,c〉 is equal to:

〈C, MC
Ms
−→ MB

b
−→ B

g
−→C〉

Similarly, h0 andh1 are morphism between monoids〈A,mA
,uA〉 and〈B,mB

,uB〉. Since the adjunction
betweenC and the category of monoids is monadic, there exists a uniquemonoid〈C,mC

,uC〉 such that
g : 〈B,mB

,uB〉 → 〈C,mC
,uC〉 is a unique coequaliser ofh0 and h1 understood as morphism between

monoids. In detail, the monoid〈C,mC
,uC〉 is given as:

〈C, C⊗C
s⊗s
−−→ B⊗B

mB

−→ B
g
−→C, I

uB

−→ B
g
−→C〉

To check that〈C,c,mC
,uC〉 is an Eilenberg–Moore monoid, we need to verify the coherence condi-

tion:

MC⊗C MB⊗C B⊗C C⊗C

M(C⊗C) M(B⊗C) MB⊗B B⊗B B⊗B

M(B⊗B) B B

MB MC MB B C

Ms⊗ id b⊗ id g⊗ id

M(s⊗ id) b⊗ id

g⊗g s⊗sid⊗sid⊗sτ τ

M(s⊗s)
M(id⊗s)

τ mB

MmB

mB

g

Mg Ms b g

b g

➀
➁

➂
➃

➄ ➅ ➆

➇

➀ and➁ naturality ofτ , ➂ ⊗ is a bifunctor,➃ g·s= id, sinceg is a split coequaliser,➄ ⊗ is a bifunctor,
➅ 〈B,b,mB

,uB〉 is an Eilenberg–Moore monoid,➆ g is a morphism between monoids,➇ g is a morphism
between Eilenberg–Moore algebras.

Morphisms inEMMon M need to be exactly morphisms between Eilenberg–Moore algebras and
monoids. Thus,g is a morphism〈B,b,mB

,uB〉 → 〈C,c,mC
,uC〉 and a coequaliser ofh0 andh1.

M. Piróg 47

A.4 Theorem 15

The triple〈MA⇒ MA, comp, ident〉 is a monoid, since it is a special case of the general construction
〈A⇒ A, comp, ident〉; see, for example, Rivaset al. [29]. We need to verify thatp has the Eilenberg–
Moore property.2 First, we need to show that⌊p⌋⊗ ·η = id. Using the naturality of⌊–⌋⊗, it is enough
to show that⌊p· (η ⊗ id)⌋⊗ = id. Consider the following diagram, where the left-bottom path is equal to
p· (η ⊗ id):

(MA⇒ MA)⊗MA

M(MA⇒ MA)⊗MA M((MA⇒ MA)⊗MA) MMA MA

η ⊗ id

τ Mapp µ

η

app

➀
➁

➀ properties of strength,➁ naturality ofη and monad laws.
Thus, we obtain⌊p· (η ⊗ id)⌋⊗ = ⌊app⌋⊗ = id, sinceapp is the counit of the adjunction. To see that

⌊p⌋⊗ has the Eilenberg–Moore property, we also need to verify that ⌊p⌋⊗ ·M⌊p⌋⊗ = ⌊p⌋⊗ · µ . Using
the naturality of⌊–⌋⊗, it is enough to verify that⌊p· (M⌊p⌋⊗⊗ id)⌋⊗ = ⌊p· (µ ⊗ id)⌋⊗. Therefore, it is
enough to show thatp· (M⌊p⌋⊗⊗ id) = p· (µ ⊗ id). It is detailed in the following diagram:

MM(MA⇒ MA)⊗MA M(MA⇒ MA)⊗MA

M(M(MA⇒ MA)⊗MA)

MM((MA⇒ MA)⊗MA)

MMMA

M((MA⇒ MA)⊗MA)

MMA

MAMMAM((MA⇒ MA)⊗MA)

M(MA⇒ MA)⊗MA

µ ⊗ id

τ

Mτ

MMapp

τ

µ

Mapp

µ

µ

µ

Mµ

Mp

M⌊p⌋⊗⊗ id

τ

Mapp

M(⌊p⌋⊗⊗ id)

➀ ➁

➂ ➃
➄

➅

➀ naturality ofτ , ➁ properties of strength,➂ app is the counit of the adjunction,➃ definition of p, ➄

naturality ofµ , ➅ monad laws.
It is left to check that the coherence diagram commutes, which in this case instantiates as follows:

M(MA⇒ MA)⊗ (MA⇒ MA)

M((MA⇒ MA)⊗ (MA⇒ MA))

(MA⇒ MA)⊗ (MA⇒ MA)

M(MA⇒ MA) MA⇒ MA

⌊µ ·Mapp ·τ⌋⊗⊗ id

τ

Mcomp ⌊µ ·Mapp ·τ⌋⊗

comp

2Note that〈MA ⇒ MA,⌊p⌋⊗〉 is defined as in Kock’s [21] construction of a closed monoidalstructure on the Eilenberg–
Moore category of a commutative monad. Kock’s proof that〈MA⇒ MA,⌊p⌋⊗〉 is an Eilenberg–Moore algebra can be applied
if we additionally assume thatC is symmetric.

48 Eilenberg–Moore Monoids and Backtracking Monad Transformers

Since⌈–⌉⊗ is an isomorphism, it is enough to show that the⌈–⌉⊗-images of both paths in the diagram
are equal. The top-right path:

⌈comp · (⌊µ ·Mapp · τ⌋⊗⊗ id)⌉⊗ = ⌈comp⌉⊗ · ((⌊µ ·Mapp · τ⌋⊗⊗ id)⊗ id) naturality of⌈–⌉⊗
= ⌈⌊k⌋⊗⌉⊗ · ((⌊µ ·Mapp · τ⌋⊗⊗ id)⊗ id) definition ofcomp

= k · ((⌊µ ·Mapp · τ⌋⊗⊗ id)⊗ id) isomorphism

(∗) = k · ((((id⇒ µ) · (id⇒ Mapp) · ⌊τ⌋⊗)⊗ id)⊗ id) naturality of⌊–⌋⊗

The left-bottom path:

⌈⌊µ ·Mapp · τ⌋⊗ ·Mapp · τ⌉⊗ = ⌈⌊µ ·Mapp · τ⌋⊗⌉⊗ · (Mapp⊗ id) · (τ ⊗ id) naturality of⌈–⌉⊗
(∗∗) = µ ·Mapp · τ · (Mapp⊗ id) · (τ ⊗ id) isomorphism

To show that(∗) is equal to(∗∗), we split the desired diagram into two. First, consider the following
diagram, where the left-bottom path is equal to(∗). For brevity, we denote the objectMA⇒ MA asE.

(ME⊗E)⊗MA

((MA⇒ M(E⊗MA))⊗E)⊗MA

((MA⇒ MMA)⊗E)⊗MA

(E⊗E)⊗MA

E⊗ (E⊗MA) E⊗MA MA

ME⊗ (E⊗MA)

(MA⇒ M(E⊗MA))⊗ (E⊗MA)

(MA⇒ M(E⊗MA))⊗MA

(MA⇒ MMA)⊗MA

E⊗MA

ME⊗MA

(MA⇒ M(E⊗MA))⊗MA

MMA

M(E⊗MA)

(⌊τ⌋⊗⊗ id)⊗ id

((id⇒ Mapp)⊗ id)⊗ id

((id⇒ µ)⊗ id)⊗ id

∼=

id⊗app app

⌊τ⌋⊗⊗ id

(id⇒ Mapp)⊗ id

(id⇒ µ)⊗ id

∼=

∼=

comp⊗ id

comp⊗ id

comp⊗ id

app

⌊τ⌋⊗⊗ id

id⊗app

id⊗app

µ

Mapp

app

app

τ

➀ ➁

➂ ➃

➄

➅ ➆

➇

➀ naturality of∼=, ➁ ⊗ is a bifunctor,➂ and➃ app is the counit of the adjunction,➄ and➅ naturality
of comp, ➆ naturality ofapp, ➇ app is the counit of the adjunction.

Now, consider the following diagram, where the left-most path is equal to the top-right path of the

M. Piróg 49

diagram above, while the path around the perimeter is equal to (∗∗):

(ME⊗E)⊗MA

ME⊗ (E⊗MA)

ME⊗MA

M(E⊗MA)

MMA

MA

M(E⊗ (E⊗MA)) M((E⊗E)⊗MA)

M(E⊗E)⊗MA

ME⊗MA

M(E⊗MA)

∼=

id⊗app

τ

Mapp

µ

τ

M(id⊗app)

M ∼=

Mcomp⊗ id

τ

τ ⊗ id

Mapp

τ

M(comp⊗ id)

➀

➁ ➂

➃

➀ properties of strength,➁ and➂ naturality of strength,➃ app is the counit of the adjunction.

A.5 Theorem 16

The fact that⌊m⌋⊗ is a morphism between monoids follows from the constructionof Cayley represen-
tation of monoids in monoidal categories [28, 29]. The retraction r : (MA⇒ MA)→ MA is defined as
follows:

r =
(
(MA⇒ MA)

∼=
−→ (MA⇒ MA)⊗ I

id⊗u
−−→ (MA⇒ MA)⊗MA

app
−−→ MA

)

To check that⌊m⌋⊗ is a morphism between Eilenberg–Moore parts, we want the following diagram
to commute:

MMA M(MA⇒ MA)

MA MA⇒ MA

M⌊m⌋⊗

⌊m⌋⊗

µ ⌊p⌋⊗

Using the naturality of⌊–⌋⊗, it is enough to show that⌊p· (M⌊m⌋⊗⊗ id)⌋⊗ = ⌊m· (µ ⊗ id)⌋⊗. Thus,
it is enough to show thatp· (M⌊m⌋⊗⊗ id) = m· (µ ⊗ id). It is detailed in the following diagram, where

50 Eilenberg–Moore Monoids and Backtracking Monad Transformers

the right-most edge is equal top:

MMA⊗MA M(MA⇒ MA)⊗MA

MA⊗MA

M((MA⇒ MA)⊗MA)

MMA

MA

M(MA⊗MA)

M⌊m⌋⊗⊗ id

m

µ ⊗ id

τ

Mapp

µ

τ

M(⌊m⌋⊗⊗ id)

Mm

➀

➁

➂

➀ naturality ofτ , ➁ app is the counit of the adjunction,➂ coherence for〈MA,µ ,m,u〉.
To verify that⌊m⌋⊗ preserves the unit, we want the following diagram:

I MA

MA⇒ MA

u

ident
⌊m⌋⊗

Using the naturality of⌊–⌋⊗, it is enough to show that⌊m· (u⊗ id)⌋⊗ = ident. Thus, it is enough to show

thatm· (u⊗ id) = ⌈ident⌉⊗ = (I ⊗MA
∼=
−→ MA). This follows from the fact that〈MA,m,u〉 is a monoid.

A.6 Theorem 18

Except for the assumption thatM is commutative, the only difference between the definition of symmetric
Eilenberg–Moore monoids and the definition of regular Eilenberg–Moore monoids is in the coherence
conditions. Thus, given a symmetric Eilenberg–Moore monoid 〈A,a,m,u〉, it is enough to show that it
satisfies the coherence condition for Eilenberg–Moore monoids:

MA⊗A

M(A⊗A)

MA⊗MA

M(MA⊗A)

MM(A⊗A)

M(A⊗MA)

MM(A⊗A)

M(A⊗A)

MA

MA

A

A⊗A

τ

id⊗η

τ ′

Mτ

η

η τ

Mτ ′

µ

µ Mm

Mm a

m

a⊗ id

aid

a⊗a

➀
➁

➂

➃ ➄

➅
➆

M. Piróg 51

➀ naturality ofη , ➁ properties of strength,➂ a has the Eilenberg–Moore property,➃ M is commutative,
➄ coherence for symmetric Eilenberg–Moore monoids,➅ monad laws,➆ identity.

A.7 Theorem 21

The fact that⌊q⌋⊗ has the Eilenberg–Moore property follows from exactly the same reasoning as for
⌊p⌋⊗ in the proof of Theorem 15.

It is left to verify the coherence condition. It is shown by the following diagram (and subsequent two
diagrams, each detailing a part of the previous one), whereE stands forA⇒ MA:

(ME⊗ME)⊗A (E⊗E)⊗A

E⊗ (E⊗A)

E⊗MA

M(E⊗A)

MMA

MA

ME⊗ (ME⊗A)

ME⊗M(E⊗A)

ME⊗MMA

M(E⊗ME)⊗A

MM(E⊗E)⊗A

MME⊗A

ME⊗A M(E⊗A) MMA

M(E⊗E)⊗A

M((E⊗E)⊗A) M(E⊗ (E⊗A)) M(E⊗MA)

MM(E⊗A)MMMA

(⌊q⌋⊗⊗⌊q⌋⊗)⊗ id

⌊q⌋⊗⊗ (⌊q⌋⊗⊗ id)

∼=
∼=

id⊗app

τ ′

Mapp

µ

τ ⊗ id

id⊗Mapp

⌊q⌋⊗⊗q

id⊗ τ

⌊q⌋⊗⊗µ

Mτ ′⊗ id

MMkcomp⊗ id

µ ⊗ id

τ Mapp µ

µ ⊗ id

τ

M(kcomp⊗ id)

M ∼= M(id⊗app)

Mτ ′

Mµ

MMapp

➀

➁

➂

➃

➄

➅

➀ detailed below,➁ naturality of∼=, ➂ app is the counit of the adjunction,➃ definition ofq, ➄ naturality
of µ andτ , ➅ app is the counit of the adjunction. TUTAJ!!

52 Eilenberg–Moore Monoids and Backtracking Monad Transformers

(ME⊗ME)⊗A ME⊗ (ME⊗A) ME⊗M(E⊗A) ME⊗MMA

M(E⊗ME)⊗A M((E⊗ME)⊗A)

M(E⊗ (ME⊗A)) M(E⊗M(E⊗A))

M(E⊗MMA)

E⊗MAME⊗MA

M(ME⊗A) M(E⊗A)

MMA

MA

M(E⊗MA)

MM(E⊗A)

MM(E⊗A)

M(E⊗A)

MMMA

MMA

MM(E⊗E)⊗A

M(E⊗E)⊗A

M((E⊗E)⊗A)

M(E⊗ (E⊗A)) M(E⊗MA) MM(E⊗A) MMMA MMA

M(M(E⊗E)⊗A)

MM((E⊗E)⊗A)

MM(E⊗ (E⊗A))

∼= id⊗ τ id⊗Mapp

τ ⊗ id

τ

M ∼=

τ τ
M(id⊗ τ)

M(id⊗Mapp)

⌊q⌋⊗⊗µ
id⊗µ

τ ′ τ ′

Mapp

µ

M(⌊q⌋⊗⊗ id)

MqM(id⊗µ)

τ

Mτ ′

Mτ

MMapp
Mµ

µ

µ

µ

µ

Mapp

Mτ ′⊗ id

µ ⊗ id

τ

M ∼=

M(id⊗app) Mτ ′ MMapp Mµ µ

τ

M(τ ′⊗ id)

Mτ

µ
MM ∼=

µ

➀
➁

➂

➃ ➄

➅

➆

➇

➈

➉

➋ ➌

➊

➀ properties of strength,➁ ➂ ➃ naturality ofτ , ➄ detailed below,➅ M is commutative,➆ naturality of
τ ′, ➇ app is the counit of the adjunction,➈ definition ofq, ➉ properties of strength,➊ and➋ naturality
of µ , ➌ monad laws.

M((E⊗ME)⊗A) M(E⊗ (ME⊗A)) M(E⊗M(E⊗A)) M(E⊗MMA)

M(M(E⊗E)⊗A)

MM((E⊗E)⊗A)

MM(E⊗ (E⊗A))

M(E⊗MA)

MM(E⊗A)

M(E⊗A)

MMA

MA

M(E⊗ (E⊗A))

MM(E⊗MA) MMM(E⊗A) MM(E⊗A)

M(E⊗MA) MM(E⊗A) MMMA MMA

MMMMA MMMA

M(τ ′⊗ id)

M ∼=
M(id⊗ τ)

Mτ ′
Mτ

MM ∼=

M(id⊗Mapp)

M(id⊗µ)

µ

M(id⊗app)

Mτ ′ MMapp Mµ µ

Mτ ′

µ

Mapp

µ

MM(id⊗app)

Mτ ′

µ

MMτ ′

Mµ

µ

MMMapp

µ

µ µ

µ µ

➀ ➁

➂

➃

➄

➅ ➆

➇

➈

➀ M is a bistrong monad,➁ naturality ofτ ′, ➂ properties of strength,➃ monad laws,➄ ➅ ➆ ➇ naturality
of µ , ➈ monad laws.

M. Piróg 53

A.8 Theorem 22

We need to show that⌊s⌋⊗ is a morphism between Eilenberg–Moore algebras. It is enough to show that
the following diagram commutes:

MMA⊗A

MMA⊗A

MMA⊗MA

M(MA⊗A)

MMA⊗MMA

M(A⇒ MA)⊗A

M((A⇒ MA)⊗A)

MMA

MA

M(MA⊗MA)

M(MA⊗MMA)

MA⊗MA

MM(MA⊗MA)

µ ⊗ id

τ

id⊗η

id⊗η

M⌊s⌋⊗⊗ id

τ

Mapp

M(⌊s⌋⊗⊗ id)

τ

M(id⊗η)

Mm

M(id⊗η)

τ µ

id⊗η m

µ ⊗µ

Mτ ′

µm

Mη

➀
➁

➂

➃

➄

➅

➆

➇

➀ monad laws,➁ and➂ naturality ofτ , ➃ app is the counit of the adjunction, and the definition ofs
➄ naturality ofτ , ➅ properties of strength,➆ monad laws,➇ coherence for〈MA,µ ,m,u〉.

Next, we need to⌊s⌋⊗ is a morphism between the monoid parts. It is easy to verify that it preserves
the unit. As for the preservation of monoid multiplication,we first show that the following diagram
commutes:

MA⊗MA

MA

M(MA⊗A)

MA⊗MMA

MA⊗MA

M(MA⊗MA)

MMA

τ ′ M(id⊗η)

id⊗Mη τ ′

id⊗µ

m

m Mm

µ

➀

➁ ➂

(4)

➀ naturality ofτ ′, ➁ monad laws,➂ the ‘twisted’ coherence condition forτ ′ (see Remark 19).

Now, to see that⌊s⌋⊗ preserves the monoid multiplication, it is enough to show that the following
diagram commutes, in whichE stands forA⇒ MA:

54 Eilenberg–Moore Monoids and Backtracking Monad Transformers

(MA⊗MA)⊗A

MA⊗A MA⊗MA

(E⊗E)⊗A

E⊗ (E⊗A)

E⊗MA

M(E⊗A)

MMA

MA

(MA⊗MA)⊗MA

MA⊗ (MA⊗MA)

MA⊗M(MA⊗A)

MA⊗M(MA⊗MA)

M(MA⊗ (MA⊗MA))

M(MA⊗MA)

MM(MA⊗A)

MM(MA⊗MA)

MMMA

(E⊗E)⊗MA

E⊗ (E⊗MA)

E⊗M(E⊗A)

E⊗MMA

M(E⊗MA)

MM(E⊗A)

M(MA⊗A)

M(MA⊗MA)

MMA

(⌊s⌋⊗⊗⌊s⌋⊗)⊗ id

id⊗η

(⌊s⌋⊗⊗⌊s⌋⊗)⊗ id

⌊s⌋⊗⊗ (⌊s⌋⊗⊗ id)

id⊗η

∼= ∼=

id⊗ τ ′

∼=

id⊗ (id⊗η)

id⊗η

id⊗Mapp id⊗app

id⊗η

τ ′

Mτ ′

η

τ ′

µ

M(⌊s⌋⊗⊗ id))

id⊗ τ ′
⌊s⌋⊗⊗M(⌊s⌋⊗⊗ id)

id⊗M(id⊗η)

⌊s⌋⊗⊗Mm

τ ′

M(⌊s⌋⊗⊗m)

M(id⊗m)

Mτ ′

µ

M(id⊗η)

MM(⌊s⌋⊗⊗ id)

M(⌊s⌋⊗⊗ id)

Mm

Mapp

µ

m⊗ id

id⊗η m

MM(id⊗η)

MMm

µ

µ

µ

Mµ

Mm

➀

➁

➂ ➃

➄
➅

➆ ➇

➈
➉

➊

➋

➌

➍

➎ ➏

➐

➑

➒

➀ see below,➁ ⊗ is a bifunctor,➂ and➃ naturality of∼=, ➄ naturality ofτ ′, ➅ properties of strength,
➆ app is the counit of the adjunction,➇ naturality ofη , ➈ naturality ofτ ′, ➉ properties of strength,
➊ ⊗ is a bifunctor,➋ naturality ofτ ′, ➌ naturality ofη , and monad laws,➍ and➎ naturality of µ ,
➏ app is the counit of the adjunction,➐ naturality ofµ , ➑ monad laws,➒ diagram (4).

M. Piróg 55

Below, we detail➀ from the diagram above.

(MA⊗MA)⊗A

(MA⊗MA)⊗MA

MA⊗ (MA⊗MA)

MA⊗M(MA⊗A)

MA⊗M(MA⊗MA)

M(MA⊗ (MA⊗MA)) M(MA⊗MA) MMA MA

MA⊗A

MA⊗MA

MA⊗MA

MA⊗MMA

id⊗η

∼=

id⊗ τ ′

id⊗M(id⊗η)

τ ′

M(id⊗m) Mm µ

m⊗ id

m⊗ id

id⊗η

m

id⊗m

m

id⊗Mm

τ ′

id⊗µ

➀

➁

➂

➃

➄

➀ ⊗ is a bifunctor,➁ associativity of monoid multiplication,➂ (id⊗ (–))-image of the diagram (4),
➃ the ‘twisted’ coherence condition forτ ′ (see Remark 19),➄ naturality ofτ ′.

It is left to show that⌊s⌋⊗ is a split mono. The retractionr is given as follows:

r =
(
(A⇒ MA)

∼=
−→ (A⇒ MA)⊗ I

id⊗u
−−→ (A⇒ MA)⊗MA

τ ′
−→ M((A⇒ MA)⊗A)

Mapp
−−−→ MMA

µ
−→ MA

)

56 Eilenberg–Moore Monoids and Backtracking Monad Transformers

We verify thatr · ⌊s⌋⊗ = id:

MA

A⇒ MA

(A⇒ MA)⊗ I

(A⇒ MA)⊗MA

M((A⇒ MA)⊗A)

MMA

MA

MA⊗ I

MA⊗MA

M(MA⊗A)

M(MA⊗MA) MA⊗MMA

MA⊗MA

⌊s⌋⊗

∼=

id⊗u

τ ′

Mapp

µ

id⊗u

τ ′

M(id⊗η)

∼=

⌊s⌋⊗⊗ id

⌊s⌋⊗⊗ id

M(⌊s⌋⊗⊗ id)

Mm

id⊗µ

id⊗Mη

m

τ ′

id

➀

➁

➂

➃
➄ ➅

➆

➀ naturality of∼=, ➁ ⊗ is a bifunctor,➂ naturality ofτ ′, ➃ app is the counit of the adjunction, and
the definition ofs, ➄ naturality ofτ ′, ➅ monad laws,➆ the ‘twisted’ coherence condition forτ ′ (see
Remark 19)

	1 Introduction
	2 Background
	2.1 Monoids in monoidal categories
	2.2 Monads and strength
	2.3 Strongly generated algebraically free monads
	2.4 The resumption monad

	3 Eilenberg–Moore monoids
	3.1 Free Eilenberg–Moore monoids

	4 Algebras for the list monad transformer
	5 Continuation-based implementation
	5.1 Background: closed monoidal categories
	5.2 Cayley representation of `Kleisli' Eilenberg–Moore monoids

	6 Revisiting the `effects-first' transformer for commutative monads
	6.1 Background: symmetric monoidal categories and commutative monads
	6.2 Symmetric Eilenberg–Moore monoids
	6.3 Endomorphism representation and a continuation-based implementation

	7 Discussion
	A Proofs
	A.1 Lemma ??
	A.2 Theorem ??
	A.3 Theorem ??
	A.4 Theorem ??
	A.5 Theorem ??
	A.6 Theorem ??
	A.7 Theorem ??
	A.8 Theorem ??

