Nor malization by Evaluation in the Delay M onad
A Case Study for Coinduction via Copatterns and Sized Types

Andreas Abel James Chapman
Department of Computer Science and Engineering Institute of Cybernetics
Chalmers and Gothenburg University Tallinn University of Technology
Sweden Estonia
andreas.abel@gu.se james@cs.ioc.ee

In this paper, we present an Agda formalization of a normealiar simply-typed lambda terms. The
normalizer consists of two coinductively defined functiomshe delay monad: One is a standard
evaluator of lambda terms to closures, the other a typetdidereifier from values t@-long 3-
normal forms. Their composition, normalization-by-ealan, is shown to be a total functian
posteriori using a standard logical-relations argument.

The successful formalization serves as a proof-of-corfoepbinductive programming and rea-
soning using sized types and copatterns, a new and presaptyimental feature of Agda.

1 Introduction and Related Wor k

It would be a great shame if dependently-typed programmiigP| restricted us to only writing very
clever programs that were a priori structurally recursimd hence obviously terminating. Put another
way, it is a lot to ask of the programmer to provide the progeam its termination proof in one go,
programmers should also be supported in working step-dyy-sthis paper champions a technique that
lowers the barrier of entry, from showing termination toyoshowing productivity up front, and then
later providing the opportunity to show termination (comence). In this paper, we write a simple
recursive normalizer for simply-typed lambda calculusahias an intermediate step constructs closures
and finally constructs fulh-long 3-normal forms. The normalizer is not structurally recuesand we
represent it in Agda as a potentially non-terminating butetbeless productive corecursive function
targeting the coinductive delay monad. Later we show thafuhction is indeed terminating as all such
delayed computations converge (are only finitely delaygda lguite traditional strong computability
argument. The coinductive normalizer, when combined withtermination proof, yields a terminating
function returning undelayed normal forms.

Our normalizer is an instance nbrmalization by evaluatioas conceived by Danvy [15] and Abel,
Coguand, and Dybjel [3]: Terms are first evaluated into ardiegdve structure of values; herein, we
realize function values by closures, which can be seen ak esd normal forms under explicit substi-
tution. The second phase goes in the other direction: valteread back(terminology by Grégoire and
Leroy [19]) as terms in normal forfhin contrast to the cited works, we employ intrinsically wigibed
representations of terms and values. In fact, our appraaclosest to Altenkirch and Chapmaivig-
step normalizatiorji7, [12]; this work can be consulted for more detailed desioms of well-typed terms
and values. Where Altenkirch and Chapman represent pdutiations via their inductively defined
graphs, we take the more direct route via the coinductivaydelonad. This is the essential difference
and contribution of the present work.

1in a more strict terminology, normalization by evaluationshevaluate object-level functions as meta-level fumsiisuch
is happening in Berger and Schwichtenberg’s original widfq[but not here.

N.R. Krishnaswami and P.B. Levy (Eds.): © A. Abel & J. Chapman
Mathematically Structured Functional Programming 2018/® 2014). This work is licensed under the
EPTCS 153, 2014, pp. 51367, d0i:10.4204/EPTCS.153.4 Creative Commoris Attribution License.

http://dx.doi.org/10.4204/EPTCS.153.4
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

52 Normalization by Evaluation in the Delay Monad

The delay monad has been used to implement evaluators bBfanglsson'Operational Semantics
Using the Partiality Monad[14] for untyped lambda terms is the model for our evaluattmwever, we
use asizeddelay monad, which allows us to use the bind operation of tbead directly; Danielsson,
working with the previous version of Agda and its coinductibas to use a workaround to please Agda’s
guardedness checker.

In spirit, evaluation into the delay monad is closely rafate continuous normalizatioms imple-
mented by Aehlig and Joachimski [6]. Since they computeipbsmfinitely deep normal forms (from
untyped lambda terms), their type of terms is coinductivethier, ourlater constructor of the delay
monad is one of their constructors of lambda terms, ca#ipdtition constructar They attribute this idea
to Mints [22]. In the type-theoretic community, the delaymad has been popularized by Capretta [11],
and it is isomorphic to the trampolin type [17]. Escardad [dé%cribes a delay monad in the context of a
(ultra)metric model for PCF which allowatensional functionshat can measure the termination speed
of their arguments. Indeed, the coinductive delay monadténsional in the same sense as it makes the
speed of convergence observable.

Using hereditary substitutions [24], a normalization fiumre for the simply-typed lambda calculus
can be defined directly, by structural recursion on typess mhrmalizer has been formalized in Agda
by Altenkirch and Keller[[2ll]. The idea of normalization byduction on types is very old, see, e.g.,
Prawitz [23]. Note however, that normalization via heraditsubstitution implements a fixed strategy,
bottom-up normalization, which cannot be changed withosinlg the inductive structure of the algo-
rithm. Our strategy, normalization via closures, cannoingg@iemented directly by induction on types.
Further, the simple induction on types also breaks down wghétthing to more powerful lambda calculi
like Godel's T, while our approach scales without effort.

To save paper and preserve precious forests, we have ohlgl@tcthe essential parts of the Agda
development; the full code is available onliné [2].

2 Delay Monad

The Delay type is used to represent computations of typehose result may be returned with some
delay or never be returned at all. A value available immetiias wrapped in theiow constructor. A
delayed value is wrapped in at least dmier constructor. Eaclater represents a single delay and an
infinite number ofater constructors wrapping a value represents an infinite detaya non-terminating
computation.

It is interesting to compare tHeelay type with theMaybe type familiar from Haskell. Both are used
to represent partial values, but differ in the nature ofiphiy. Pattern matching on an element of the
Maybe type immediately yields either success (returning a vabudilure (returning no value) whereas
pattern matching on an element of thelay type either yields success (returning a value) or a delay aft
which one can pattern match again. Whilaybe lets us represent computation with error, possitua-
terminationis elegantly modeled by tHeelay type. A definitely non-terminating value is represented by
an infinite succession ofiter constructors, thud)elay must be a coinductive type. When analyzing a
delayed value, we never know whether after an initial sugioasoflater constructors we will finally get
anow with a proper value—this reflects the undecidability of tevation in general.

In Agda, theDelay type can be represented as a mutual definition of an indudéatype and
a coinductive record. The recordDelay is a coalgebra and one interacts with it by using its single
observation (copatterriprce. Once forced we get an element of tbelay datatype which we can pattern
match on to see if the value is availablew or later. If it is later then we get an element efDelay

A. Abel & J. Chapman 53

which we carforce again, and so forth.

mutual
data Delay (i : Size) (A: Set) : Set where
now : A - Delay i A

later : ooDelayi A - Delayi A

record coDelay (i : Size) (A: Set) : Set where
coinductive
field
force : {j : Size< i} — DelayjA

Both types Delay and»Delay) are indexed by a size This should be understood abservation
depth i.e., a lower bound on the number of times we can iteratifehe the delayed computation. More
precisely, forcingaco : wDelay i A will result in a valuea : Delay j A of strictly smaller observation
depthj < i. An exception is a delayed valu®o : oDelay « A of infinite observation depth, whose
forcing force aco : Delay o A again has infinite observation depth. The sizes (observatépths) are
merely a means to establish productivity of recursive didims, in the end, we are only interested in
valuesa?: Delay o A of infinite depth.

If a corecursive function int®elay i A only calls itself at smaller depthis< i it is guaranteed to be
productive i.e., well-defined. In the following definition of the noartinating valuenever, we make
the hidden size arguments explicit to demonstrate how theyre productivity:

never . O{i A} - coDelayi A
force (never {i}) {j} = later (never {j})

The valuenever is defined to be the thing that, if forced, returns a postporedion of itself. For-
mally, we have defined a member of the record telay i A by giving the contents of all of its fields,
here onlyforce. The use of a projection likerce on the left hand side of a defining equation is called a
copattern[5]. Corecursive definitions by copatterns are the lateditiadh to Agda, and can be activated
since version 2.3.2 via the flag copatterns.

The use of copatterns reduces productivity checking toitertion checking. Agda simply checks
that the size argumengiven in the recursive call toever is smaller than the original function parameter
i. Indeed, < i is ensured by the typing of projectidarce. A more detailed explanation and theoretical
foundations can be found in previous work of the first autdyr Agda can reconstruct size arguments
in programs if the sizes are declared in their type signaflineis, we omit the hidden size arguments in
the following.

At each observation depththe functorDelay i forms a monad. Thesturn of the monad is given by
now, and bind >= is implemented below. Notice that bind is size (observatiepth) preserving; in
other words, its modulus of continuity is the identity. Thawber of safe observations a? >= f is
no less than those on batf? and f a for anya. The implementation of bind follows a common scheme
when working withDelay: we define two mutually recursive functions, the first by @attmatching on
Delay and the second by copattern matchingedbelay.

module Bind where
mutual
>= . O{iAB} - DelayiA - (A - DelayiB) - DelayiB

54 Normalization by Evaluation in the Delay Monad

now a >=f = fa
later a0 >= f = later (aw co>= f)
0 O{iAB} - oDelayi A -~ (A - DelayiB) - cDelayiB

force (ac co>= f) = force aco >= f

We makeDelay i an instance oRawMonad (it is called ‘raw’ as it does not enforce the laws) as defined
in the Agda standard library. This provides us automaticalith a RawFunctor instance, with map
function <$> written infix as in Haskell's base library.

delayMonad : [0 {i} — RawMonad (Delay i)
delayMonad {i} = record

{return = now

;o>= = >= i}

} where open Bind

2.1 Strong Bisimilarity

We can define the coinductive strong bisimilarity relation for Delay c A following the same pattern
as forDelay itself. Two finite computations argtrongly bisimilarif they contain the same value and the
same amount of delay (numberloefers). Non-terminating computations are also identifled.

mutual
data O {i: Size} {A:Set}: (a? b?: Delay o A) - Set where
Chow : Oa - nowa [nowa

[later : [0 {aco beo} (eq: aco o[} i)0beo) — later aco Olater beo
K)0 =a{A}a?ib?- O {i}{A}a?b?

record o[}) {A} (ac : coDelay o A) i (beo : coDelay co A) : Set where
coinductive
field
[force : {j : Size< i} — force aco [} j) Oforce beo

_ o] =A{i}{A}awbeo » o YO {A}awibeo

The definition includes the two sized relation8§l /)[J onDelay co Aand o[/)[1 onoDelay oo A
that exist for the purpose of recursively constructing \@gions (proofs) of bisimilarity in a way that
convinces Agda of their productivity. These are approxiomet of bisimilarity in the sense that they
are intermediate, partially defined relations needed ferdbnstruction of the fully defined relations
[)0 and o[} o) . They are subtly different to the approximaticHg of strong bisimilarity
2 in the context of ultrametric spaceg [6, Sec. 2.2]. Thoseaimations are fully defined relations
that approximate the concept of equality, for instanceadest = 0 all values are equal, at= 1 they

20ne could also consider other relations suckvaak bisimilaritywhich identifies finite computations containing the same
value but different numbers dfters.

A. Abel & J. Chapman 55

are equal if observations of depth one coincide, until ajeste= w observation of arbitrary depth must
yield the same result.

All bisimilarity relations [/)0 and o[} /)0 are equivalences. The proofs by coinduction
are straightforward and omitted here.

[refl : O{iA} (a? : Delayo A) - a?i)0a?
oolFefl : O{i A} (ao : wDelay 0 A) — aco o[i)Haco

bym : O{iA}{a? b? :Delayo A} - a?[¥i)0b? - b?i)0da?
co[bym : [{i A}{aco boo : wDelay 00 A} — aco o[i)[beo — boeoeol} i)aco

[trans : O{i A}{a? b? c?: Delay o A} -

a?di)db? -~ b?i)0c? - a?i)0c?
co[krans : [{i A}{aco boo coo : cDelay o0 A} —

aco oo} i YyOboo — boo o[} i)coo — aco o[i y[Icoo

The associativity law of the delay monad holds up to strosgblarity. Here, we spell out the proof by
coinduction:

mutual
bind-assoc . O{iABC} (m: Delay © A)
{k: A > Delay @ B} {l : B - Delay © C} -
(m>=k) >=1)Ji)dm>=Aa - (ka>=1))
bind-assoc (now a) = Cefl
bind-assoc (later a) = [later (cobind-assoc a)
ocobind-assoc . O{iABC} (aw : wDelay c A)

{k: A - Delay @ B} {l : B — Delay © C} -
(a0 co>=k) cos>=1) o[} i) (a0 co>= A a - (ka>=1))
[force (oobind-assoc ac0) = bind-assoc (force ac)

Further, bind (>= and oo>=) and is a congruence in both arguments (proofs omitted here)

bind-cong-l : O{i AB}{a? b?: Delay 0 A} ~ a? [i)0b? -
(k: A - Delay 0 B) - (a?>=k) i)0(b? >=k)

cobind-cong-l : [{i A B}{ac beo : cDelay co A} — aco o[i)[Iboo —
(k: A - Delay 0 B) - (a0 cos>= k) oo} i) (boo co>= k)

bind-cong-r : O{i AB}(a?: Delay o A){k|: A - Delay o B} —
(Da- (ka)Xi)O(la)) - (a?>=k) Xi)d(@? >=1)

cobind-cong-r : [{i A B}(aw : wDelay o0 A){k|: A - Delay © B} —
(Da - (ka)i)O(la)) - (ao cs>=Kk) o} i)0 (aco co>=1)

As map (<$>) is defined in terms of bind and return, laws for map are irtarof the monad laws:

56 Normalization by Evaluation in the Delay Monad

map-compose : [{iABC} (a?: Delayo A) {f : A - B}{g:B - C} -
(g<$> (f <$>a?) Ki)O((go f) <$>a?)
map-compose a? = bind-assoc a?

map-cong . O{iAB}{a? b?: Delay o A} (f : A - B) -
a? [i)0b? - (f <$>a?) 1)O(f <$> b?)
map-cong f eq = bind-cong-I eq(now o f)

2.2 Convergence

We define convergence as a relation between delayed cornopstatf typeDelay «o A and values of
typeA. If a?[a, then the delayed computatief? eventually yields the valug This is a central concept
in this paper as we will write a (productive) normalizer tpabduces delayed normal forms and then
prove that all such delayed normal forms converge to a vaieleligg termination of the normalizer.
Notice that convergence is amductiverelation defined on coinductive data.

data O {A:Set}: (a?: Delay o A) (a: A) - Set where
now[] : [O{a} - now ala
later] : [O{a} {aco : wDelay 0 A} — force aco Ja — later aco Oa

O {A:Set} (x: Delay o A) - Set
xO = Oha - xOa

We define some useful utilities about convergence: We canfampions on values over a convergence
relation (seemapl)). If a delayed computatioa? converges to a valua then so does any strongly
bisimilar computatiora? (seesubst[T)). If we apply a functionf to a delayed valua? using bind and
we know that the delayed value converges to a valtizen we can replace the bind with an ordinary
applicationf a (seebindl]).

mapld : O{AB}{a: A}{a?: Delayw A}(f : A~ B) - a?0a - (f <$>a?) Ofa
subst[l] : [0{A}{a? a? : Delay o A}{a: A} - a?Ja - a?0a? - a? Oa

bindD : O{AB}(f: A - Delay o B){?a: Delay 0 A}{a: A}{b: B} -
?alla - falb - (?a>= f)0Ob

That completes our discussion of the delay infrastructure.

3 Waedll-typed terms, values, and coinductive nor malization

We present the syntax of the well-typed lambda terms, wtichltenkirch and Chapman’s|[7] without
explicit substitutions. First we introduce simple typgswith one base type and function types.[1 b.

A. Abel & J. Chapman 57

data Ty : Set where
* Ty
O (ab:Ty) - Ty

We use de Bruijn indices to represent variables, so conextare just lists of (unnamed) types.

data Cxt : Set where
€ . Cxt
(M Cxt) (a: Ty) - Cxt

Variables are de Bruijn indices, just natural numbers. Taey indexed by context and type which
guarantees that they are well-scoped and well-typed. Bldtiat only non-empty contexts can have
variables, since none of the constructors targets the ecoptext. Thezeroth variable has the same type
as the type at the end of the context.

data Var: (I : Cxt) (a: Ty) — Set where
zero : O{I a} - Var([,a)a
suc :O{rab}(x:Varla) - Var(l,b)a

Terms are also indexed by context and type, guaranteeingtypeldness and well-scopedness. Terms
are either variables, lambda abstractions, or applicatidtotice that the context index in the body of

the lambda tracks that one more variable has been boundheFuapplications are guaranteed to be
well-typed.

data Tm (I : Cxt) : (a: Ty) — Set where
var : [{a} (x:Varl a) - TmTla
abs : O{ab} (t: Tm (I, a)b) - Tm[l (all b)
app : O{ab} (t: Tml (@l b)) (u: Tmlra) - Tmlb

We introduce neutral terms, parametric in the argument Fpeapplication as we will need both neutral
weak-head normal and beta-eta normal forms. Intuitivedytrals arestuck In plain lambda calculus,
they are either variables, or applications that cannot etenps there is a neutral term in the function
position.

data Ne (=: Cxt - Ty — Set)(I" : Cxt) : Ty — Set where
var :{a} - Varla - Ne=Ta
app : O{ab} - Ne=T(all b) - =Fa - Ne=TDb

Weak head normal forms/élues) are either neutral terms or closures of a body of a larabdaan
environment containing values for the all the variablesepx¢he lambda bound variable. Once a value
for the lambda bound variable is available the body of thebldamay be evaluated in the now complete
environment. Values are defined mutually withnvironments which are just lists of values. We also
provide alookup function that looks variables up in the environment. Noticat the typing ensures
thatlookup never tries to access a variable that is out of scope andedhaever encounters an empty
environment as no variables can exist there.

58 Normalization by Evaluation in the Delay Monad

mutual
data Val (A : Cxt) : (a: Ty) — Set where
ne :[{a} (w: NeVal A a) - ValAa

lam :O{Fab} (t: Tm(F,a)b)(p: EnvAT) - ValA(al b)

data Env (A : Cxt) : (I : Cxt) — Set where
3 : EnvAce
_:0O{ra}(p:EnvAT)(v:ValAa) - EnvA (T, a)

lookup : O{rAa}-Varlfa-EnvAT - ValAa
lookup zero (p,Vv) = v
lookup (suc X) (p, V) = lookup xp

Evaluationeval takes a term and a suitable environment and returns a delajuel It is defined mutually
with anapply function that applies function values to argument valued,afunctionbeta that reduces a
B-redex, i.e., a closure applied to a value. Whilel andbeta are recursively invoked only on subterms,
apply is called with argument$ andv which are results of evaluating terrhandu and not structurally
smaller than the arguments of caléeal. Thus, the three functions are not defined by structuraldtio
but by mutualcoinduction

eval : O{ifTAb} - Tmlb - EnvAT — Delay i (Val A b)
apply : O{iAab} - ValA(al b) - Val Aa - Delayi (Val Ab)
beta : O{ir Aab} - Tm(I',a)b - EnvAT - ValAa - oDelayi (Val Ab)

eval (var X) p = now (lookup x p)
eval (abs t) p =now (lamtp)
eval (apptu) p =evaltp>=ATf - evalup>=Av - apply fv

<
|

apply (ne w) now (ne (app W V))
apply (lamtp) v = later (betatpv)

force (betatpv) =evalt(p,V)

To justify the coinductive definition, the recursive callsishbeguarded Immediately guarded is only
beta which only unfolds ifforced. Theapply function only callsbeta, and this call is under constructor
later, i.e., not under any elimination, thus, the code dpply is also not endangering productivity. Yet
eval makes three recursive calls as arguments to the eliminatiss=_, violating the syntactic guard-
edness condition [13, 18] as implemented, e.g., in Cof [A8]mevious Agdd [8]. Sized types come to
the rescue here! The typing of bind

_>= : O{iAB} - DelayiA - (A - DelayiB) - DelayiB

guarantees that its two arguments are observed no deepeitsha&sult; thus, guardedness is not de-
stroyed by a use of bind. Finallgyal calls itself only on subterms, thus, these two recursivks cahile
not guarded by explicit delays, can be justified by a locaicstrral induction ofmm. Agda’s termination
checker is able to recognize lexicographic termination suess [[1], in this case it is a lexicographic
recursion first on observation depth in thelay monad and second on the heighflof trees.

A. Abel & J. Chapman 59

Beta-eta normal forms are either of function type, in whiekethey must be a lambda term, or of
base type, in which case they must be a neutral term, meamiagjable applied to normal forms.

data Nf (I" : Cxt) : Ty — Set where
lam : O{ab} (n :Nf(F,a)b) - Nfl (all b)
ne : (m:NeNfllx) - Nfl«

To turn values into normal forms we must be able to apply fonet values to fresh variables. We need
an operation on values that introduces a fresh variabletht@ontext:

weakVal : O{Aac} - ValAc - Val (A ,a)c

We take the approach of implementing this operation usingasled order preserving embeddings
(OPESs) which represent weakenings in arbitrary positiorthié context. Order preserving embeddings
can be represented in a first order way which simplifies reagabout them.

data < :(F A:Cxt) - Set where

id - O{ry} L Tsr

weak : {F'Aa} - IF'sA - (M, a<A
it O{rAa} -TF<A - (I, a<(A,a)

We implement composition of OPESs and prove itas the right unit of composition (proof suppressed).
The left unit property holds definitionally. We could additally prove associativity and observe that
OPEs form a category but this is not required in this paper.

e c O{TAAT(N:T<A)(n":A<A) - T <A
id °n =n

weakn ¢ n’ = weak (n*nN')

liftn eid = lift n

liftn ¢ weakn' = weak (ne*n")

liftn eliftn" = 1lift (nen")

neid o O{rA}(n:r<sA) -neid=n

We define a map operation that weakens variables, valuaspements, normal forms and neutral terms
by OPEs.

var<s :[{F'A} - F'<sA - [{a} - VarAa - Varla
vals ([{F' A} - T<sA - [0{a} - ValAa - Vall a
envs : [{F' A} - T<A - [{E} - EnvAE - EnrlE
nev< : [{Ir A} - T'<A - [0{a} - NeValAa - NeVall a
nf< O{FA} - I'<A - [O{a} - NfAa - Nflra
nen< : [{Ir' A} - T'<A - [0{a} - NeNfAa - NeNfla

Having defined weakening of values by OPESs, defining the sisifibrm of weakeningeakVal that just
introduces a fresh variable into the context is easy to define

60 Normalization by Evaluation in the Delay Monad

wk : O{ra} - (r,asr
wk = weak id
weakVal = val< wk

We can now define a functiaradback that turns values into delayed normal forms, the potentid

is due to the call to thepply function. Thereadback function is defined by induction on the types. If
the value is of base type then a calliereadback is made which just proceeds structurally through the
neutral term replacing values in the argument positionsdrgnal forms. If the value is of function type
then we perform eta expansion; we know the resultlisra but the lambda body cannot be immediately
returned, since function values may be unevaluated cleshence, its givefater by eta. The function

eta takes the function value, weakens it, then applies it to teghf variablevar zero yielding a delayed
value at range type, which is read back recursively.

readback :[{ilfa} - Vall'a — Delay i (NfI" a)

nereadback : {ifa} - NeVall a — Delay i (Ne NfT" a)

eta cO{irab} - Vall (ald b) — coDelayi (Nf (I, a)b)

readback {a = *} (new) =ne <$> nereadback w

readback {fa= [} v =lam <$> later (eta V)

force (eta v) = readback =< apply (weakVal v) (ne (var zero))
nereadback (var x) = now (var X)

nereadback (app w V) = nereadback w>>= A m - app m <$> readback v

The three functions are defined by an outer coinduction @®tlay monad and an inner local induction
on neutral values inereadback. Again, the sized typing of bind and map are crucial to comicate the
termination argument to Agda.

We define the identity environment by induction on the contex

ide o O - Envli T
ide e =€
ide (I, a) = env<wk (ide "), ne (var zero)

Giveneval, ide andreadback we can define a normalization functiefithat for any term returns a delayed
normal form.

nf . {r a}(t: TmI a) —» Delay o (NfT" a)
nf {['}t = eval t (ide ') >= readback

4 Termination proof

While we have managed to define the normalizer in a way adolepta Agda’s termination checker, we
have not established that simply-typed lambda calculustisafly normalizing, i.e., that each well-typed

A. Abel & J. Chapman 61

term reaches its normal form after a only final numbed«fys have been issued. To this end, we define
a logical predicat&/[| , corresponding to strong computability on values. It isrkiby induction

on the type of the value. At base type, when the value must ieatgthe relation states that the neutral
term is strongly computable if its readback converges. Acton type it states that the function is
strongly computable if, in any weakened context (in the ga@PE sense) it takes any value which is
strongly computable to a delayed value which converges tmagly computable value. The predicate
C[_] _ on delayed valueg? is shorthand for a triplév,v(],[v]) of a valuev, a proofv(lthat the delayed
value converges to the value and a prpdfof strong computability.

V[] :0{lr}(a:Ty) - Vall a — Set
C[] :0{r}(a:Ty) - Delayo (ValT @) — Set

V[*] (ne w) = nereadback w [
V[ialO b] f =[0{A}n:A<)u:ValAa) - V[aJu- C[b] (apply (valsn f)u)

Cla] v? =0Av - v?20vxV[a]v

The notion of strongly computable value is easily extengeehivironments.

E[_]_ o O{A}T : Cxt) - Env AT — Set
E[e] € =T
E[T.a] (p,v) = E[T[pxV][a]v

Later we will require weakening (applying an OPE) variabledues, environments, etc. preserve iden-
tity and composition (respect functor laws). We state thpeeperties now but suppress the proofs.

val<-id : O{Aa} (v:ValAa) - val<idv=v

envs-id : {I A} (p:EnvAT) - envsidp=p

nevs-id : [{Aa} (t:NeValAa) - nev<idt=t

vars-e {A A A"a}(n: A<A)(n': A<A")(x:Var A" a) -
var<n (varsn' x) =vars(nen') x

valse - O{AAA"a}(n: A<A)(n": A'<A")(v:ValA"a) -
valsn (valsn'v)=val<(nen')v

envse : [{TAA A"} (n:A<A)(n':A<A")(p:EnvA"T) -
envs1 (envsn'p)=envs(nen’)p

nevs- : [HA A A"a}(n: A<A)(n': A'<A") (t: NeVal A" a) -
nev<n (nevsn't)=nevs(nen’)t

We also require that the operations that we introduce sultdolap, eval, apply, readback etc. commute
with weakening. We, again, state these necessary prapbrttesuppress the proofs.

62 Normalization by Evaluation in the Delay Monad

lookup< : O{r A A'"a} (x:Varla) (p: EnvAT)(n: A'<A) -
val< n (lookup x p) = lookup X (env< n p)

evals < O{iFTAAa}(t:Tmla)(p:EnvAT)(n: A'<A) -
(valsn <$> (eval tp)) ¥ i YO(eval t (envs N p))

applys : O{ir Aab}(f:Vall (all b))(v:Valla)(n: A<T) -
(valsn <$> apply f v) X i)O(apply (valsn f) (vals nv))

betas : O{ifrAEab}(t: Tm([,a)b)(p: EnvAT)(v:ValAa)(n:E<A) -
(valg n co<$> (betat pVv)) X i)Obeta t (envsn p) (val<n v)

nereadbacks : [{il Aa}(n: A<Tl)(t: NeVall a) -
(nens n <$> nereadback t) O} i) (nereadback (nev< n t))

readbacks : O{if A}a(n: A<l)(v:Vall a) -
(nf<n <$> readback v) [} i Y (readback (val< n v))

eta< c{irAaby(n: A<sT)(v:Vall (all b)) -
(nf< (lift n) co<$> eta v) o[} i)[(eta (vals nv))

As an example of a commutivity lemma, we show the proofs ofbihige case (type€) for readback<.
The proof is a chain of bisimulation equations (in relation /)[1), and we use the preorder reasoning
package of Agda’s standard library which provides nice ayiior equality chains, following an idea of
Augustsson[[9]. Justification for each step is provided iglaibrackets, some steps({) hold directly
by definition.

readback< x n (ne w) =

proof
nf<n <$> (ne <$> nereadback w) (X map-compose (nereadback w))
(nf< N o ne) <$> nereadback w =()
(Nf.ne o nen<n) <$> nereadback w (X Osym (map-compose (nereadback w)))
ne <$> (nen<n <$> nereadback w) [X map-cong ne (nereadback< n w))

ne <$> nereadback (nevs n w)
[|
where open [}Reasoning
We must also be able to weaken proofs of strong computabiiain we skip the proofs.
nereadbacks : [{ Aa}(n: A<I)(t:NeVall'a){n: NeNfl a} -

nereadback t [In — nereadback (nev< nt) Onen<nn

V[]< c0{AA}a (n:A'<A) (v:ValAa) - V[a]v - V[a](valsnv)
E[]< cI{FrAA} (n: A'<A) (p:EnvAT) - E[T]p - E[T] (envEnp)

Finally, we can work our way up towards the fundamental theoof logical relations (calletkrm for

A. Abel & J. Chapman 63

terminationbelow). In our case, it is just a logical predicate, nametyrgy computabilityC[]| , but
the proof technique is the same: induction on well-typech$erTo this end, we establish lemmas for each
case, calling thenfvar], [abs], and[app]. To start, soundness of variable evaluation is a consegquanc
a sound @) environmentp:

[var] : O{AT a} (x: VarT a) (p: EnvAT) - E[T] p - C[a] (now (lookup x p))
[var] zero (_,v) (_,vD) =v, nowld, v
[var](sucx) (p,) (B,) =[var]xp®6

The abstraction case requires another, albeit trivial lameund-3, which states the semantic soundness
of B-expansion.

sound-B : O{ATab}(t: Tm(F,a)b)(p: EnvAT)(u:ValAa) -
Cl[b](evalt (p, u)) ~ C[b] (apply (lam tp)u)
sound-Btpu (v, v, [v]) =v, later0dv, [V]

[abs] : O{ATab}(t:Tm(,a)b)(p:EnvAT)(6:E[l]pP) -
(O{A'}(n: A< A)(u: Val A'a)(u: V[a]Ju) - C[b] (eval t (envsn p, u))) -
Cl[al b] (now (lamt p))

[abs]tpBih=lamtp, nowd, (Anup - sound-Bt(envsn p)u(ihnup))

The lemma for application is straightforward, the proofrigés just a bit bloated by the need to apply the
first functor lawval<-id to fix the types.

[app] : O{A ab} {f?: Delay (ValA(all b))} {u?: Delay (ValAa)} -
Clal b]f? -~ ClaJu? - C[b] (f2>>=Af - u?>=apply f)
[app] {u? = u?} (f, 10, [f]) (u, uld, [u])
let v, v, [v] = [f]id u[u]

v? = bindd (A f' - u? >=apply f')
fOJ
(bindO (apply f)
ul
(subst (A f' — apply f'ulv)
(vals-id f)
V)
inv,vd, V]

Evaluation is sound, in particular, it terminates. The prafoterm proceeds by induction on the terms
and is straightforward after our preparations.

term c O{ATa}(t: Tmla)(p:EnvAT)(B:E[T]p) - C[a] (eval tp)
term (varx) pO = [var] xp O

term (abst) pO = [abs]tpO(Anup - termt(envsnp,u) (E[Jsnpb6,p))

term (apptu) pO = [app] (termtp B) (termup 6)

Termination of readback for strongly computable valuewwes from the following two mutually defined

64 Normalization by Evaluation in the Delay Monad

lemmas. They are proved mutually by induction on types.

To reify a functional valuef, we need to reflect the fresh variable zero to obtain a valuel with
semantics[u]. We can then apply the semantic functipfi] to u and recursively reify the returned
valuev.

mutual
reify : O{T'}a(v:Vall'a) - V[a]v - readback v
reify x (ne) (m, Om) =nem, mapdne Om
reify (all b) f [f] =
letu = ne (var zero)
[u] = reflect a (var zero) (var zero , nowl)
v, v, [v] =[f] wku[u]
n, On = reify b v[[V]
[(An = laterJ (bindO (A X — now (lam X))
(bindO readback v[I [n)
now[)

in lamn, OAn

Reflecting a neutral value at function typea [l b returns a semantic function, which, if applied to a
valueu of typea and its semanticgu], in essence reflects recursively the applicatiow &b u, which is
again neutral, at typk. A little more has to be done, though, e.g., we also show Hig@ipplication can
be read back.

reflect : {I'} a(w: Ne Val I @) — nereadback wJ — V[a] (new)
reflect w Wi =wl
reflect (] b) w (m,wOm)nufu] =

let n, On = reify a u[u]

m =nensnm
Om = nereadback<n wwlm
wu = app (nev<snw)u

[wu] = reflect bwu (appm'n,
bind0J (A m — app m <$> readback u)
0m
(bindd (A n - now (app M n)) Cn nowl]))
in newu, now, [wu]

As immediate corollaries we get that all variables are gjipnomputable and that the identity environ-
ment is strongly computable.

vart : O{r a}(x: Varl a) - V[a] ne (var x)
vart X = reflect (var x) (var X, now[))
[ide] . OrF - E[T] (idel)

[ide] € =

A. Abel & J. Chapman 65

[ide] (I, @) = E[]<wk (ide ") ([ide] '), vart zero

Finally we can plug the termination efal in the identity environment to yield a strongly computable
value and the termination efadback give a strongly computable value to yield the terminatiomfof

normalize Ora(t:Tmra) - OAn - nftdn
normalize M at = let v, v, [v] =termt (ide ") ([ide] I')
n, On = reify a v[V]

in N, binddreadback v [n

5 Conclusions

We have presented a coinductive normalizer for simply typetbda calculus and proved that it termi-
nates. The combination of the coinductive normalizer antitgation proof yield a terminating normal-
izer function in type theory.

The successful formalization serves as a proof-of-confmemtoinductive programming and proving
using sized types and copatterns, a new and presently meigal feature of Agda. The approach we
have taken lifts easily to extensions such as Godel's Sy$tem

Acknowledgments The authors are grateful to Nils Anders Danielsson for dismns and his talk at
Shonan Meeting 026: Coinduction for computation structward programmingn October 2013 which
inspired this work. We also thank the anonymous refereethér helpful comments.

Andreas Abel has been supported by framework grant 254826f\etenskapsradet to the Chalmers
ProgLog group, held by Thierry Coquand. James Chapman has saeported by the ERDF funded
Estonian CoE project EXCS and ICT National Programme pté{@cinduction”, the Estonian Ministry
of Research and Education target-financed research then@l40007s12 and the Estonian Science
Foundation grant no. 9219.

This article has been type set with the Stevan Andjelkovia$eX backend for Agda.

References

[1] Andreas Abel & Thorsten Altenkirch (2002): A Predicative Analysis of Structural
Recursion Journal of Functional Programmingl2(1), pp. 1-41. Available at
http://dx.doi.org/10.1017/50956796801004191,

[2] Andreas Abel & James Chapman (2014)ormalization by Evaluation in the Delay Monad: Literated¥g
Code Available athttp://www.cse.chalmers.se/"abela/eptcsi4.lagda. Tested with Agda devel-
opment version and standard library of the date of pubboati

[3] Andreas Abel, Thierry Coquand & Peter Dybjer (2008)erifying a Semanti@@n-Conversion Test for
Martin-L6f Type Theory In: Philippe Audebaud & Christine Paulin-Mohring, ed#&or Mathemat-
ics of Program Construction, 9th International Conferer’d®C 2008, Marseille, France, July 15-18,
2008. Proceedingd ecture Notes in Computer Scienb&33, Springer-Verlag, pp. 29-56. Available at
http://dx.doi.org/10.1007/978-3-540-70594-9_4.

[4] Andreas Abel & Brigitte Pientka (2013Wellfounded Recursion with Copatterns: A Unified Approacret-
mination and Productivityln: Greg Morrisett & Tarmo Uustalu, editorBroceedings of the Eighteenth ACM

http://dx.doi.org/10.1017/S0956796801004191
http://www.cse.chalmers.se/~abela/eptcs14.lagda
http://dx.doi.org/10.1007/978-3-540-70594-9_4

66

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Normalization by Evaluation in the Delay Monad

SIGPLAN International Conference on Functional PrograngniCFP’13, Boston, MA, USA, September
25-27, 2013ACM Press, pp. 185-196. Availablelattp: //doi.acm.org/10.1145/2500365.2500591.

Andreas Abel, Brigitte Pientka, David Thibodeau & AntBetzer (2013)Copatterns: Programming Infinite
Structures by Observationsin: Roberto Giacobazzi & Radhia Cousot, editohe 40th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming gaages, POPL’13, Rome, lItaly, January
23-25, 2013ACM Press, pp. 27-38. Availablettp://doi.acm.org/10.1145/2429069.2429075.

Klaus Aehlig & Felix Joachimski (2005): Continuous Normalization for the Lambda-
Calculus and Gddel's T Annals of Pure and Applied Logid33, pp. 39-71. Available at
http://dx.doi.org/10.1016/j.apal.2004.10.003.

Thorsten Altenkirch & James Chapman (200Big-step normalisationJournal of Functional Programming
19(3-4), pp. 311-333. Available Attp://dx.doi.org/10.1017/S0956796809007278.

Thorsten Altenkirch & Nils Anders Danielsson (2010). Termination Checking in the Presence
of Nested Inductive and Coinductive Types Short note supporting a talk given at PAR 2010,
Workshop on Partiality and Recursion in Interactive TheorBrovers, FLoC 2010. Available at
http://www.cse.chalmers.se/ nad/publications/altenkirch-danielsson-par2010.pdf.

Lennart Augustsson (1999): Equality proofs in Cayenne Available at
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.9415 Unpublished note,
TeX source see http://www.augustsson.net/Darcs/Caygocieqproof.tex.

Ulrich Berger & Helmut Schwichtenberg (1991)An Inverse to the Evaluation Functional for Typed
A-calculus In: Sixth Annual Symposium on Logic in Computer Science (LICS3),9July, 1991,
Amsterdam, The Netherlands, ProceedjniggEE Computer Society Press, pp. 203-211. Available at
http://dx.doi.org/10.1109/LICS.1991.151645,

Venanzio Capretta (2005general Recursion via Coinductive Typésgical Methods in Computer Science
1(2). Available abttp://dx.doi.org/10.2168/LMCS-1(2:1)2005.

James Chapman (2009Type Checking and NormalizationPh.D. thesis, School of Computer Science,
University of Nottingham.

Thierry Coquand (1993)infinite Objects in Type Theoryin: H. Barendregt & T. Nipkow, editorsTypes
for Proofs and Programs (TYPES '98)ecture Notes in Computer Scier@6, Springer-Verlag, pp. 62—78.
Available athttp://dx.doi.org/10.1007/3-540-58085-9_72.

Nils Anders Danielsson (2012Pperational semantics using the partiality mondd: Peter Thiemann &
Robby Bruce Findler, editors?roceedings of the Seventeenth ACM SIGPLAN Internatiormaif€rence on
Functional Programming, ICFP’12, Copenhagen, Denmargtefeber 9-15, 20]2ACM Press, pp. 127-
138. Available ahttp://doi.acm.org/10.1145/2364527 .2364546.

Olivier Danvy (1999):Type-Directed Partial Evaluatianin: John Hatcliff, Torben £. Mogensen & Peter
Thiemann, editors:Partial Evaluation — Practice and Theory, DIKU 1998 Intéioreal Summer School,
Copenhagen, Denmark, June 29 - July 10, 19@8ture Notes in Computer Scient@06, Springer-Verlag,
pp. 367—411. Available atttp://doi.acm.org/10.1145/237721.237784.

Martin H. Escardo (1999)A metric model of PCF Presented at the Workshop on Realizability Semantics
and Applications, June 30-July 1, 1999 (associated to therra¢éed Logic Conference, held in Trento, June
29-July 12, 1999).

Steven E. Ganz, Daniel P. Friedman & Mitchell Wand (1©99Trampolined Style In: Di-
dier Rémi & Peter Lee, editors:Proceedings of the Fourth ACM SIGPLAN International Confer
ence on Functional Programming (ICFP '99), Paris, Frark@M Press, pp. 18-27. Available at
http://doi.acm.org/10.1145/317636.317779.

Eduardo Giménez (1995 odifying Guarded Definitions with Recursive SchentesPeter Dybjer, Bengt
Nordstrém & Jan Smith, editor§ypes for Proofs and Programs, International Workshop TY'P&, Bastad,
Sweden, June 6-10, 1994, Selected Paphexture Notes in Computer Scier@®6, Springer-Verlag, pp. 39—
59. Available ahttp://dx.doi.org/10.1007/3-540-60579-7_3.

http://doi.acm.org/10.1145/2500365.2500591
http://doi.acm.org/10.1145/2429069.2429075
http://dx.doi.org/10.1016/j.apal.2004.10.003
http://dx.doi.org/10.1017/S0956796809007278
http://www.cse.chalmers.se/~nad/publications/altenkirch-danielsson-par2010.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.9415
http://dx.doi.org/10.1109/LICS.1991.151645
http://dx.doi.org/10.2168/LMCS-1(2:1)2005
http://dx.doi.org/10.1007/3-540-58085-9_72
http://doi.acm.org/10.1145/2364527.2364546
http://doi.acm.org/10.1145/237721.237784
http://doi.acm.org/10.1145/317636.317779
http://dx.doi.org/10.1007/3-540-60579-7_3

A. Abel & J. Chapman 67

[19]

[20]

[21]

[22]

(23]

[24]

Benjamin Grégoire & Xavier Leroy (2002 compiled implementation of strong reductidn: Proceedings
of the Seventh ACM SIGPLAN International Conference on Fiamal Programming (ICFP '02), Pittsburgh,
Pennsylvania, USA, October 4-6, 2002IGPLAN Notices37, ACM Press, pp. 235-246. Available at
http://doi.acm.org/10.1145/581478.581501.

INRIA (2012): The Coq Proof Assistant Reference ManudNRIA, version 8.4 edition. Available at
http://coq.inria.fr/.

Chantal Keller & Thorsten Altenkirch (2010}ereditary Substitutions for Simple Types, Formalizéa
V. Capretta & J. Chapman, editorS:hird Workshop on Mathematically Structured FunctionabdgPam-
ming, MSFP 2010, Baltimore, USA, September 25, 208QGM Press, Baltimore, USA. Available at
http://dx.doi.org/10.1145/1863597.1863601.

Grigori Mints (1978): Finite Investigations of Transfinite Derivationslournal of Soviet Mathematid9,
pp. 548-596. Available atttp://dx.doi.org/10.1007/BF01091743. Translated from: Zap. Nauchn.
Semin. LOMI 49 (1975).

Dag Prawitz (1965)Natural Deduction Almqvist & Wiksell, Stockholm. Republication by Dover Rida-
tions Inc., Mineola, New York, 2006.

Kevin Watkins, Iliano Cervesato, Frank Pfenning & DéWalker (2003):A concurrent logical framework
I: Judgements and propertieFechnical Report, School of Computer Science, Carnegiéol&niversity,
Pittsburgh.

http://doi.acm.org/10.1145/581478.581501
http://coq.inria.fr/
http://dx.doi.org/10.1145/1863597.1863601
http://dx.doi.org/10.1007/BF01091743

	1 Introduction and Related Work
	2 Delay Monad
	2.1 Strong Bisimilarity
	2.2 Convergence

	3 Well-typed terms, values, and coinductive normalization
	4 Termination proof
	5 Conclusions

