
J. Chapman and P. B. Levy (Eds.): Fourth Workshop on
Mathematically Structured Functional Programming (MSFP 2012).
EPTCS 76, 2012, pp. 40–49, doi:10.4204/EPTCS.76.5

c© M. Jaskelioff & O. Rypacek

An Investigation of the Laws of Traversals

Mauro Jaskelioff
CIFASIS, Rosario, Argentina

FCEIA, Universidad Nacional de Rosario, Argentina

Ondrej Rypacek
King’s College, London, UK

Traversals of data structures are ubiquitous in programming. Consequently, it is important to be
able to characterise those structures that are traversable and understand their algebraic properties.
Traversable functors have been characterised by McBride and Paterson as those equipped with a
distributive law over arbitrary applicative functors; however, laws that fully capture the intuition
behind traversals are missing. This article is an attempt to remedy this situation by proposing laws
for characterising traversals that capture the intuition behind them. To support our claims, we prove
that finitary containers are traversable in our sense and argue that elements in a traversable structure
are visited exactly once.

1 Introduction

Traversals of data structures are ubiquitous in programming. Consequently, it is essential for the writer of
mathematically structured programs to have a precise understanding of the abstract structure of traversals
and of their algebraic properties.

There are many notions of traversal, but in this article, we will focus on the traversals of functors
G : Set→ Set as given by a family of natural transformations δ F : GF → FG over applicative func-
tors F [10]. This notion of traversal is quite abstract but practical for structuring and reasoning about
programs [8, 5, 7], and encompasses other notions of traversals, such as generating a list of elements.

Usually, distributive laws are required to respect structure via coherence laws [12]. However, the
characterisation of traversability in terms of a distributive law given by McBride and Paterson is incom-
plete as no coherence laws are required to hold and one can write distributive laws that do not follow the
intuition of what a traversal should be. Consequently, a distributive law is not enough and the definition
of a traversal needs to be strengthened to avoid bad instances. However, there seems to be no consensus
of precisely what a traversal should be.

Moggi et al. [11] define traversals of a functor G over a functor F to be a family over G1 of dis-
tributive laws δ F

s:G1 : GsF → FGs. Here, Gs is a family over G1 of functors obtained from the pullback

of the diagram 1 s //G1 GXG!oo . The family of morphisms provides an easy way to express shape
preservation (the shape of G before traversing the structure is the same as the shape of G after traversing
it). Nevertheless, we find this notion of traversability to be a bit unsatisfactory since it allows traversals
that go over the same element more than once. Gibbons and Oliveira [8] proposed many properties that
should hold for traversals, but they did not seek to obtain a lawful definition of traversability. Further-
more, they failed to recognize the law that would prevent traversing over an element twice.

The main contribution of this article is to establish coherence laws for the distributive law that capture
the intuition of traversals. The laws can be expressed by simple equations; they are shown to hold for the
largest class known of traversable functors, namely finitary containers; and they are shown to prohibit the
“bad” traversals identified by Gibbons and Oliveira. Additionally, we complete the Haskell traversable
class so that it contains the three ways in which distributive laws can be expressed [4, 3]. Furthermore,

http://dx.doi.org/10.4204/EPTCS.76.5

M. Jaskelioff & O. Rypacek 41

we characterize traversability categorically in two ways: as a 2-functor between particular 2-categories,
and as a distributive law over a monoidal action.

The article is organised as follows. Section 2 is written with the Haskell programmer in mind; we
review applicative and traversable functors, and we motivate and present the proposed laws. We work in
the category of sets and total functions from section 3 onwards, where we show that finitary containers
are traversable in our sense. In section 4 we analyze some consequences of the laws and we argue that
the laws imply that every position in the structure is visited exactly once. Additionally, a categorical
interpretation of traversability is given. Finally, in section 5 we conclude and discuss future work.

2 Traversals in Haskell

In this section we give our motivation for and introduce our proposed laws for traversals using the func-
tional language Haskell. We give an intuition of why the laws are reasonable but we defer a more rigorous
explanation to the following sections.

Intuitively, a traversal of a data structure is a function that collects all elements in a data structure
in a given order. A more abstract formulation was proposed by Moggi et al. [11] where a traversal
is a distributive law of a functor (representing the data structure in question) over an arbitrary monad.
McBride and Paterson extended the notion of traversability to be a distributive law of a functor over an
arbitrary applicative functor [10]. As we will see next, the notion of a distributive law is general enough
to include the basic notion of a function listing the elements of a data structure.

2.1 Applicative Functors

An applicative functor [10] is an instance of the class

class Functor f ⇒ Applicative f where
pure :: x→ f x
(~) :: f (a→ b)→ f a→ f b

such that the following coherence conditions hold.

identity pure id~u = u
composition pure (·)~u~ v~w = u~ (v~w)
homomorphism pure g~pure x = pure (g x)
interchange u~pure x = pure (λg→ g x)~u

Every monad is an applicative functor, but applicative functors are more general. For example, every
monoid determines an applicative functor (which is not a monad):

newtype K a b = K {unK :: a}
instance Monoid a⇒ Applicative (K a) where

pure x = K /0
f ~ x = K (unK f ⊕unK x)

where /0 is the monoid unit, and ⊕ is the monoid multiplication.
Applicative functors are closed under identity and composition1.

1For brevity, throughout the article we omit the required Functor instances. The complete source code can be found at
http://www.fceia.unr.edu.ar/~mauro/.

http://www.fceia.unr.edu.ar/~mauro/

42 An Investigation of the Laws of Traversals

newtype Id a = Id {unId :: a}
instance Applicative Id where

pure = Id
f ~ x = Id (unId f (unId x))

newtype C f g a = Comp {unC :: f (g a)}
instance (Applicative f ,Applicative g)⇒ Applicative (C f g) where

pure = Comp ·pure ·pure
f ~ x = Comp (pure (~)~unC f ~unC x)

2.2 The class of Traversable functors

McBride and Paterson propose a traversal to be a distributive law of a functor over all applicative func-
tors [10]. Hence, the class of traversable functors is defined:

class Functor t⇒ Traversable t where
traverse :: Applicative f ⇒ (a→ f b)→ t a→ f (t b)
dist :: Applicative f ⇒ t (f a)→ f (t a)

traverse f = dist · fmap f
dist = traverse id

A minimal instance should provide a definition of either traverse or dist, as one can be defined by
the other, as shown by the default instances above.
Example 2.1. The canonical example of a traversable functor is the list functor.

instance Traversable [] where
dist [] = pure []
dist (x : xs) = pure (:)~ x~dist xs

Another typical example is that of binary trees with information in the nodes:

data Bin a = Leaf | Node (Bin a) a (Bin a)

instance Traversable Bin where
dist Leaf = pure Leaf
dist (Node l a r) = pure Node~dist l~a~dist r

Our last example is the identity functor.

instance Traversable Id where
dist (Id x) = fmap Id x

Remark 2.2. Given a Traversable functor, it is possible to construct a list of its elements by traversing it
over an accumulator, as done by the function toList:

toList :: Traversable t⇒ t a→ [a]
toList = unK ·dist · fmap wrap

where wrap :: x→ K [x] a
wrap x = K [x]

M. Jaskelioff & O. Rypacek 43

2.3 The need for laws

Notice that no coherence conditions are required to hold for instances of traverse (or dist) in the class
definition above. Hence, it is possible to instantiate definitions of dist that do not follow our intuition of
what a traversal should be. Consider the following functions implementing a distributive law between
lists and an arbitrary applicative functor.

distL,distL′,distL′′ :: Applicative f ⇒ [f a]→ f [a]
distL = pure []

distL′ [] = pure []
distL′ [x] = pure []
distL′ (x : y : xs) = pure (:)~ x~distL′ (y : xs)

distL′′ [] = pure []
distL′′ (x : xs) = pure (:)~ x′~distL′′ xs

where x′ = pure (λx y→ x)~ x~ x

The functions have the correct type but they are not traversals: the first one (distL) does not even try to
traverse the list, the second one (distL′) does not visit the last element of the list, and the last one (distL′′)
collects each applicative effect twice (but not the data). Consequently, in order for the Traversable class
to capture the intuition behind traversals, it needs to require certain laws to hold in order to prohibit
definitions such as those of the three functions above.

2.4 Reformulation of the Traversable class

We conclude this section with our proposed class of Traversable functors. It differs from the previous
one in two aspects.

• In addition to traverse and dist, a minimal instance can also be given by defining a function
consume :: Applicative f ⇒ (t a→ b)→ t (f a)→ f b.

• It requires two laws to hold.

We define the class of traversable functors to be:

class Functor t⇒ Traversable t where
traverse :: Applicative f ⇒ (a→ f b)→ t a→ f (t b)
dist :: Applicative f ⇒ t (f a)→ f (t a)
consume :: Applicative f ⇒ (t a→ b)→ t (f a)→ f b

traverse f = dist · fmap f
dist = consume id
consume f = fmap f · traverse id

subject to the following laws:

Unitarity dist · fmap Id = Id
Linearity dist · fmap Comp = Comp · fmap dist ·dist

The same laws expressed in terms of traverse are:

44 An Investigation of the Laws of Traversals

traverse (Id · f) = Id · fmap f
traverse (Comp · fmap g · f) = Comp · fmap (traverse g) · traverse f

We leave as an exercise to the reader to express the laws in terms of consume.
Note that, since the identity functor is applicative, the laws for traverse imply functoriality even

without the type class requirement. Hence an alternative definition would not require traversable functors
to be an instance of the Functor class, but just to provide an instance of traverse subject to the two laws
above. In this case, providing definitions just for dist or consume would not be enough.

In the following sections we show that these laws are reasonable for a large class of functors, and
analyse how they prohibit wrong definitions such as distL, distL′ and distL′′.

3 Canonical Traverse for Finitary Containers

Categorically, applicative functors are functors F : Set→ Set, together with natural transformations:

ηX : X → FX (unit)

~X ,Y : F(Y X)×FX → FY (application under F) ,

where Y X is the function space (cartesian closure), together with equations expressing basically that ηY X

injects pure functions Y X to functions under in F(Y X) and ~ respects this (see [10] for the details).
In category theory it is more convenient to work with the following equivalent definitions:

Definition 3.1 (Applicative Functor). An applicative functor is equivalently either of:

(i) A functor F : Set→ Set which is lax monoidal with respect to the cartesian product and whose
strength is coherent with the monoidal structure, which is to say that the following diagram com-
mutes:

(FX×FY)×Z α //

µ×Z
��

FX× (FY ×Z) FX×σ // FX×F(Y ×Z)

µ

��
F(X×Y)×Z σ // F((X×Y)×Z) Fα // F(X× (Y ×Z))

where σ is strength, µ is the monoidal action and α is associativity. Note that all Set functors are
strong so the key requirement here is the coherence with the monoidal action.

(ii) A pointed lax monoidal functor F : Set→ Set, where the unit of F, ηX : X→ FX, coincides with the
unit of the monoidal structure ν : 1→ F1 in that η1 = ν; and the multiplication µX ,Y : FX×FY →
F(X×Y) is coherent with η in the sense that

X×Y
ηX×ηY

yy

ηX×Y

%%
FX×FY

µX ,Y
// F(X×Y)

commutes.

The equivalence of (i) and (ii) is straightforward.

M. Jaskelioff & O. Rypacek 45

Definition 3.2 (Applicative Morphism). Let F and G be applicative functors. An applicative morphism
is a natural transformation τ : F → G that respects the unit and multiplication. That is, a natural
transformation τ such that the following diagrams commute.

X
ηF

X

}}

ηG
X

!!
FX

τX
// GX

FX×FY
µF

X ,Y //

τX×τY

��

F(X×Y)

τX×Y

��
GX×GY

µG
X ,Y

// G(X×Y)

Applicative functors and applicative morphisms form a category A .
The identity functor 1 is an applicative functor, and composition of applicative functors is applicative.

Hence, applicative functors form a (large) monoid, with functor composition ◦ as multiplication and
identity functor 1 as unit.

In [10], traversable functors are characterised as those which distribute over all applicative functors.
There, distributivity of a traversable T over applicative F’s meant only the existence of natural transfor-
mations of type T F⇒ FT . However, without further constraints this characterisation is too coarse. Here
we refine the notion of a traversable functor as follows:

Definition 3.3 (Traversable Functor). A functor T : Set→ Set is said to be traversable if there is a family
of natural transformations

δ
F
X : T FX → FT X

natural in F and respecting the monoidal structure of applicative functor composition. Explicitly, for all
applicative F, G : Set→ Set and applicative morphisms α : F → G, the following diagrams of natural
transformations commute:

T F δ F
//

T α

��

FT

αT
��

T G
δ G
// GT

FT G
Fδ G

$$
T FG

δ FG
//

δ F G
::

FGT

T 1

δ 1

::

idT
&&
1T

naturality linearity unitarity

We sometimes call the family δ a traversal of T .

Next we introduce a class of functors, which are always traversable: so-called finitary containers [1].

Definition 3.4 (Finitary Container). A finitary container is given by

(i) a set S of shapes

(ii) an arity ar : S→ N

To each container (S,ar) one can assign a functor Ext(S,ar) : Set→ Set called the extension of (S,ar)
defined for each set X as the set of (dependent) pairs (s, f) where s ∈ S and f ∈ Xar s, where Xn, for
n ∈ N, is the n-fold product X×·· ·×X︸ ︷︷ ︸

n times

Finitary containers are also known as finitary dependent polynomial functors [6] or functors shapely
over lists [11]. Moggi et al. [11] define a canonical traversal by monads for shapely functors. It is also

46 An Investigation of the Laws of Traversals

indicated that this traversal could be generalised from monads to all monoidal functors. Here we show
that all finitary containers (shapely functors) are traversable in our sense. Explicitly: for each extension of
a finitary container we construct a natural family of distributive laws δ satisfying linearity and unitarity.

As extensions of containers are sums of products we proceed in stages.

Lemma 3.5. Traversable functors are closed under arbitrary sums.

Proof. Let Ts, s ∈ S be a family of traversable functors with traversals δs. We must show that ∑s∈S Ts is
traversable. To this end we construct, for each X :

∑s∈S TsFX
∑s∈S δs // ∑s∈S FTsX

[F(injs TsX)]s∈S // F ∑s∈S TsX ,

where injsy = (s,y) and where []s∈S is case splitting on S. Naturality, unitarity and linearity are all easily
checked.

Lemma 3.6. Traversable functors are closed under finite products.

Proof. Let δ be a traversal for T , S finite. Then T S is just iterated product T ×·· ·×T , |S|-times, and
therefore we can use multiplication µ of any applicative functor F to construct a δ S : T SF ⇒ FT S by
finite iteration. Namely, define µk : FkX → F(Xk), k ∈N by µ0 = ν , µ1 = 1F , µk+1 = µ · (1F ×µk) and
put δ S = µ |S| · δ |S|. Now naturality follows by naturality of everything in sight; unitarity from the fact
that µ for the identity monoidal functor is just the identity. To see linearity just observe commutativity
of the following for each k ∈ N:

F(GX)k

F(µG)k
X

%%
(FGX)k

(FµG·µF)k
X

//

(µF)k
GX

99

FG(Xk)

.

Theorem 3.7. All extensions of finitary containers are traversable.

Proof. Extensions of finitary containers are sums of finite products so the results follows directly by the
previous two Lemmas 3.6 and 3.5.

It remains an open question whether the traversals defined in the above theorem are essentially
unique. In other words, whether there is an isomorphism between permutations of arities on finitary
containers and their traversals.

4 Analysis of the Laws

4.1 Unitarity

Unitarity implies the so-called “purity law” δ F ·T (η) = ηT [8]. In fact, the two laws are equivalent.
To see this, we notice that the identity functor is initial in the category A of applicative functors

and applicative morphisms, with the universal map given by η . Hence we obtain the purity law by the
following naturality square.

M. Jaskelioff & O. Rypacek 47

T 1 δ 1=id //

T (η)
��

1T

ηT
��

T F
δ F

// FT

Conversely, instantiating the purity law for the identity functor, we obtain unitarity.
Unitarity (and hence, the purity law) is stronger than shape preservation. For example, returning the

mirror of a binary tree is forbidden. By requiring unitarity to hold we are implicitly stating that what
matters in a traversal is the order in which the effects are collected.

Note that unitarity implies that each element is traversed at least once. Hence distributive laws such
as distL and distL′ of Section 2.3 do not respect unitarity.

4.2 Linearity

One of the sought-after effects of the laws is to rule out traversals that go more than once over each
element. We will show that this kind of definition does not respect the linearity law by analysing the
simple example of traversing the identity functor.

Consider the following distributive law of the identity functor over an arbitrary applicative functor,

δ
F
X : 1(FX) = FX

dFX // FX×FX
µF

X // F(X×X)
Fπ1 // FX = F(1X)

where dX(x : X) = (x,x) : X ×X is the diagonal function. The distributive law δ traverses over the data
twice so it is not a proper traversal. Although unitarity holds for δ , linearity does not, as the following
counter-example shows.

Consider the applicative functor L arising from the list monad, and [[], [1]] ∈ L(L(N)). Calculating,
we obtain that linearity does not hold:

δ
L◦L
N [[], [1]] = [[], [], [], [1]] 6= [[], [1], [], [1]] = δ

L
N(Lδ

L
N[[], [1]])

A similar counter-example can be constructed for the traversal of lists distL′′ of Section 2.3.

distL′′L◦L[[[], [[1]]]] = [[], [], [], [[[1]]]] 6= [[], [], [[[1]]], [[[1]]]] = distL′′L ◦L(distL′′L)[[[], [[1]]]]

These counter-examples suggest that distributive laws that traverse over elements more than once
will violate the linearity law. This consequence of the linearity law was apparently overlooked in [8].

4.3 Preservation of Kleisli Composition

The following lemma was proved as a property of the canonical distributivity of finitary containers by
Moggi et al. [11] and under label sequential composition of monadic traversals in [8]. Here, however,
we can prove it as a consequence of the definition of traversability.
Lemma 4.1. Let (T,δ) be a traversable functor. Then for any commutative monad M, we have that δ

preserves Kleisli composition, i.e.

T MM δ MM //

T flat
��

MT M Mδ M
// MMT

flatT
��

T M
δ M

// MT

48 An Investigation of the Laws of Traversals

where flat is the multiplication of the monad M.

Proof. The commutative monad M induces a commutative applicative functor. The multiplication of the
monad flat : M ◦M→ M is an applicative morphism (thanks to commutativity). Hence, the following
diagram commutes because of preservation of composition and naturality of δ .

T MM δ MM //

T flat
�� δ M◦M

66MT M Mδ M
// MMT

flatT
��

T M
δ M

// MT

4.4 Categorical meaning of the laws

Let App be the 2-category with one object, arrows: applicative functors and 2-cells: applicative mor-
phisms. And let J : App→ Cat be the inclusion into the 2-category of categories sending the object of
App to Set. Then a traversable functor is exactly a co-lax natural transformation J→ J : App→ Cat. See
[9] for the elementary 2-categorical notions.

It’s interesting to compare this to the following characterisation in terms of distributive laws of
monoidal actions [13]. Consider the strict monoidal category (A ,◦,1) of applicative functors and ap-
plicative morphisms with the monoidal action applicative functor composition. This category induces a
monoidal action over Set, where the action ♦ : A ×Set→ Set is simply application of the functor, i.e.
F♦X 7→ FX and F♦ f 7→ F f .

A distributive law of a functor T over the monoidal action ♦ of A is a binatural transformation
δ : T (♦)→ ♦(T), satisfying the axioms:

T ((F ◦G)♦X)

id
��

δ F◦G
X // (F ◦G)♦T X

id
��

T (F♦(G♦X))
δ F

G♦X

// F♦T (G♦X)
F♦δ G

X

// F♦(G♦T X)

T X
T id

zz

id

##
T (1♦X)

δ 1
X

// 1♦T X

Hence, a functor is traversable when it comes equipped with a distributive law over the monoidal
action of applicative functors.

5 Conclusion

The definition of traversability as a distributive law needs to be strenghtened in order to capture the
intuitive notion of a traversal. We have provided two simple laws and shown that these laws hold for
finitary containers, and we have provided evidence that they restrict traversals to those that go over each
position exactly once.

Finitary containers are the largest known class of traversable functors, and we are not aware of any
functor that is traversable and it is not a finitary container. It has been conjectured that every traversable
functor is a finitary container [11], but proof of this has eluded us. One possiblity for proving it might be
to take a syntactic approach and restrict the proof to functors in a given universe.

M. Jaskelioff & O. Rypacek 49

The characterisation of traversals as a distributive law over applicative functors is interesting because
it leads to other kinds of traversability by changing distributivity over applicative functors by distributiv-
ity over others kinds of functor. For example, one might consider a distributive law over all commutative
applicative functors i.e. applicative functors F for which

FswapX ,Y ◦µ = µ ◦ swapFX ,FY : FX×FY → F(Y ×X) ,

where swapX ,Y : X×Y → Y ×X is the obvious morphism. Then, one would obtain a class of traversable
functors that includes finitary quotient containers [2] such as unordered pairs, where commutativity of
the applicative functor is essential.

Acknowledgement We thank the anonymous reviewers for their constructive criticism.

References
[1] Michael Abbott, Thorsten Altenkirch & Neil Ghani (2003): Categories of Containers. In: Proceedings of

Foundations of Software Science and Computation Structures, pp. 23–38, doi:10.1007/3-540-36576-1 2.
[2] Michael Abbott, Thorsten Altenkirch, Neil Ghani & Conor McBride (2004): Constructing Polymorphic

Programs with Quotient Types. In: 7th International Conference on Mathematics of Program Construction
(MPC 2004), pp. 2–15, doi:10.1007/978-3-540-27764-4 2.

[3] Michael Barr (2005): Beck Distributivity. Available at ftp://ftp.math.mcgill.ca/barr/pdffiles/
distlaw.pdf.

[4] Jon Beck (1969): Distributive laws. In: Seminar on Triples and Categorical Homology Theory, Lecture
Notes in Mathematics 80, Springer Berlin / Heidelberg, pp. 119–140, doi:10.1007/BFb0083084.

[5] Germán A. Delbianco, Mauro Jaskelioff & Alberto Pardo (2011): Applicative Shortcut Fusion. In: Proceed-
ings of the 12th International Symposium on Trends in Functional Programming, Madrid, Spain.

[6] Nicola Gambino & Martin Hyland (2004): Wellfounded Trees and Dependent Polynomial Functors. Lecture
Notes in Computer Science 3085, Springer Berlin / Heidelberg, pp. 210–225, doi:10.1007/978-3-540-24849-
1 14.

[7] Jeremy Gibbons & Richard Bird (2011): Effective Reasoning about Effectful Traversals. Available at http:
//www.comlab.ox.ac.uk/jeremy.gibbons/publications/backwards.pdf. Submitted for publica-
tion.

[8] Jeremy Gibbons & Bruno c. d. s. Oliveira (2009): The essence of the iterator pattern. Journal of Functional
Programming 19, pp. 377–402, doi:10.1017/S0956796809007291.

[9] Gregory Kelly & Ross Street (1974): Review of the elements of 2-categories, pp. 75–103. 420, Springer
Berlin / Heidelberg, doi:10.1007/BFb0063101.

[10] Conor McBride & Ross Paterson (2008): Applicative programming with effects. Journal of Functional Pro-
gramming 18(01), pp. 1–13, doi:10.1017/S0956796807006326.

[11] Eugenio Moggi, Giana Bellè & C. Barry Jay (1999): Monads, Shapely Functors and Traversals. Electronic
Notes in Theoretical Computer Science 29, pp. 187 – 208, doi:10.1016/S1571-0661(05)80316-0. CTCS ’99,
Conference on Category Theory and Computer Science.

[12] Ondřej Rypáček (2010): Distributive Laws in Programming Structures. Ph.D. thesis, University of Notting-
ham. Available at http://etheses.nottingham.ac.uk/1077/.

[13] Zoran Skoda (2004): Distributive laws for actions of monoidal categories. arXiv:math/0406310v2. Available
at http://arxiv.org/abs/math/0406310v2.

http://dx.doi.org/10.1007/3-540-36576-1_2
http://dx.doi.org/10.1007/978-3-540-27764-4_2
ftp://ftp.math.mcgill.ca/barr/pdffiles/distlaw.pdf
ftp://ftp.math.mcgill.ca/barr/pdffiles/distlaw.pdf
http://dx.doi.org/10.1007/BFb0083084
http://dx.doi.org/10.1007/978-3-540-24849-1_14
http://dx.doi.org/10.1007/978-3-540-24849-1_14
http://www.comlab.ox.ac.uk/jeremy.gibbons/publications/backwards.pdf
http://www.comlab.ox.ac.uk/jeremy.gibbons/publications/backwards.pdf
http://dx.doi.org/10.1017/S0956796809007291
http://dx.doi.org/10.1007/BFb0063101
http://dx.doi.org/10.1017/S0956796807006326
http://dx.doi.org/10.1016/S1571-0661(05)80316-0
http://etheses.nottingham.ac.uk/1077/
http://arxiv.org/abs/math/0406310v2

	1 Introduction
	2 Traversals in Haskell
	2.1 Applicative Functors
	2.2 The class of Traversable functors
	2.3 The need for laws
	2.4 Reformulation of the Traversable class

	3 Canonical Traverse for Finitary Containers
	4 Analysis of the Laws
	4.1 Unitarity
	4.2 Linearity
	4.3 Preservation of Kleisli Composition
	4.4 Categorical meaning of the laws

	5 Conclusion

