
Ana Sokolova (Eds.): MFPS 2021

EPTCS 351, 2021, pp. 200–217, doi:10.4204/EPTCS.351.13

© R.E. Møgelberg & A. Vezzosi

This work is licensed under the

Creative Commons Attribution License.

Two Guarded Recursive Powerdomains for Applicative

Simulation

Rasmus Ejlers Møgelberg*

Department of Computer Science
IT University of Copenhagen

Denmark

mogel@itu.dk

Andrea Vezzosi*

Department of Computer Science
IT University of Copenhagen

Denmark

avez@itu.dk

Clocked Cubical Type Theory is a new type theory combining the power of guarded recursion with

univalence and higher inductive types (HITs). This type theory can be used as a metalanguage for

synthetic guarded domain theory in which one can solve guarded recursive type equations, also with

negative variable occurrences, and use these to construct models for reasoning about programming

languages. Combining this with HITs allows for the use of type constructors familiar from set-theory

based approaches to semantics, such as quotients and finite powersets in these models.

In this paper we show how to reason about the combination of finite non-determinism and re-

cursion in this type theory. Unlike traditional domain theory which takes an ordering of programs

as primitive, synthetic guarded domain theory takes the notion of computation step as primitive in

the form of a modal operator. We use this extra intensional information to define two guarded re-

cursive (finite) powerdomain constructions differing in the way non-determinism interacts with the

computation steps. As an example application of these we show how to prove applicative similarity

a congruence in the cases of may- and must-convergence for the untyped lambda calculus with finite

non-determinism. Such results are usually proved using operational reasoning and Howe’s method.

Here we use an adaptation of a denotational method developed by Pitts in the context of domain

theory.

1 Introduction

Over the past 20 years, step-indexing techniques [4] have become one of the most used tools for con-

structing operational models of programming languages with combinations of advanced features such as

recursive types, polymorphism, concurrency and non-determinism. Often such models are beyond the

scope of traditional domain theoretic techniques, and also have the additional benefit of being more ele-

mentary. Guarded recursion is an abstract form of step-indexing, in which the explicit steps are replaced

by abstract computation steps in the form of a delay modality ⊲. This relieves the user of the book-

keeping involved in explicit step-indexing and reveals the underlying structure that makes these models

work in the form of an introduction X → ⊲X , a guarded fixed point combinator of type (⊲X → X)→ X

and solutions to guarded recursive domain equations. In its multiclocked version, where the delay modal-

ity ⊲κ is indexed by a clock κ and clocks can be universally quantified, guarded recursion can moreover

be used to encode coinductive types in type theory, allowing productivity requirements on these to be

encoded in types [6].

Clocked Cubical Type Theory (CCTT) [24] is a type theory combining multiclocked guarded recur-

sion with features from cubical type theory, in particular univalence and higher inductive types (HITs).

The latter are a form of inductive types defined not only by constructors, but also by equations. HITs

*This work was supported by a research grant (13156) from VILLUM FONDEN.

http://dx.doi.org/10.4204/EPTCS.351.13
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

R.E. Møgelberg & A. Vezzosi 201

have been used to construct topological spaces such as the circle and the torus in type theory, but can also

be used for free structures, such as the free group on a set. In computer science, free structures can be

used to form the monads generated by algebraic theories. For example, the finite powerset monad, often

used to model finite non-determinism, can be generated by a binary union operation plus axioms of as-

sociativity, commutativity, and idempotency, and can therefore be naturally represented as a HIT [8, 19].

Combining HITs with guarded recursion provides a powerful metatheory in which one can reason

about programming languages and programs. This paper presents a worked example of this. We study

the untyped lambda calculus with finite non-determinism, and show how to construct a model of this in

CCTT using a guarded recursive type. The model construction takes as parameter a monad T with a

union operation ∪ : T X ×TX → T X for modelling non-determinism, as well as a step operation stepT :

⊲κ(T X)→ T X , which in combination with the fixed point operator allows us to model recursion.

We present two instantiations for T , corresponding to two different notions of observation on non-

deterministic programs. The first describes a notion of non-deterministic computation where all possible

branches of a computation are executed in parallel and we can observe all possible values that occur

along the way, even if there are diverging branches of the computation. This monad corresponds to

may-convergence and can be characterised as being generated by the operations ∪ and stepT with no

equations between them.

The second instantiation corresponds to a notion of computation where all branches are evaluated

in parallel, but partial results are only available when all branches have terminated. This is simply the

composition LκPf of the free monad Lκ generated by the step operation and the finite powerset monad

Pf . It turns out that this composition is not itself a monad, but does have a sequencing operation sufficient

for the purposes of this paper. We claim that this composition corresponds to must-convergence.

As an example application of this model, and to substantiate the claim that these constructors corre-

spond to may- and must-convergence, respectively, we apply the model to a classical problem in lambda

calculus, namely that of proving that applicative similarity is a congruence. This was first proved by

Abramsky [1] for the lazy lambda calculus (without non-determinism) using domain theory and Stone

duality, and this method has since been extended to calculi with non-determinism [31]. Here we use a

different method due to Pitts [34] who used a domain theoretic model and a relation between syntax and

semantics. We extend this proof to non-determinism for both may- and must-equivalence, and adapt it to

guarded recursion.

The two instantiations of T mentioned above are what we consider as examples of guarded recursive

powerdomains. In classical domain theory [2] a powerdomain is a domain theoretic correspondent to

the powerset construction in set theory. A number of different powerdomains exist, each characterising

a different notion of observation. One way of characterising the difference between these is in terms of

enriched algebraic theories which allow them to be classified in terms of inequations such as x ≤ x∪y. In

the case of guarded recursion the difference between the two guarded powerdomains studied here can be

expressed in terms of equalities describing the interaction between ∪ and stepT . This paper can therefore

also be read as a first study of the interaction of algebraic effects and guarded recursion.

1.1 Synthetic guarded domain theory

Until now most applications of guarded recursion and step-indexing have used these for operational rea-

soning for programming languages. While these techniques are very useful for proving properties of

programs, we believe that there is a need for also developing guarded recursion as a tool for constructing

denotational semantics. Denotational methods have the benefit of often being more modular than the

operational methods, and often reveal the foundational mathematical building blocks of programming

202 Two Guarded Recursive Powerdomains for Applicative Simulation

languages. Denotational semantics often inspire new programming constructions or languages, as ex-

emplified in monads [30], runners for computational effects [37, 3], homotopy type theory [36], or even

guarded recursion itself [10].

Using guarded recursion for denotational semantics has several possible benefits over domain theory.

The first is that it appears to be more expressive than domain theory as illustrated by the many uses of

step-indexing for advanced programming languages. Another is that step-indexing and guarded recursion

by many are considered more elementary tools. A third is that guarded recursion appears to be more

amenable to effective formalisation in type theory and proof assistants, although some formalisations

of classical domain theory do exist [9, 18], and in particular recent progress on such a formalisation in

HoTT seems promising [22].

Initial steps towards such a synthetic guarded domain theory were taken by Birkedal, Møgelberg and

Paviotti [28, 32] who showed how to construct models of the programming languages PCF and FPC

modelling recursion in these as guarded recursion, and proving the adequacy of these models entirely

in a type theory with guarded recursion. This paper can be viewed as an extension of these works to

non-determinism. Perhaps the main disadvantage of guarded recursion compared to domain theory is the

intensional nature, allowing the model to distinguish between computations that produce the same result

in a different number of steps. The present paper shows that using universal quantification over clocks

allows to localise the steps and to prove properties that do not refer to steps, using the models.

1.2 Related work

Most proofs of applicative similarity being a congruence use operational arguments [25, 26], in particu-

lar Howe’s method [20]. More recently, an abstract version of Howe’s method has been developed [15]

to handle languages with algebraic effects in a uniform way. This method uses domain theory to han-

dle recursion. It would be interesting to see if the method described here generalises to a similar uni-

form method for computational effects, but this requires first developing a theory of algebraic effects in

guarded type theory.

Step-indexing and guarded recursion based operational techniques have previously been used for

languages with non-determinism. For example, Schwinghammer et al. [35] construct an operational

model for reasoning about a typed programming language with recursive types, polymorphism and non-

determinism and use it to prove contextual equivalences of programs. Bizjak et al. [11] show how to

construct a similar model using guarded recursion and topos logic. These works use complex operational

techniques including ⊤⊤-closure. Our goal is different, namely to develop a theory of denotational

semantics in a type theory with guarded recursion.

The above mentioned works on non-determinism [25, 26, 35, 11] study countable non-determinism,

rather than finite non-determinism. This is generally considered a harder problem. For example, this

forces the step-indexing used by Schwinghammer et al. [35] to be transfinite, whereas the underlying

model of the Clocked Cubical Type Theory is based on natural number step-indexing. Likewise, defining

powerdomains in domain theory for countable non-determinism is much harder than the finite case [5,

17]. We discuss the possibility of extending our approach to countable non-determinism in Section 8.

As described in Section 3, our partiality monad Lκ is strongly related to the coinductive partiality

monad, and our use of it is similar to previous uses in semantics of recursion [9, 12, 16]. Interaction

trees [39] are a general data structure combining the coinductive partiality monad with computational

effects. Our guarded powerdomain monads can perhaps be seen as a form of guarded interaction trees

for non-determinism, except that the use of HITs allows us to consider these up to an equational theory.

R.E. Møgelberg & A. Vezzosi 203

1.3 Overview

The paper is organised as follows: We first recall the basics of Cubical Type Theory in Section 2, in par-

ticular path types and higher inductive types. Section 3 then recalls Clocked Cubical Type Theory, the

extension of Cubical Type Theory with multiclocked guarded recursion. Section 4 defines the guarded

powerdomain for may-convergence and Section 5 presents our proof that applicative may-similarity is a

congruence using a denotational model. Section 6 defines a guarded powerdomain for must-convergence,

and Section 7 presents our proof that applicative must-similarity is a congruence. We conclude in Sec-

tion 8.

2 Cubical type theory

Cubical Type Theory (CTT) [14] is a variant of Homotopy Type Theory (HoTT) [36] based on the cubical

model of the univalence axiom, and specifically designed to compute with univalence. It moreover has

the benefit of combining more easily with guarded recursion than HoTT, which was the reason for using

it as a base for Clocked Cubical Type Theory as we shall describe in Section 3. Reading this paper does

not require deep knowledge of CTT, and this section recalls the basic notions from CTT and HoTT that

we shall need.

Perhaps the most fundamental difference between CTT and Martin-Löf type theory is that the identity

type in the latter is replaced in CTT by a type of paths PathA(x,y) between two elements x,y : A. We will

often write the path type infix as x = y, and say that x and y are path equal if there is an element of x = y.

Cubical Type Theory represent paths as maps from an abstract interval type I, with endpoints 0 and 1.

In particular a lambda abstraction like λ i.t will build a path of type t[0/i] = t[1/i]. This allows more

canonical proofs of equality than just reflexivity, and so to give computational content to principles like

function extensionality and univalence. Path equality is still substitutive, in the sense that any element of

type P(x) can be transported along a path x = y to construct an element of P(y). In the following we will

not rely on details about the specific primitives of CTT, which can be found in [14], and [38] for their

incarnation in the Agda proof assistant.

Types can be classified according to the complexity of their path equality: We say a type is a mere

proposition if any two elements are path equal, and that a type is a homotopy set, or simply a set, if its

path equality type is a mere proposition. These predicates can be expressed in the type theory as types

isProp(A) and isSet(A) for a type A. Given any universe of types U, we can form a universe of mere

propositions Prop whose elements are pairs of an element of U and a proof that it is propositional. For

A : Prop we will often write A itself rather than its first projection.

Cubical Type Theory also supports Higher Inductive Types (HITs), which allow to define an inductive

type by declaring constructors also for its path equality, rather than only for its elements. For example,

the propositional truncation ||A|| of a type A is defined as a higher inductive type with the following

constructors

|− | : A → ||A|| squash : Π(xy : ||A||).x = y

This defines the least proposition extending A in the sense that any map f : A → B into a proposition B,

defines a unique map f : ||A|| → B, such that f (|a|) = f (a) for all a. If B is a set, then such an extension

still exists if Π(xy : A). f x = f y [23]. For any two propositions A and B their conjunction A∧B is given

by the cartesian product A×B, their disjunction A∨B by truncating their disjoint union ||A+B||, while

the true and false propositions are given by the unit and the empty type. Univalence implies that any two

204 Two Guarded Recursive Powerdomains for Applicative Simulation

logically equivalent propositions are equal, so associativity and commutativity of disjunction and other

such laws hold as path equalities. Given a predicate P : A → Prop, universal quantification ∀a : A.Pa

is given by the dependent function type Π(a : A).Pa, while existential quantification ∃a : A.Pa is given

by truncating the dependent pair type ||Σa : A.Pa|| as generally it will not be propositional otherwise.

As ||Q|| and Q coincide when Q is a proposition, so do ∃a : A.Pa and Σa : A.Pa when Pa uniquely

determines a.

2.1 Finite Powerset

The finite powerset Pf(A) [8, 19] of a type is another example of a higher inductive type defined by the

following constructors

{−} : A → Pf(A)

∪ : Pf(A)→ Pf(A)→ Pf(A)

assoc : Π(X Y Z : Pf(A)).X ∪ (Y ∪Z) = (X ∪Y)∪Z

comm : Π(X Y : Pf(A)).X ∪Y =Y ∪X

idem : Π(X : Pf(A)).X ∪X = X

plus two equalities ensuring that Pf(A) is a set [24]. Note that we restrict ourselves to non-empty finite

powersets. We say that a pair of a type B and a binary operation f : B → B → B is a join-semilattice1

if B is a set and f is associative, commutative and idempotent. It can then be shown that Pf(A) is the

free join-semilattice generated by A, and as such maps Pf(A)→ B which preserve ∪ correspond to maps

A → B for any join-semilattice (B, f). We use this to define the membership predicate x ∈ X , as Prop

forms a join-semilattice with disjunction. Membership satisfies the following equations

x ∈ {y}= ||x = y|| x ∈ (X ∪Y) = x ∈ X ∨ x ∈Y

If X : Pf(A) we write ∀a ∈ X .Q(a) to mean Π(a : A).a ∈ X → Q(a) and similarly for ∃a ∈ X .Q(a).

The finite powerset also supports the structure of a monad, and in particular, given f : A → Pf(B) we

write ∪a∈X f a for the bind operation, defined using the free join-semilattice structure. Given f : A → B

we write Pf(f) : Pf(A) → Pf(B) for the functor action of the finite powerset, defined as Pf(f)X
def
=

∪a∈X{ f a}.

Finally, recall [29, Lemma 4.1] that if f : A → B, X : Pf(A), and b : B, then

b ∈ Pf(f)X ≃ ∃a ∈ X . f a = b (1)

3 Clocked cubical type theory

Clocked Cubical Type Theory [24] extends Cubical Type Theory with the constructions of Clocked Type

Theory [7, 27], a type theory with Nakano style guarded recursion, multiple clocks and ticks. This

section recalls each of these concepts, but in a simplified form, omitting constructions related to tick

irrelevance.

The fundamental notion in guarded recursion is that of a time step on a clock. Clocks are introduced

as assumptions of the form κ : clock in the context, and time steps are represented as tick assumptions

1This is a slight misuse of terminology, since join-semilattices are usually assumed to also have a unit

R.E. Møgelberg & A. Vezzosi 205

κ : clock ∈ Γ

Γ,α : κ ⊢

Γ,TimeLess(Γ′) ⊢ t : ⊲(α :κ).A Γ,β : κ ,Γ′ ⊢

Γ,β : κ ,Γ′ ⊢ t [β] : A [β/α]

Γ,α : κ ⊢ t : A

Γ ⊢ λ (α :κ).t : ⊲(α :κ).A

Γ,κ : clock ⊢ t : A

Γ ⊢ Λκ .t : ∀κ .A

Γ ⊢ t : ∀κ .A Γ ⊢ κ ′ : clock

Γ ⊢ t[κ ′] : A[κ ′/κ]

Figure 1: Selected typing rules for Clocked Cubical Type Theory [24]. The telescope TimeLess(Γ′) is

composed of the timeless assumptions in Γ′, i.e. interval variables and faces (as in Cubical Type Theory)

as well as clock variables.

of the form α : κ . The type ⊲(α :κ).A classifies computations that in the next time step (as represented

by the tick α) return elements of A. When α does not appear in A we simply write ⊲κA for this type.

Elements of ⊲(α : κ).A are introduced by tick abstraction λ (α : κ).t and eliminated by tick application

t [α]. The rules are similar to those for function types, except that tick application requires the eliminated

term t not to depend on α , nor any of the variables bound before α . This rules out terms like λx.λ (α :

κ).x [α] [α] : ⊲κ ⊲κ A→ ⊲κ A, which collapse two steps into one. Interval variables are considered timeless

and therefore exempt from this restriction, which is necessary to prove that tick application preserves

equalities:

(λ p.λ (α :κ).λ i.(pi [α])) : x =⊲ (α :κ).A y → (⊲(α :κ).x [α] =A y [α]) (2)

In fact, the above map is an equivalence of types, and this extensionality principle is one of the main rea-

sons CTT is used rather than HoTT. One consequence is that ⊲ preserves truncation levels. In particular,

if ⊲(α :κ).isProp(A [α]) then also isProp(⊲(α :κ).(A [α])) [29, Lemma 3.1] and similarly for sets.

The delay type allows to safely introduce a fixpoint combinator fixκ of type (⊲κA → A) → A and

satisfying the path equality fixκ t = t (λ (α :κ).fixκt) for any t. We can use fixκ to define guarded recursive

types, i.e. ones where the recursive occurrences are guarded by ⊲κ . An example is the partiality monad

mapping A : U to Lκ A
def
= fixκ(λ (X : ⊲κU).A+ ⊲(α : κ).X [α]). The path equality between this type and

its unfolding gives rise to a type equivalence

LκA ≃ A+⊲κLκA

We use nowL and stepL to denote the two inclusions into Lκ A up to the above equivalence.

nowL : A → LκA stepL : ⊲κLκA → LκA

An element of LκA represents a possibly non-terminating computation of an element of A. For example,

the element ⊥= fixκ(stepL) represents divergence. We say that (A,δ) is a delay algebra if δ has type

⊲κ A → A. The pair (Lκ A,stepL) is the free delay algebra generated by A in the sense that any map

f : A → B where (B,δ) is a delay algebra defines a unique f : LκA → B such that

f (nowL a) = f a f (stepL x) = δ (λ (α :κ). f (x [α]))

The monad structure is then defined with nowL as the unit, and multiplication µL : LκLκA → LκA defined

as the unique (delay algebra)-homomorphism extending the identity.

206 Two Guarded Recursive Powerdomains for Applicative Simulation

The clock quantification type former ∀κ .A is introduced by clock abstraction, and eliminated by

application to a clock. It behaves much like a Π-type, except that clock is not a type, but has a similar

status to the interval I. Clock quantification localises guarded recursion on a clock, and in particular

supports a map force : ∀κ .⊲κ A →∀κ .A, inverse to λx.λκ .λ (α :κ).x [κ], allowing to safely eliminate ⊲κ .

The main use case for clock quantification is to encode coinductive types. For example ∀κ .LκA is the

final coalgebra for the functor F(X) = A+X , if A is clock irrelevant, i.e., if the canonical map A →∀κ .A
is an equivalence. The notion of clock irrelevance is closed under all basic type formers as well as

inductive types and (under certain restrictions [24]) higher inductive types. In particular, the inductive

types used in this paper to represent syntax are all clock irrelevant. This encoding of coinductive types

is originally due to Atkey and McBride [6] and presumes the existence of a clock constant κ0, which we

achieve by just initially assuming κ0 : clock.

More generally for every (indexed) functor F which commutes with clock quantification we have

that ∀κ .fixκ(λX .F(⊲(α : κ).X [α])) is the final coalgebra of F , i.e. its coinductive fixpoint [24]. The

collection of functors commuting with clock quantification is closed under a long list of constructors

including truncations, finite powersets and sum types as expressed in the following type equivalences.

∀κ .||A|| ≃ ||∀κ .A|| ∀κ .Pf(A)≃ Pf(∀κ .A) ∀κ .(A+B)≃ ∀κ .A+∀κ .B

4 A powerdomain for may-convergence

Define the may powerdomain as the unique solution to the guarded recursive equation

Pκ
♦(A)≃ Pf(A+⊲κPκ

♦(A))

Formally, Pκ
♦ can be defined as a fixed point fixκ(λ (X : ⊲κU).Pf(A+ ⊲(α : κ).X [α])) similarly to the

definition of Lκ A, but in the rest of this paper we will not give such definitions explicitly. The type

constructor Pκ
♦ comes equipped with the following operations

∪ : Pκ
♦(A)→ Pκ

♦(A)→ Pκ
♦(A) now♦ : A → Pκ

♦(A) step♦ : ⊲κPκ
♦(A)→ Pκ

♦(A)

where ∪ is inherited from Pf and therefore defines a join-semilattice and

now♦ (a) = {inl(a)} step♦ (a) = {inr(a)}

defines a unit and a delay algebra structure. In particular, this means that Pκ
♦(A) can represent diverging

computations (⊥= fixκ(step♦)), as well as values. An element of Pκ
♦(A) may also have both converging

and diverging branches, as for example {a,⊥}.

The next lemma states that for a set A, Pκ
♦(A) is the free algebra for the theory combining delay and

union with no interaction between the two.

Lemma 1. Let A be a set, let B be a set with both a join-semilattice structure and a delay algebra

structure, and let f : A → B. Then there is a unique map Pκ
♦(A) → B extending f and commuting with

the join-semilattice and delay-algebra structures.

In terms of algebraic theories, Pκ
♦ can therefore be seen as generated by the theories of join-

semilattices and delay-algebras with no operations between them. As a special case of the lemma one

can define a bind operation mapping a : Pκ
♦(A) and f : A → Pκ

♦B to a>>= f : Pκ
♦B which then equips Pκ

♦

with a monad structure with unit given by now♦ . Bind moreover commutes with these operations as in

the following equations

(step♦ a>>= f) = step♦λ (α :κ).(a [α]>>= f) (3)

((a∪b)>>= f) = (a>>= f)∪ (b>>= f) (4)

R.E. Møgelberg & A. Vezzosi 207

5 Applicative may-simulation

The type constructor Pκ
♦ should be seen as a guarded recursive powerdomain for may-convergence. Intu-

itively, this is true because an element of Pκ
♦(A) describes a set of values (of type A) that the computation

has returned now, and a set of computations that we can choose to further evaluate, but may also choose

not to, if we are only interested in testing if a program may evaluate to a particular value. This should be

seen in contrast to the must-powerdomain of Section 6 which will force all branches of a computation

tree to be evaluated fully before the result values can be inspected. In this section we substantiate that

claim by using Pκ
♦ to prove applicative may-similarity a congruence.

We start by recalling the untyped lambda calculus with binary non-determinism and the notion of

applicative may-similarity. We use informal binding notation here for readability, using the grammar

M,N ::= M N | λλ x.M | M orN

for terms. This could for example be implemented more formally as an inductive family using de Bruijn

indices. Note the use of λλ to distinguish it from the meta-level lambda. A value is a closed term of the

form λλ x.M, and we shall use Λ and Val for the types of closed lambda terms and values respectively,

which we will assume are sets (and indeed are if formalised using de Bruijn indices). These are moreover

clock irrelevant, which can be shown by embedding them into the inductive types of all (also open) terms,

and the fact that all inductive types are clock irrelevant [24].

We define two operational semantics. The first one is a big-step operational semantics formulated as

a relation ⇓♦: Λ×Val→ Prop defined inductively in the standard way

V =W

V ⇓♦ W

M ⇓♦ λλ x.M′ N ⇓♦ V ′ M′[V ′/x] ⇓♦ V

MN ⇓♦ V

M ⇓♦ V ∨N ⇓♦ V

MorN ⇓♦ V

One can also similarly define a small-step operational semantics and prove this equivalent to the big-step

semantics using standard methods.

The second operational semantics is less familiar but has the benefit of being suitable for guarded

recursive reasoning. It uses the monad Pκ
♦ to model recursion and non-determinism, but since parts of

the development in this section will be reused later, we will define the operational semantics relative

to a monad T , which can be instantiated to be Pκ
♦. We will assume that T has operations ∪ and stepT

providing T with a join-semilattice structure as well as a delay-algebra structure satisfying the equations

(3) and (4). In fact we shall see later that not all axioms for monads are needed for our developments.

Using this, we define an evaluation function eval : Λ → T (Val) as

eval (λλ x.M) = pure (λλ x.M)
eval (M N) = evalM >>=λ (λλ x.M′).evalN >>=λV.stepT (λ (α :κ).eval(M′[V/x]))
eval (M orN) = evalM∪ evalN

where pure refers to the unit of the monad T . Note that the match on (λλ x.M′) in the application case

is exhaustive, since values can only be lambda abstractions. To lift this to a big step relation, we will

assume given a lifting of T to predicates as follows.

Definition 1. A lifting of a monad T to predicates is a function that maps a predicate P : A → Prop to a

predicate T̂ (P) : T (A)→ Prop satisfying the following properties

1. T̂ (P)(T (f)(a)) = T̂ (P◦ f)(a)

208 Two Guarded Recursive Powerdomains for Applicative Simulation

2. T̂ (P)(pure(a)) = P(a)

3. T̂ (P)(stepT (a)) = ⊲(α :κ).T̂ (P)(a [α])

4. T̂ (P)(m>>=λx.t) = T̂ (λx.T̂ (P)(t))(m)

5. T̂ (P)(a∪b) = T̂ (P)(a)∧ T̂ (P)(b)

Note that a unique such lifting can be defined for Pκ
♦ using Lemma 1 since Prop is a set, and ∧ and

⊲ define a join-semilattice and delay-algebra structure on Prop, so T̂ (P) can be defined as the extension

of P.

Specialising to T = Pκ
♦ we make the following definition.

Definition 2. Let T̂ be the lifting of Pκ
♦ to predicates, let Q : Val→ Prop be a predicate on values and

let M : Λ. Define

M ⇓κ
♦ Q

def
= T̂ Q(eval(M)) : Prop

One can then define a more standard big step operational semantics as

M ⇓κ
♦ V

def
= M ⇓κ

♦ (λW.(V =W))

Intuitively M ⇓κ
♦ Q means that if M terminates to a value, that value will satisfy Q. In particular, M ⇓κ

♦ V

will hold for any V if M diverges, unlike the statement M ⇓♦ V which guarantees termination.

To express the precise relationship between the two semantics, we introduce a predicate of may-

convergence on the powerdomain Pκ
♦. Since termination cannot be expressed as a predicate on guarded

recursive types directly, it must be expressed as a predicate on ∀κ .Pκ
♦(−), which captures global be-

haviour of Pκ
♦ [28]. If m : ∀κ .Pκ

♦(A) and a : A define m ⇓∀
P
♦

a as the proposition inductively generated by

the following introductions

λκ .now♦ (a) ⇓
∀
P
♦

a

m ⇓∀
P
♦

a

λκ .step♦ (λ (α :κ).m [κ]) ⇓∀
P
♦

a

m ⇓∀
P
♦

a∨m′ ⇓∀
P
♦

a

λκ .m [κ]∪m′ [κ] ⇓∀
P
♦

a

This means that these rules should be read as constructors of a HIT which also has propositional trun-

cation operators as a constructor. The relationship between the two semantics can then be expressed as

follows.

Proposition 1. The statements M ⇓♦ V and (λκ .eval(M)) ⇓∀
P
♦

V are logically equivalent.

Finally, the next lemma makes the intuition for M ⇓κ
♦ Q stated above precise. As the notation used in

the lemma suggests, κ can appear free in Qκ .

Lemma 2. Let A be clock irrelevant, Qκ a family over A for each κ , and m : ∀κ .Pκ
♦(A). The statements

∀κ .P̂κ
♦Qκ(m [κ]) and ∀a.m ⇓∀

P
♦

a →∀κ .Qκ(a) are logically equivalent. As a consequence ∀κ .M ⇓κ
♦ Qκ

is equivalent to M ⇓♦ V →∀κ .Qκ(V).

5.1 Applicative may-similarity

We now recall the notion of applicative similarity, as originally studied by Abramsky [1] for the pure

lambda calculus and adapt it to finite non-determinism in the case of may-convergence. Say that a

relation R on closed terms is an applicative may-simulation if MRN and M ⇓♦ λλ x.M′ implies

∃N ′.N ⇓♦ λλ y.N ′∧ (∀(V : Val).M′[V/x]RN ′[V/x])

R.E. Møgelberg & A. Vezzosi 209

Applicative may-similarity is the greatest applicative may-simulation. We define this by universally

quantifying a clock in a guarded recursive definition. First define

≤κ
Val : Val→ Val→ Prop

≤κ
♦ : Λ → Λ → Prop

λλ x.M ≤κ
Val λλ y.N

def
= ⊲(α :κ).(∀V :Val.M[V/x]≤κ

♦ N[V/y])

M ≤κ
♦ N

def
= M ⇓κ

♦ λV.(∃W.N ⇓♦ W ∧V ≤κ
Val W)

The statement M ≤κ
♦ N should be read as stating that if M terminates, then also N terminates, and more-

over, applying the resulting terms to the same value results in the related results later. Note the asymmetry

in the use of operational semantics: The evaluation of M uses the guarded operational semantics which

ensures that if M diverges, then M ≤κ
♦ N is true. On the other hand, once M converges to a value, N must

also converge, and expressing this requires the inductive operational semantics. The delay in the defini-

tion of ≤κ
Val

ensures well-definedness: unfolding the definition of ≤κ
♦ in ≤κ

Val
gives a guarded recursive

definition.

Applicative similarity is extended to open terms by defining M ≤κ
♦ N to mean Mσ ≤κ

♦ Nσ for all

substitutions σ mapping all free variables in M and N to values. Finally, we localise the steps in the

definition of M ≤κ
♦ N by universally quantifying κ and thereby pass to a coinductive type:

M ≤♦ N
def
= ∀κ .M ≤κ

♦ N

Lemma 3. ≤♦ is the greatest applicative may-simulation.

We now proceed to prove that applicative may-similarity is a congruence. Most proofs of this use

syntactic arguments, but here we use a semantic method developed by Pitts [34] in the context of domain

theory, which we adapt to guarded recursion. As a first step we construct a denotational semantics of the

untyped lambda calculus.

5.2 Denotational semantics

Like the operational semantics, the denotational semantics is parametrised by a monad T equipped with

a join-semilattice structure and a delay algebra structure, satisfying (3) and (4). Closed terms will be

interpreted as elements of the type Dκ defined by the following equations.

SValκ
def
= ⊲κ(SValκ → T (SValκ)) Dκ def

= T (SValκ)

Here the definition of SValκ should be read as a guarded recursive definition, and states that semantic

values can be considered effectful computations on semantic values, but that this unfolding takes a single

computation step. Define a semantic application · : Dκ ×Dκ → Dκ as

d ·d′ = d >>=λ f . d′
>>=λv. stepT (λ (α :κ). f [α]v)

and using this we define the operational semantics J−Kκ
: Λ(n)→ (SValκ)n → Dκ where Λ(n) is the set

of terms with at most n free variables, as

JxiK
κρ = pure (ρ i) Jλλ xn+1.MK

κ
ρ = pure (λ (α :κ).(λd.JMKκ(ρ ,d)))

JM NKκρ = JMKκρ · (JNKκρ) JM orNKκρ = JMKκρ ∪ JNKκρ

Note that the interpretation of values factor through pure : SValκ → Dκ via J−Kκ
Val

: Val→ SValκ .

210 Two Guarded Recursive Powerdomains for Applicative Simulation

Theorem 1 (Soundness). T (J−Kκ
Val

)(evalM) = JMKκ

We now specialise T to Pκ
♦ for the following notation and corollary. If Q : A → Prop and m : Pκ

♦A,

we shall use the infix notation m ↓κ
♦ Q for T̂ Qm, where T̂ is the lifting of Pκ

♦.

Corollary 1. The statements JMKκ ↓κ
♦ Q and M ⇓κ

♦ Q◦ J−Kκ
Val

are equivalent.

5.3 Relating syntax and semantics

We now construct a relation between syntax and semantics that will allow us to use the model to reason

about the operational semantics. The relation is similar to the one constructed by Pitts [34] in the setting

of domain theory, but whereas Pitts must provide a technical argument for the existence of the relation,

which is far from obvious in the domain theoretic setting, in our setting the relation exists simply by

guarded recursion.

In this section we specialise the model from the general monad T to Pκ
♦, and define two relations,

one on values and one on general terms as follows

�κ : Dκ ×Λ → Prop

�κ
Val : SValκ ×Val→ Prop

d �κ M
def
= d ↓κ

♦ λv.(∃V.M ⇓♦ V ∧ v �κ
Val

V)

v �κ
Val λλ x.M

def
= ⊲(α :κ).(∀v′,V ′.v′ �κ

Val V
′ → (v [α](v′))�κ M[V ′/x])

This is well-defined, because unfolding the definition of �κ in the definition of �κ
Val

gives a guarded

recursive definition of �κ
Val

. If ρ : (SValκ)n and σ :Valn write ρ �κ
Val

σ to mean ρ1 �
κ
Val

σ1∧ . . .∧ρn �
κ
Val

σn.

Lemma 4 (Fundamental lemma). If ρ �κ
Val

σ then JMKκρ �κ Mσ .

The fundamental lemma is proved by induction on M. Using this, one can prove the following

correspondence between �κ and ≤♦

Lemma 5. If M and N are closed terms then M ≤♦ N is equivalent to ∀κ .JMKκ �κ N.

The left to right direction is proved by showing that �κ is upward closed in its second argument.

The other direction is proved using guarded recursion. Note that as a consequence of Lemma 4 and 5 it

follows that ≤♦ is a reflexive relation.

Theorem 2. ≤♦ is a congruence, i.e., if M ≤♦ N and C[−] is a context then also C[M]≤♦ C[N].

Proof. Using reflexivity it suffices to show that if M ≤♦ N and M′ ≤♦ N ′ then M M′ ≤♦ N N ′, M orM′ ≤♦

N orN ′ and λλ x.M ≤♦ λλ x.N. The cases of application and choice can be reduced to the statements

that if d �κ M and d′ �κ N then d · d′ �κ M N and d ∪ d′ �κ MorN, which can be proved by guarded

recursion. To prove λλ x.M ≤♦ λλ x.N it suffices to prove that ⊲κ(∀V.M[V/x] ≤♦ N[V/x]). By definition

of applicative may-similarity for open terms, however, we know that M[V/x]≤♦ N[V/x].

6 A powerdomain for must-convergence

We now introduce our powerdomain construction Pκ
� for must-convergence. This should have an inclu-

sion now� : A → Pκ
�(A), a join-semilattice structure ∪ and a delay algebra structure step�. However,

R.E. Møgelberg & A. Vezzosi 211

when considering must-convergence, a term MorN diverges if M diverges even if N converges. To en-

force that in our powerdomain we use equations to enforce parallel evaluation of subcomputations and

stating that terminating values are postponed until all subcomputations have been evaluated fully:

step�(x)∪ step�(y) = step�(λ (α :κ).x [α]∪ y [α]) (5)

step�(x)∪now�(y) = step�(λ (α :κ).(x [α]∪now�(y))) (6)

These equations (together with the derivable symmetric version of (6)) allow steps to bubble up the

syntax tree, to a normal form consisting of a (possibly infinite) sequence of computation steps followed

by a finite set of values. Following this intuition we define

Pκ
�(A)

def
= Lκ(Pf(A))

This has the benefit over, say a HIT given by the equations above, of giving direct access to the set of

possible values returned by a computation that must converge.

By definition Pκ
� carries a delay-algebra structure, and the inclusion of A into Pκ

�(A) can be defined

as

now�(a)
def
= nowL ({a})

The join-semilattice can be defined by guarded recursion using the equations (5), (6), the symmetrisation

of (6) and

nowL x∪nowL y
def
= nowL (x∪ y)

A natural question is whether Pκ
� defines a monad. Since it is the composite of two monads, it is sufficient

that there is a distributive law of monads, and indeed a natural candidate is easily defined as

ζ : PfL
κ → LκPf ζ (X)

def
= ∪x∈XL

κ({−})(x)

However, this only defines a distributive law of the monad Pf over Lκ considered as a functor, not a

monad.

Proposition 2. Of the four diagrams for distributive laws over monads:

Lκ PfPfL
κ PfL

κPf LκPfPf

PfL
κ LκPf PfL

κ LκPf

Pf PfL
κLκ LκPfL

κ LκLκPf

PfL
κ LκPf PfL

κ LκPf

L
κ ({−})

{−}

Pf (ζ)

∪

ζ

L
κ (∪)

ζ ζ

nowL
Pf(nowL)

ζ

Pf (µL)

L
κ ζ

µL

ζ ζ

all but the last commute.

A counterexample to the last is {stepL (λ (α : κ).nowL (nowL x)),nowL (stepL λ (β : κ).nowL x)}
which is mapped by the lower composite to stepL (λ (α :κ).nowL {x})) and by the upper to stepL λ (α :

κ).stepL λ (β :κ).nowL {x}. Note that these only differ by a finite number of computation steps, i.e., are

equal up to weak bisimilarity. We conjecture that this is generally true and that Pκ
� is a monad up to weak

bisimilarity.

As a consequence, using ζ to define the multiplication of Pκ
� does not define a monad. Nevertheless,

it does define a bind operation.

212 Two Guarded Recursive Powerdomains for Applicative Simulation

Lemma 6. The bind operation induced by ζ maps f : A → Pκ
�(B) and a : Pκ

�(A) to

a>>=LλX .∪x∈X f (x)

and satisfies the equations (now�(a)>>= f) = f (a) and (a>>=now�) = a, and moreover defines a ho-

momorphism of delay-algebras as well as join-semilattices in a. It does not satisfy the associativity

axiom.

Since the associativity axiom is not used in our development, the proofs done in the previous section

for a general monad T carry over to this case, as we shall see.

7 Applicative must-simulation

We now show how our techniques from the may-convergence case apply to show that applicative must-

similarity is a congruence also in the case of must-convergence. First we set up the operational semantics.

In the case of the standard big-step semantics, define the predicate ⇓�⊆ Λ×Pf(Val) as

M ⇓� X N ⇓� Y

M orN ⇓� X ∪Y λλ x.M ⇓� {λλ x.M}

M ⇓� X N ⇓� Y ∀(λλ y.M′) ∈ X ,V ∈Y. M′[V/y] ⇓� Z
λλ y.M′ ,V

M N ⇓� ∪V ′∈X ,V∈Y ZV ′,V

The judgement M ⇓� X states that M must converge and that the possible values that it can converge to

is X .

The evaluation function eval : Λ → Pκ
�(Val) is defined by specialising the general definition given in

Section 5. We also define a relation M ⇓κ
� Q stating that if M terminates, it will terminate to a set of values

satisfying Q : Pf(Val)→ Prop. Note that Q is a predicate on sets of values, rather than values themselves

(as was the case for M ⇓κ
♦ Q). This allows us to express properties e.g. by existential quantification over

outcome values, as needed e.g. in the definition of must-similarity below. To define M ⇓κ
� Q, consider

first a lifting L̂κQ of predicates Q : A → Prop to LκA defined as

L̂κ Q(nowL a)
def
= Q(a) L̂κQ(stepL a)

def
= ⊲(α :κ).L̂κ Q(a [α])

and note that this also satisfies items 1 and 4 of Definition 1. Define M ⇓κ
� Q

def
= L̂κ Q(eval(M)).

The relationship between these two operational semantics is similar to the one between ⇓♦ and ⇓κ
♦.

First define, for m : ∀κ .LκA and a : A a termination predicate m ⇓∀
� a as an inductive family in Prop like

so:

m ⇓∀
� a

(λκ .stepL (λ (_:κ).mκ)) ⇓∀
� a (λ_.nowL a) ⇓∀

� a

Proposition 3. The statements M ⇓� V and (λκ .evalM) ⇓∀
� V are logically equivalent.

Lemma 7. Let A be clock irrelevant, Qκ a family over A, and m : ∀κ .LκA. The statements ∀κ .L̂κQκ(mκ)
and m⇓∀

� a→∀κ .Qκ(a) are logically equivalent. As a consequence the statements M ⇓� V →∀κ .Qκ(V)
and ∀κ .M ⇓κ

� Qκ are equivalent.

R.E. Møgelberg & A. Vezzosi 213

Say that a relation R on closed terms is an applicative must-simulation if MRN implies

M ⇓� U →∃V.N ⇓� V ∧∀(λλ x.N ′ ∈V).∃(λλ x.M′ ∈U).(∀(W : Val).M′[W/x]RN ′[W/x])

Define M ≤κ
� N by guarded recursion to be

M ⇓κ
� λU.∃V.N ⇓� V ∧∀(λλ y.N ′ ∈V).∃(λλ x.M′ ∈U).⊲(α :κ).(∀W.M′[W/x]≤κ

� N ′[W/x])

This is extended to open terms by defining M ≤κ
� N to mean Mσ ≤κ

� Nσ for all substitutions σ mapping

all free variables in M and N to closed terms. Write M ≤� N for ∀κ .M ≤κ
� N.

Lemma 8. ≤� is the greatest applicative must-simulation.

Also in the case of the denotational semantics the general case described in Section 5.2 specialises to

Pκ
�. None of the proofs or constructions rely on associativity of the bind operation, so also the soundness

result holds. For our applications of the denotational semantics, however, we need a variant of Corollary 1

which applies to predicates on sets of values rather than on values themselves. This uses an infix notation

m ↓κ Q for L̂κQ(m).

Corollary 2. The statements JMKκ ↓κ Q and M ⇓κ
� Q◦Pf(J−Kκ

Val
) are equivalent.

7.1 Relating syntax and semantics

As in the case of may-convergence we now construct a relation between syntax and semantics. To

simplify syntax we introduce the lifting of a relation R : X ×Y → Prop to a relation on powersets Pf(R) :

PfX ×PfY → Prop defined as

Pf(R)(A,B) = ∀b ∈ B∃a ∈ A.R(a,b)

We define two relations between syntax and semantics by mutual guarded recursion (overwriting notation

from Section 5.3):

�κ : Dκ ×Λ → Prop

�κ
Val : SValκ ×Val→ Prop

d �κ M
def
= d ↓κ λA.∃B.M ⇓♦ B∧Pf(�

κ
Val)(A,B)

v �κ
Val λλ x.M

def
= ⊲(α :κ).∀v′,V ′.v′ �κ

Val V
′ → (v [α](v′))�κ M[V ′/x]))

If ρ : (SValκ)n and σ : Valn write ρ �κ σ to mean ρ1 �
κ σ1 ∧ . . .∧ρn �

κ σn.

Lemma 9 (Fundamental lemma). If Γ ⊢ M and ρ �κ σ then JMKκρ �κ Mσ .

The proof of Lemma 9 is by induction on M. In particular the case of application requires some

work, and relies on the fact that Pf respects the monad structure of Pf in the sense that if f : X → Pf(X
′)

and g : Y → Pf(Y
′) map pairs related in R : X ×Y → Prop to pairs related in Pf(S), then the extensions

f : Pf(X)→ Pf(X
′) and g : Pf(Y)→ Pf(Y

′) map pairs related in Pf(R) to pairs related in Pf(S).

Lemma 10. M ≤� N iff ∀κ .JMKκ �κ N.

Similarly to the case of may-convergence, this implies that applicative may-similarity is a reflexive

relation. From this it follows that it is a congruence exactly as in the proof of Theorem 2.

Theorem 3. ≤� is a congruence, i.e., if M ≤� N and C[−] is a context then also C[M]≤� C[N].

214 Two Guarded Recursive Powerdomains for Applicative Simulation

8 Conclusion

The constructions of this paper illustrate how the combination of guarded recursion with higher inductive

types and univalence in Clocked Cubical Type Theory gives an expressive type theory for reasoning

about programming languages. In particular, this combination allows arguments known from domain

theory involving constructions such as recursive types to be represented in type theory. Moreover, the

abstract setting of synthetic guarded domain theory allows for these tools to be used in a much more

elementary setting, far from the mathematical complexity of domain theory. This is particularly clear

in the construction of the relation ≤κ
♦ which in ordinary domain theory requires a non-trivial existence

argument [34, 33]. It also appears in our definitions of the guarded powerdomains, which we define

much more directly than the standard constructions in domain theory [2].

It is unfortunate that the bind rule for Pκ
� is not associative. As mentioned, this does not affect our

constructions, and we conjecture that it is associative up to weak bisimilarity, and that this is enough

for most purposes. We believe the reason for the failure of associativity is that the equality (6) is not

algebraic in the sense that it only applies when one side is a value. One way to avoid this is to replace

(5) and (6) by an equation of the form

step�(x)∪ y = step�(λ (α :κ).(x [α]∪ y))

which means that to evaluate x∪ y takes as many steps as the sum of steps used to evaluate x and y

respectively, rather than the maximum. In particular, this means that idempotency is lost (but may hold

up to weak bisimilarity) and one essentially works with finite multisets rather than the standard powerset.

Future work includes extending to the case of countable non-determinism. This could use the count-

able powerset functor, which is also definable as a HIT [13]. We believe that the case of may-convergence

generalises directly to the countable case, but in the case of must-convergence the definition of ∪ as used

here requires deciding if all branches of a computation terminates. We believe this is a symptom of a

much more fundamental problem, namely that the partiality monad of guarded recursion describes ter-

mination in finite steps, whereas the must-convergence predicate for countable non-determinism requires

more steps to reach a fixed point. Bizjak et al. [11] observe a similar problem in the operational setting

and solve it using a combination of ⊤⊤-lifting and transfinite induction in the underlying step-indexing

model. It would be interesting to see if such an approach also applies to type theory.

Finally, it would be interesting to develop a general theory of combinations of algebraic effects such

as state, exceptions, and non-determinism (as studied here) with guarded recursion. The domain theoretic

counterparts of these effects are usually described algebraically using order-enriched theories [21], but

as we have seen here, in the setting of guarded recursion the intensional information of the individual

steps allows us to describe the interaction of these effects with recursion in terms of ordinary equations.

This theory could then give rise to a notion of guarded interaction trees [39] which would allow also

equations between computations across steps as well as guarded recursive definitions.

Acknowledgements. We thank the anonymous reviewers for many useful observations and sugges-

tions.

References

[1] Samson Abramsky (1990): The lazy lambda calculus, Research topics in functional programming.

[2] Samson Abramsky & Achim Jung (1994): Domain theory. Oxford University Press.

R.E. Møgelberg & A. Vezzosi 215

[3] Danel Ahman & Andrej Bauer (2020): Runners in action. In: European Symposium on Programming,

Springer, Cham, pp. 29–55, doi:10.1007/978-3-030-44914-8_2.

[4] Andrew W. Appel & David McAllester (2001): An indexed model of recursive types for foundational proof-

carrying code. ACM Trans. Program. Lang. Syst 23(5), pp. 657–683, doi:10.1145/504709.504712.

[5] Krzysztof R Apt & Gordon D Plotkin (1986): Countable nondeterminism and random assignment. Journal

of the ACM (JACM) 33(4), pp. 724–767, doi:10.1145/6490.6494.

[6] Robert Atkey & Conor McBride (2013): Productive coprogramming with guarded recursion. ACM SIG-

PLAN Notices 48(9), pp. 197–208, doi:10.1145/2544174.2500597.

[7] Patrick Bahr., Hans Bugge Grathwohl & Rasmus Ejlers Møgelberg (2017): The clocks are ticking: No more

delays! In: 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), IEEE, pp.

1–12, doi:10.1109/LICS.2017.8005097.

[8] Henning Basold, Herman Geuvers & Niels van der Weide (2017): Higher Inductive Types in Programming.

J. Univers. Comput. Sci. 23(1), pp. 63–88. Available at http://www.jucs.org/jucs_23_1/higher_

inductive_types_in.

[9] Nick Benton, Andrew Kennedy & Carsten Varming (2009): Some domain theory and denotational semantics

in Coq. In: International Conference on Theorem Proving in Higher Order Logics, Springer, pp. 115–130,

doi:10.1007/978-3-642-03359-9_10.

[10] Lars Birkedal, Rasmus Ejlers Møgelberg, Jan Schwinghammer & Kristian Støvring (2012): First steps in

synthetic guarded domain theory: step-indexing in the topos of trees. Logical Methods in Computer Science

8(4), doi:10.2168/LMCS-8(4:1)2012.

[11] Aleš Bizjak, Lars Birkedal & Marino Miculan (2014): A Model of Countable Nondeterminism in

Guarded Type Theory. In: Rewriting and Typed Lambda Calculi, Springer, pp. 108–123, doi:10.1007/

978-3-319-08918-8_8.

[12] Venanzio Capretta (2005): General Recursion via Coinductive Types. Logical Methods in Computer Science

Volume 1, Issue 2, doi:10.2168/LMCS-1(2:1)2005.

[13] James Chapman, Tarmo Uustalu & Niccolò Veltri (2019): Quotienting the delay monad by weak bisimilarity.

Mathematical Structures in Computer Science 29(1), pp. 67–92, doi:10.1017/S0960129517000184.

[14] Cyril Cohen, Thierry Coquand, Simon Huber & Anders Mörtberg (2018): Cubical Type Theory: A Con-

structive Interpretation of the Univalence Axiom. In: 21st International Conference on Types for Proofs

and Programs (TYPES 2015), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, doi:10.4230/LIPIcs.

TYPES.2015.5.

[15] Ugo Dal Lago, Francesco Gavazzo & Paul Blain Levy (2017): Effectful applicative bisimilarity: Monads,

relators, and Howe’s method. In: 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science

(LICS), IEEE, pp. 1–12, doi:10.1109/LICS.2017.8005117.

[16] Nils Anders Danielsson (2012): Operational semantics using the partiality monad. In: Proceedings of the

17th ACM SIGPLAN international conference on Functional programming, pp. 127–138, doi:10.1145/

2364527.2364546.

[17] Pietro Di Gianantonio, Furio Honsell & Gordon Plotkin (1995): Uncountable limits and the lambda calculus.

[18] Robert Dockins (2014): Formalized, effective domain theory in coq. In: International Conference on Interac-

tive Theorem Proving, Springer, pp. 209–225, doi:10.1007/978-3-319-08970-6_14.

[19] Dan Frumin, Herman Geuvers, Léon Gondelman & Niels van der Weide (2018): Finite sets in homotopy type

theory. In June Andronick & Amy P. Felty, editors: Proceedings of the 7th ACM SIGPLAN International

Conference on Certified Programs and Proofs, CPP 2018, Los Angeles, CA, USA, January 8-9, 2018, ACM,

pp. 201–214, doi:10.1145/3167085.

[20] Douglas J Howe (1989): Equality in lazy computation systems. In: LICS, 89, pp. 198–203, doi:10.1109/

LICS.1989.39174.

http://dx.doi.org/10.1007/978-3-030-44914-8_2
http://dx.doi.org/10.1145/504709.504712
http://dx.doi.org/10.1145/6490.6494
http://dx.doi.org/10.1145/2544174.2500597
http://dx.doi.org/10.1109/LICS.2017.8005097
http://www.jucs.org/jucs_23_1/higher_inductive_types_in
http://www.jucs.org/jucs_23_1/higher_inductive_types_in
http://dx.doi.org/10.1007/978-3-642-03359-9_10
http://dx.doi.org/10.2168/LMCS-8(4:1)2012
http://dx.doi.org/10.1007/978-3-319-08918-8_8
http://dx.doi.org/10.1007/978-3-319-08918-8_8
http://dx.doi.org/10.2168/LMCS-1(2:1)2005
http://dx.doi.org/10.1017/S0960129517000184
http://dx.doi.org/10.4230/LIPIcs.TYPES.2015.5
http://dx.doi.org/10.4230/LIPIcs.TYPES.2015.5
http://dx.doi.org/10.1109/LICS.2017.8005117
http://dx.doi.org/10.1145/2364527.2364546
http://dx.doi.org/10.1145/2364527.2364546
http://dx.doi.org/10.1007/978-3-319-08970-6_14
http://dx.doi.org/10.1145/3167085
http://dx.doi.org/10.1109/LICS.1989.39174
http://dx.doi.org/10.1109/LICS.1989.39174

216 Two Guarded Recursive Powerdomains for Applicative Simulation

[21] Martin Hyland & John Power (2006): Discrete Lawvere theories and computational effects. Theoretical

Computer Science 366(1-2), pp. 144–162, doi:10.1016/j.tcs.2006.07.007.

[22] Tom de Jong & Martín Hötzel Escardó (2021): Domain Theory in Constructive and Predicative Uni-

valent Foundations. In Christel Baier & Jean Goubault-Larrecq, editors: 29th EACSL Annual Confer-

ence on Computer Science Logic (CSL 2021), Leibniz International Proceedings in Informatics (LIPIcs)

183, Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp. 28:1–28:18, doi:10.4230/

LIPIcs.CSL.2021.28.

[23] Nicolai Kraus (2014): The General Universal Property of the Propositional Truncation. In Hugo Herbelin,

Pierre Letouzey & Matthieu Sozeau, editors: 20th International Conference on Types for Proofs and Pro-

grams, TYPES 2014, May 12-15, 2014, Paris, France, LIPIcs 39, Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, pp. 111–145, doi:10.4230/LIPIcs.TYPES.2014.111.

[24] Magnus Baunsgaard Kristensen, Rasmus Ejlers Møgelberg & Andrea Vezzosi (2021): Greatest HITs: Higher

inductive types in coinductive definitions via induction under clocks. arXiv:2102.01969.

[25] Søren B Lassen & Corin S Pitcher (1998): Similarity and bisimilarity for countable non-determinism and

higher-order functions. Electronic Notes in Theoretical Computer Science 10, pp. 246–266, doi:10.1016/

S1571-0661(05)80704-2.

[26] Søren Bøgh Lassen (1998): Relational reasoning about functions and nondeterminism. Ph.D. thesis, Univer-

sity of Aarhus.

[27] Bassel Mannaa, Rasmus Ejlers Møgelberg & Niccolò Veltri (2020): Ticking clocks as dependent right ad-

joints: Denotational semantics for clocked type theory. Logical Methods in Computer Science 16, doi:10.

23638/LMCS-16(4:17)2020.

[28] Rasmus Ejlers Møgelberg & Marco Paviotti (2016): Denotational semantics of recursive types in synthetic

guarded domain theory. In: LICS, doi:10.1145/2933575.2934516.

[29] Rasmus Ejlers Møgelberg & Niccolò Veltri (2019): Bisimulation as path type for guarded recursive types.

Proceedings of the ACM on Programming Languages 3(POPL), pp. 1–29, doi:10.1145/3290317.

[30] Eugenio Moggi (1991): Notions of computation and monads. Information and computation 93(1), pp. 55–92,

doi:10.1016/0890-5401(91)90052-4.

[31] C-HL Ong (1993): Non-determinism in a functional setting. In: [1993] Proceedings Eighth Annual IEEE

Symposium on Logic in Computer Science, IEEE, pp. 275–286, doi:10.1109/LICS.1993.287580.

[32] Marco Paviotti, Rasmus Ejlers Møgelberg & Lars Birkedal (2015): A model of PCF in guarded type theory.

Electronic Notes in Theoretical Computer Science 319, pp. 333–349, doi:10.1016/j.entcs.2015.12.

020.

[33] Andrew M Pitts (1996): Relational properties of domains. Information and computation 127(2), pp. 66–90,

doi:10.1006/inco.1996.0052.

[34] Andrew M Pitts (1997): A note on logical relations between semantics and syntax. Logic Journal of the IGPL

5(4), pp. 589–601, doi:10.1093/jigpal/5.4.589.

[35] Jan Schwinghammer, Aleš Bizjak & Lars Birkedal (2013): Step-indexed relational reasoning for countable

nondeterminism. Logical Methods in Computer Science 9, doi:10.2168/LMCS-9(4:4)2013.

[36] The Univalent Foundations Program (2013): Homotopy Type Theory: Univalent Foundations of Mathemat-

ics. https://homotopytypetheory.org/book, Institute for Advanced Study.

[37] Tarmo Uustalu (2015): Stateful runners of effectful computations. Electronic Notes in Theoretical Computer

Science 319, pp. 403–421, doi:10.1016/j.entcs.2015.12.024.

[38] Andrea Vezzosi, Anders Mörtberg & Andreas Abel (2019): Cubical Agda: a dependently typed programming

language with univalence and higher inductive types. Proceedings of the ACM on Programming Languages

3(ICFP), pp. 1–29, doi:10.1145/3341691.

http://dx.doi.org/10.1016/j.tcs.2006.07.007
http://dx.doi.org/10.4230/LIPIcs.CSL.2021.28
http://dx.doi.org/10.4230/LIPIcs.CSL.2021.28
http://dx.doi.org/10.4230/LIPIcs.TYPES.2014.111
https://arxiv.org/abs/2102.01969
http://dx.doi.org/10.1016/S1571-0661(05)80704-2
http://dx.doi.org/10.1016/S1571-0661(05)80704-2
http://dx.doi.org/10.23638/LMCS-16(4:17)2020
http://dx.doi.org/10.23638/LMCS-16(4:17)2020
http://dx.doi.org/10.1145/2933575.2934516
http://dx.doi.org/10.1145/3290317
http://dx.doi.org/10.1016/0890-5401(91)90052-4
http://dx.doi.org/10.1109/LICS.1993.287580
http://dx.doi.org/10.1016/j.entcs.2015.12.020
http://dx.doi.org/10.1016/j.entcs.2015.12.020
http://dx.doi.org/10.1006/inco.1996.0052
http://dx.doi.org/10.1093/jigpal/5.4.589
http://dx.doi.org/10.2168/LMCS-9(4:4)2013
https://homotopytypetheory.org/book
http://dx.doi.org/10.1016/j.entcs.2015.12.024
http://dx.doi.org/10.1145/3341691

R.E. Møgelberg & A. Vezzosi 217

[39] Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha, Benjamin C Pierce & Steve

Zdancewic (2019): Interaction trees: representing recursive and impure programs in Coq. Proceedings of

the ACM on Programming Languages 4(POPL), pp. 1–32, doi:10.1145/3371119.

http://dx.doi.org/10.1145/3371119

	1 Introduction
	1.1 Synthetic guarded domain theory
	1.2 Related work
	1.3 Overview

	2 Cubical type theory
	2.1 Finite Powerset

	3 Clocked cubical type theory
	4 A powerdomain for may-convergence
	5 Applicative may-simulation
	5.1 Applicative may-similarity
	5.2 Denotational semantics
	5.3 Relating syntax and semantics

	6 A powerdomain for must-convergence
	7 Applicative must-simulation
	7.1 Relating syntax and semantics

	8 Conclusion

