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We introduce saturation of nondeterministic tree automata, a technique that adds new transitions
to an automaton while preserving its language. We implemented our algorithm on minotaut - a
module of the tree automata library libvata that reduces the size of automata by merging states
and removing superfluous transitions - and we show how saturation can make subsequent merge
and transition-removal operations more effective. Thus we obtain a Ptime algorithm that reduces
the size of tree automata even more than before. Additionally, we explore how minotaut alone
can play an important role when performing hard operations like complementation, allowing to both
obtain smaller complement automata and lower computation times. We then show how saturation can
extend this contribution even further. We tested our algorithms on a large collection of automata from
applications of libvata in shape analysis, and on different classes of randomly generated automata.

1 Introduction

Tree automata are a generalization of word automata to non-linear words (i.e., trees) [10]. They have
many applications in model checking [3, 7], term rewriting [11] and related areas of formal software
verification, e.g., shape analysis [13]. Several software packages for manipulating tree automata have
been developed, e.g., Timbuk [4], Autowrite [11] and libvata [16] (on which other verification tools,
like Forester [17], are based).

For nondeterministic automata, many questions about their languages are computationally hard. The
language universality, equivalence and inclusion problems are PSPACE-complete for word automata and
EXPTIME-complete for tree automata [10]. A common approach to solving many instances of the inclu-
sion problem is via the computation of different notions of simulation preorders that at the same time
under-approximate language inclusion and are computable in polynomial time [12, 1]. These simulation
preorders thus offer a trade-off between computability and expressiveness. Efficient reduction algorithms
have been presented both for word automata [8] and for tree automata [2, 6], where language inclusion
is witnessed by the membership of a pair of states in a simulation preorder. In our paper, we focus
on Heavy(x,y) [6], a polynomial-time algorithm for reducing tree automata, in the sense of obtaining a
smaller automaton with the same language, though not necessarily with the absolute minimal number of
states possible (in general, as with word automata, there is no unique nondeterministic automaton with
the minimal possible number of states for a given language). Heavy(x,y) is based on an intricate combi-
nation of transition pruning and state quotienting techniques for tree automata, extending previous work
on the words case [8]. Transition pruning is based on the notion that certain transitions may be removed
from the automaton because ’better’ ones remain. The notion of ’better’ is given by comparing the states
at the endpoints of the two transitions w.r.t. suitable simulation preorders. The Heavy(x,y) algorithm
yields substantially smaller and sparser (i.e., using fewer transitions per state and per symbol) automata
than all previously known reduction techniques, and it is still fast enough to handle large instances.

We start by optimizing the computation of simulation preorders in Heavy(x,y). This is done by
identifying re-computations that can be skipped, which yields generally faster computation times. We
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then introduce the dual notion of transition pruning, in which transitions are added to the automaton
if ’better’ ones exist already. This technique is known as transition saturation and it was previously
defined for word automata [9]. As in transition pruning, this technique compares the source states of the
two transitions w.r.t. a simulation Rs on the states space, and the target states of the transitions w.r.t. a
simulation Rt . If saturating an automaton with Rs and Rt preserves the language, we say that S(Rs,Rt)
is good for saturation. We provide a summary of all S(Rs,Rt) we found to be or not to be good for
saturation.

The motivation behind saturation is that it may allow for new merging of states and transition removal
which were not possible by using Heavy alone. Thus saturating an automaton which has been reduced
with Heavy(x,y) and then reducing it again might result in an even smaller automaton. We perform an
experimental evaluation to measure how much smaller, on average, automata become by interleaving
reduction methods with transition saturation. Our results indicate that generally one obtains automata
with fewer states, but on some cases with more transitions, than the ones obtained by Heavy(x,y) alone.

In general, one wishes to reduce automata in order to make them more efficient to handle in subse-
quent computations. Thus, we present a second experimental evaluation showing that the complement
automata are much smaller and faster to compute when the automata have previously been reduced with
the techniques described above.

We implemented our algorithm as an extension of minotaut (source code available [5]), a module
of the tree automata library libvata [16] where the Heavy algorithm is provided. The experiments
described above were performed on a large collection of automata from applications of libvata in
shape analysis, as well as on different classes of randomly generated tree automata.

2 Preliminaries

Trees and tree automata. A ranked alphabet Σ is a set of symbols together with a function # : Σ→N0.
For σ ∈ Σ, #(σ) is called the rank of a. We define a node as a sequence in N∗. For a node v ∈ N∗, we
define the i-th child of v to be the node vi, for some i ∈ N.

Given a ranked alphabet Σ, a finite tree over Σ is defined as a partial mapping t : N∗→ Σ such that
for all v ∈ N∗ and i ∈ N, if vi ∈ dom(t) then (1) v ∈ dom(t), and (2) #(t(v))≥ i. Note that the number of
children of a node v may be smaller than #(t(v)). In this case we say that the node is open. Nodes which
have exactly #(t(v)) children are called closed. Nodes which do not have any children are called leaves.
A tree is closed if all its nodes are closed, otherwise it is open. By C(Σ) we denote the set of all closed
trees over Σ and by T(Σ) the set of all trees over Σ.

A finite nondeterministic top-down tree automaton (TDTA) is a quadruple A = (Σ,Q,δ , I) where
Q is a finite set of states, I ⊆ Q is a set of initial states, Σ is a ranked alphabet, and δ ⊆ Q×Σ×Q+

is the transition relation. A TDTA has an unique final state, which we represent by ψ . The transition
rules satisfy that if 〈q,σ ,ψ〉 ∈ δ then #(σ) = 0, and if 〈q,σ ,q1 . . .qn〉 ∈ δ (with n > 0) then #(σ) = n.
Informally, a run of A reads an input tree top-down from the root, branching into sub-runs on subtrees as
specified by the applied transition rules, and it accepts it if every branch ends in ψ . Formally, a run of
A over a tree t ∈ T(Σ) (or a t-run in A) is a partial mapping π : N∗→ Q such that v ∈ dom(π) iff either
v ∈ dom(t) or v = v′i where v′ ∈ dom(t) and i ≤ #(t(v′)). Further, for every v ∈ dom(t), there exists
either a) a rule 〈q,a,ψ〉 such that q = π(v) and σ = t(v), or b) a rule 〈q,σ ,q1 . . .qn〉 such that q = π(v),
σ = t(v), and qi = π(vi) for each i : 1≤ i≤ #(σ). A leaf of a run π on t is a node v ∈ dom(π) such that
vi ∈ dom(π) for no i ∈ N.

We write t π
=⇒ q to denote that π is a t-run of A such that π(ε) = q. A run π is accepting if t π

=⇒ q∈ I.
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The downward language of a state q in A is defined by DA(q) = {t ∈ C(Σ) | t π
=⇒ q, for some run π},

while the language of A is defined by L(A) =
⋃

q∈I DA(q). We sometimes write simply A to refer to its
language.

Downward and upward relations. The behaviour of states in TDTA can be compared by semantic
preorders (and their induced equivalences), based on the upward- or downward behaviour of the automa-
ton from these states.

Ordinary downward simulation on tree automata can be characterized by a game between two play-
ers, Spoiler and Duplicator. Given a pair of states (q,r), Spoiler wants to show that (q,r) is not contained
in the simulation preorder relation, while Duplicator has the opposite goal. Starting in the initial config-
uration (q,r), Spoiler chooses a transition q σ−→ 〈q1 . . .qn〉, where n = #(σ), and Duplicator must imitate
it stepwise by choosing a transition with the same symbol r σ−→ 〈r1 . . .rn〉. This yields n new configura-
tions (q1,r1), . . . ,(qn,rn) from which the game continues independently. If a player ever cannot make a
move then the other player wins. Duplicator wins every infinite game. Simulation holds iff Duplicator
wins.

A tree branches as one goes downward, but ‘joins in’ side branches as one goes upward. Therefore
a comparison of the upward behaviour of states depends also on the joining side branches as one goes
upward in the tree. Thus upward simulation is only defined relative to a given other relation R that
compares the downward behaviour of states ‘joining in’ from the sides [1]. One speaks, e.g., of upward
simulation of R. Thus in the ordinary upward simulation game, starting in the initial configuration (q,r),
Spoiler chooses a transition q′ σ−→〈q1 . . .qn〉, where q = qi for some i and n = #(σ), and Duplicator must
imitate it stepwise by choosing a transition with the same symbol r′ σ−→ 〈r1 . . .rn〉, where r = ri, and such
that 1) q jRr j, for every j 6= i, and 2) q ∈ I =⇒ r ∈ I. The game continues from the configuration (q′,r′),
and Spoiler wins if Duplicator ever cannot respond to a move, otherwise Duplicator wins.

While in ordinary downward simulation (resp., upward simulation w.r.t. R) Duplicator only knows
Spoiler’s very next step, in downward k-lookahead simulation (resp., upward k-lookahead simulation
w.r.t. R) Duplicator knows Spoiler’s next k steps in advance (unless Spoiler’s move ends in a deadlocked
state - i.e., a state with no transitions). In the case where Duplicator knows all steps of Spoiler in the
entire downward simulation game in advance (i.e., k = ∞), we talk of downward trace/language inclusion
(resp., upward trace inclusion w.r.t. R). As the parameter k increases, the k-lookahead simulation relation
becomes larger and thus approximates the respective trace inclusion relation better and better.

The downward/upward k-lookahead simulation preorder (denoted �k-dw/�k-up(R), or just vdw/vup

(R) in the ordinary case) is the set of all pairs (p,q) for which Duplicator has a winning strategy in the
respective game. For the downward/upward trace inclusion preorder we write ⊆dw/⊆up(R).

Downward/upward k-lookahead simulation is PTIME-computable for every fixed k and a good under-
approximation of the respective trace inclusion (which is EXPTIME-complete in the downward case
[10], and PSPACE-complete for R = id in the upward case).

Transition pruning and state quotienting. Given a TDTA A = (Σ,Q,δ , I), certain transitions may
be pruned without changing the language, because ‘better’ ones remain. Given a strict partial order
P⊆ δ ×δ on the set of transitions, the pruned automaton is defined as Prune(A,P) = (Σ,Q,δ ′, I) where
δ ′ = {(p,σ ,r) ∈ δ | @(p′,σ ,r′) ∈ δ .(p,σ ,r)P(p′,σ ,r′)}. I.e., if t Pt ′ then t may be pruned because t ′

is ‘better’ than t. Prune(A,P) is unique and transitions are removed in parallel without re-computing P.
Trivially, L(Prune(A,P))⊆ L(A). If L(Prune(A,P)) = L(A) also holds we say that P is good for pruning
(GFP).
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We obtain GFP relations by comparing the endpoints of transitions over the same symbol σ ∈ Σ.
Given two binary relations Ru and Rd on Q, we define P(Ru,Rd) = {(〈p,σ ,r1 · · ·rn〉,〈p′,σ ,r′1 · · ·r′n〉) |
p Ru p′ and (r1 · · ·rn) R̂d (r′1 · · ·r′n)}, where R̂d is a suitable lifting of Rd⊆Q×Q to R̂d⊆Qn×Qn: if Rd is
some strict partial order <d, then R̂d is a binary relation <̂d s.t. 1) ∀1≤i≤n.ri ≤d r′i, and 2) ∃1≤i≤n.ri <d r′i;
if Rd is a non-strict partial order ≤d, then only condition 1) applies. The relations Ru,Rd are chosen such
that P(Ru,Rd) ⊆ δ × δ is a strict partial order (i.e., of the two relations Ru and Rd, one must be a strict
partial order) that is GFP; see the algorithm Heavy below.

Another method for reducing the size of automata is state quotienting. Given a suitable equivalence
on the set of states, each equivalence class is collapsed into just one state. A preorder v induces an
equivalence relation ≡ :=v∩w. Given q ∈ Q, [q] denotes its equivalence class w.r.t. ≡. For P⊆ Q, [P]
denotes the set of equivalence classes [P] = {[p] | p ∈ P}. The quotient automaton is defined as A/≡ :=
(Σ, [Q],δA/≡, [I]), where δA/≡ = {〈[q],σ , [q1] . . . [qn]〉 | 〈q,σ ,q1 . . .qn〉 ∈ δA}. Trivially, L(A) ⊆ L(A/≡).
If L(A) = L(A/≡) also holds, ≡ is said to be good for quotienting (GFQ).

The Heavy algorithm. Here we describe Heavy(x,y) [6], a tree automata reduction algorithm based
on transition pruning and state quotienting. The parameters x,y≥ 1 describe the lookahead for the used
downward/upward lookahead simulations, respectively, where larger values yield better reduction but are
harder to compute. The algorithm is polynomial for fixed x,y, and doubly exponential in x (due to the
downward branching of the tree) and single exponential in y otherwise. Let Op(x,y) be the following
sequence of operations on tree automata, where RU stands for removing useless states (i.e., states that
cannot be reached from any initial state or from which no tree can be accepted): RU, quotienting with
�x-dw, pruning with P(id,≺x-dw), RU, quotienting with�y-up(id), pruning with P(≺y-up(id), id), pruning
with P(@up(id),�x-dw), RU, quotienting with �y-up(id), pruning with P(�y-up(vdw),@dw), RU. These
operations are language preserving, since the used relations are GFP/GFQ [6].

The algorithm Heavy(1,1) just iterates Op(1,1) until a fixpoint is reached. The general algorithm
Heavy(x,y) does not iterate Op(x,y), but uses a double loop: it iterates the sequence Heavy(1,1)Op(x,y)
until a fixpoint is reached.

The Heavy algorithm is provided in the minotaut library [5], making use of libvata’s efficient
computation of ordinary simulation (for a description of minotaut’s implementation of simulation with
larger lookaheads see Section 3). Heavy behaves well in practice, significantly reducing both automata
of program verification provenience and randomly generated automata [6].

3 Efficient Computation of Lookahead Simulations

We performed some optimizations on the computation of the maximal downward lookahead simulation
used in Heavy(x,y). In the following we describe the key aspects of the computation in terms of a
game between Spoiler and Duplicator. (Upward simulation is similar but simpler, since the tree branches
downward.)

Fixpoint iteration with incremental moves. We represent binary relations over Q as boolean matrices
of dimension |Q| × |Q|. Starting with a matrix W in which all entries are set to TRUE, the algorithm
consists of a downward refinement loop of W that converges to the maximal downward k-lookahead
simulation. In each iteration of the refinement loop, for each pair p,q where W [p][q] is still TRUE:

• Spoiler tries an attack atk consisting of a possible move from p of some depth d ≤ k. Each such
attack is built incrementally, for d = 1,2, . . . ,k, in order to give Duplicator a chance to respond
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already to a prefix of atk of depth < k.

• Duplicator then attempts to defend against the given attack of depth d, by finding a matching move
def from q by the same symbols s.t. every leaf-state in def is in relation W with the corresponding
state in atk. (Duplicator’s search is done in depth-first mode.) If successful, Duplicator declares
victory against this particular (prefix of an) attack and Spoiler tries a new one, since extending the
current one to a higher depth is pointless. If unsuccessful and d < k, Spoiler builds an attack of the
next depth level d +1, by extending atk with one new transition from each of its leaf-states. The
extra information might enable Duplicator to find a successful defence then.

• Duplicator fails if he could not defend against an attack atk of the maximal depth, either where atk
has depth d = k or d < k but atk cannot be extended any more due to all its leaf-states having no
outgoing transitions.

• If Duplicator could defend against every attack (or some prefix of it) by Spoiler then W [p][q] stays
true, for now.

• In the worst case, for each Spoiler’s attack of depth d, Duplicator must search through all defences
of depth up-to d, but often Duplicator wins sooner.

• Similarly, in the worst case, Spoiler needs to try all possible attacks of depth k, but often Duplicator
already wins against prefixes of some depth d < k.

Since the outcome of a local game depends on the values of W , the refinement loop might converge
only after several iterations. The reached fixpoint represents a relation that is generally not transitive
(for k > 1), but its transitive closure is the required maximal downward k-lookahead simulation preorder
�k-dw.

An Optimization Based on Pre-Refinement. Following an approach implemented in Rabit [15] for
word automata, we under-approximate non-simulation as follows. If there exists a tree of bounded
depth d that can be read from state p but not from state q, then the pair (p,q) cannot be in k-lookahead
simulation for any k. The pre-refinement step iterates through all pairs (p,q) and sets W [p][q] to false if
such a tree is found witnessing non-simulation. Our experiments show that, for most automata samples,
running a pre-refinement with some modest depth d suffices to speed up the k-lookahead downward
simulation computation.

We now present an optimization that allows to compute lookahead simulation faster. The idea is
that attacks which are good (i.e., successful) or bad (i.e., unsuccessful) may be remembered to skip
unnecessary re-computations.

Semi-global caching of Spoiler’s attacks. An attack is seen as good or bad within the scope of the
whole game. Consider the game configuration (p1,q1) in Figure 1. Although q1 can read all trees of
depth 3 that p1 can read, there are good attacks from p2 both against q2 and against q3. Duplicator will
find and store these if, when defending against the attack ac(e,e), he first tries the transition to q2 (which
can only read d), or when defending against ad(e,e) he first tries the transition to q3 (which can only
read c). After trying possibly all attempts, Duplicator is able to defend against the attack and Spoiler now
tries the b-transition from p1 to p2. However, all possible sub-attacks are now the same, which makes
Duplicator announce defeat on them immediately without any exploration.

In Appendix B two different ways of performing this caching of Spoiler’s attacks can be found. The
three versions present a trade-off between expressiveness and space required to encode attacks. Our tests
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indicate that the semi-global version indeed speeds up the computation on automata with high transition
overlaps (i.e., where many states are shared by different transitions).
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Figure 1: For W = {(p5,q7),(p5,q8),(p7,q8),(p7,q12)}, all versions of the optimization allow some
attacks to be skipped when computing the 3-lookahead downward simulation.

4 Saturation of Tree Automata

In Section 2, we described the transition pruning technique, which removes a transition if a ’better’ one
remains. In this section, we introduce its dual notion, saturation, which adds a transition if a ’better’
one exists already. The motivation behind saturation is to pave the way for further reductions when the
Heavy algorithm has reached a fixpoint on the automaton (see Section 5). Saturation has been defined
for the words case before [9], here we apply it to tree automata.

Definition 4.1. Let A = (Σ,Q,δ , I) be a TDTA, ∆ = Q×Σ×Q+ and S⊆ ∆×∆ a reflexive binary relation
on ∆. The S-saturated automaton is defined as Sat(A,S) := (Σ,Q,δS, I), where

δS = {〈p′,a,q′1 . . .q′#(a)〉∈∆ | ∃〈p,a,q1 . . .q#(a)〉∈δ · 〈p′,a,q′1 . . .q′#(a)〉S 〈p,a,q1 . . .q#(a)〉}.

Since S is reflexive, any transition in the initial automaton is preserved and so A ⊆ Sat(A,S). When
the converse inclusion also holds, we say that S is good for saturation (GFS). Note that the GFS property
is downward closed in the space of reflexive relations, i.e., if R is GFS and id⊆R′⊆R, then R′ too is
GFS. (or if R′ is not GFS, then R too is not GFS).

Given two binary relations Rs and Rt on Q, we define S(Rs,Rt) = {(〈p,σ ,r1 · · ·rn〉,〈p′,σ ,r′1 · · ·r′n〉) |
pRs p′ and (r1 · · ·rn)R̂t(r′1 · · ·r′n)}, where R̂t is the standard lifting of Rt ⊆ Q×Q to R̂t ⊆ Qn×Qn. Infor-
mally, a transition t ′ is added to the automaton if there exists already a transition t s.t. its source state is
Rs-larger than the source state of t ′, and its target states are R̂t-larger than the target states of t ′. The-
orem 1 below proves that S(⊇dw,⊆dw) is GFS. Since the GFS property is downward closed, it follows
that S(⊇dw,vdw), S(⊇dw, id), S(wdw,⊆dw), S(wdw,wdw), S(wdw, id), S(id,⊆dw) and S(id,vdw) too are
GFS. In Theorem 2 (see Appendix A for a proof), we prove that S(⊆up(id),⊇up(id)) is GFS. Thus it fol-
lows that S(⊆up(id),wup(id)), S(⊆up(id), id), S(vup(id),⊇up(id)), S(vup(id),wup(id)), S(vup(id), id),
S(id,⊇up(id)) and S(id,wup(id)) too are GFS.

Theorem 1. S(⊇dw,⊆dw) is GFS.

Proof. Let A be a TDTA and AS = Sat(A,S(⊇dw,⊆dw)). We will use induction on n≥ 1 to show that for
every tree t of height n and every run πS of AS s.t. t

πS=⇒ p, for some state p, there exists a run π of A s.t.
t π
=⇒ p. This shows, in particular, that AS ⊆ A.
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In the base case n = 1, t is a leaf-node σ , for some σ ∈ Σ. Thus for every run πS of AS such that
t

πS=⇒ p, for some state p, there exists 〈p,σ ,ψ〉 ∈ δS. By the definition of δS, there exists 〈q,σ ,ψ〉 ∈ δ

s.t. q⊆dw p. Consequently, there exists a run π in A s.t. t π
=⇒ q. By q⊆dw p, there also exists a run π ′ of

A s.t. t π ′
=⇒ p.

For the induction step, let t be a tree of height n > 1 and a its root symbol. Thus for every run πS

of AS s.t. t
πS=⇒ p, for some state p, there exist 〈p,a,q1 . . .q#(a)〉 ∈ δS and, for each i : (1 ≤ i ≤ #(a)), a

run πSi of AS s.t. ti
πSi=⇒ qi. By the definition of δS, there exists 〈p′,a,q′1 . . .q′#(a)〉 ∈ δ s.t. p′ ⊆dw p and,

for every i : (1 ≤ i ≤ #(a)), q′i ⊇dw qi. Applying the induction hypothesis to each of the subtrees ti, we
know that for every ti-run πSi of AS ending in qi there is also a ti-run πi of A ending in qi. And since

q′i ⊇dw qi for every i : (1≤ i≤ #(a)), for each ti there exists a run π ′i of A s.t. ti
π ′i=⇒ q′i. Since there exists

〈p′,a,q′1 . . .q′#(a)〉 ∈ δ , we obtain that there is a run π ′′ of A s.t. t π ′′
=⇒ p′. From p′ ⊆dw p, it follows that

there is also a run π ′′′ of A s.t. t π ′′′
=⇒ p.

Theorem 2. S(⊆up(id),⊇up(id)) is GFS.

The counterexample in Fig. 2 shows that S(≡dw,≡up(R)) is not GFS for any relation R⊆Q×Q. The
remaining counterexamples can be found in Appendix A:

• Figure 8 shows that S(id,≡up(≡dw)) is not GFS.

• Figure 9 shows that S(≡up(≡dw), id) is not GFS.

• Figure 10 is inspired by an example for a similar result for linear trees (i.e., words) [9]. It shows
that S(≡up(R),≡dw) is not GFS for any relation R⊆ Q×Q.

≡u
p(R)

≡ dw

a

a

b
b

ψ
ψ

b

b

a

b

a

Figure 2: S(≡dw,≡up(R)) is not GFS for any relation R ⊆ Q×Q: if we add the dotted transition, the
linear tree aaab is now accepted. The symbol b has rank 0 and a rank 1.

In Figure 3 we present a table that summarizes these results. The negative results follow from the
counterexamples given and the fact that the GFS property is downward closed.

5 Experimental Results

As we saw in Section 2, the automaton computed by Heavy corresponds to the local minimum of the
sequence of reduction techniques used, i.e., no smaller automaton can be reached by applying that same
sequence of steps again. The motivation behind saturation is to change this scenario, since modifying
an automaton while preserving its language may leave it in a state where a different local minimum is
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S id vdw ⊆dw wup(id) ⊇up(id) wup(wdw) ⊇up(⊇dw)

id X X X X X × ×
wdw X X X × × × ×
⊇dw X X X × × × ×
vup(id) X × × X X × ×
⊆up(id) X × × X X × ×
vup(vdw) × × × × × × ×
⊆up(⊆dw) × × × × × × ×

Figure 3: GFS relations for tree automata. Relations which are GFS are marked with X and those which
are not are marked with ×.

reachable by applying Heavy again. Since saturation adds transitions, in the end an automaton will either
have 1) the same number of states and the same or larger number of transitions, 2) the same number of
states but fewer transitions, or 3) fewer states. We say that scenarios 2) and 3) correspond to an automaton
’better’ than the initial one, and scenario 1) to a ’worse’ one.

Our experiments on test automata consisted of first reducing them with Heavy and then alternating
between saturation and reduction successively until either a fixpoint is reached or the automata becomes
’worse’. Just like in the case of Heavy, there is no ideal order to apply the saturation/reduction techniques,
so we tested multiple possibilities, from which we highlight two versions, Sat1(x,y) and Sat2(x,y), where
x,y≥ 1 are the lookaheads used for computing k-downward and k-upward simulations, respectively (see
Figure 4). In both Sat1 and Sat2, we chose an order for the operations that ensures that the effect of
the saturations is not necessarily cancelled by the reductions immediately after. Intuitively, Sat1 starts
by applying both saturations together, in an attempt to obtain a highly dense automaton where more
states may be quotiented. Sat2, on the other hand, prevents the automaton from becoming too dense, by
interleaving each downward saturation with the upward reductions it may allow. Moreover, each upward
reduction not only may allow for new downward saturations to be performed, but it may also have
its effect cancelled if the upward saturation is performed immediately after. Thus, in Sat2 downward
saturation and upward reductions are iterated in an inner loop before performing any upward saturation.
Both versions return the ’best’ automaton ever encountered.

We tested the different saturation-based reduction methods on a set of 14,498 automata (57 states and
266 transitions on avg.) from the shape analysis tool Forester [17]. We can see (Figure 5) that, on average,
the two versions produced automata containing both fewer states and, especially, fewer transitions than
Heavy alone. However, this came at the expense of longer running times.

The results that follow focus on the advantage of reducing automata when computing their com-
plement (for which we use libvata’s implementation of the difference algorithm [14]). We started by
testing on a subset of the Forester sample (Fig. 6 and Fig. 11 in App. C), and we compared direct com-
plementation with reducing automata (with Heavy(1,1) optionally followed by Sat2(1,1)) prior to the
complementation and with a final reduction using Heavy(1,1). Due to memory reasons, direct comple-
mentation was not feasible for large automata. Thus the sample used is the subset of Forester containing
all automata with at most 14 states, in a total of 760 automata. As we can see, all reduction methods
yielded significantly smaller complement automata than direct complementation, on average, while run-
ning either with similar times or substantially faster. This difference was particularly notorious when the
automata were first reduced with both Heavy(1,1) and Sat2(1,1), which, compared to direct complemen-
tation, resulted in automata with fewer states (18 vs 27, see Figure 11 in App. C) and fewer transitions
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Sat1(x,y)
Loop:

Sat. w/ S(�x-dw,�x-dw)
Sat. w/ S(�y-up(id),�y-up(id))
Quot. w/ �y-up(id)
Prune w/ P(@up(id),�x-dw)
Quot. w/ �y-up(id)
Prune w/ P(�y-up(vdw),@dw)
Run Heavy(x,y)

Sat2(x,y)
Loop:

Loop:
Sat. w/ S(�x-dw,�x-dw)
Quot. w/ �y-up(id)
Prune w/ P(≺y-up(id), id)
Prune w/ P(@up(id),�x-dw)
Quot. w/ �y-up(id)
Prune w/ P(�y-up(vdw),@dw)

Sat. w/ S(�y-up(id),�y-up(id))
Run Heavy(x,y)

Figure 4: Two saturation-based reduction methods. Both versions return the ’best’ automaton ever en-
countered.
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Figure 5: Reduction of Forester automata using saturation methods. The left chart gives the avg. number
of states and transitions that remained (in percentage) after application of each method; the right chart
compares their running times. Heavy(1,1) followed by Sat2(1,1) reduced the automata the most, but it
was also the slowest method.
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(649 vs 1750) and at much lower times (0.02s vs 4.86s). Applying Heavy(1,1) in the end reduced the
automata even more, with a very low time cost.
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Figure 6: Reducing and complementing Forester automata with at most 14 states. The complement
automata have fewer transitions and are faster to compute if the complementation is preceded by applying
Heavy(1,1) and Sat2(1,1) - H(1,1)+S2(1,1)+C - or just Heavy(1,1) - H(1,1)+C. Applying Heavy(1,1) in
the end reduces even more. We include the initial number of transitions (I) for comparison purposes.

The next experiments were performed on sets of randomly generated tree automata, according to a
generalization of the Tabakov-Vardi model of random word automata [18]. Given parameters n,s, td
(transition density) and ad (acceptance density), it generates tree automata with n states, s symbols (each
of rank 2), n∗ td randomly assigned transitions for each symbol, and n∗ad randomly assigned leaf rules.
Figure 7 shows the results of complementing automata with n = 4 and varying td. While the automata
tested are very small, for some values of td their complements are quite complex (more than 400 tran-
sitions on average). As we can see, applying Heavy not only before but also after the complementation
on average yielded significantly smaller automata, especially in terms of transitions, while running with
similar times to direct complementation (all average times were below 0.1s). Moreover, the saturation
method achieved reductions in the states space which were not possible with Heavy alone. This came
at the cost of higher running times and also of returning automata with more transitions - but with still
far less transitions then those obtained with direct complementation. Note that for very dense automata
(td ≥ 4.0), the average size of the complement became particularly small. This is because more than half
of the automata generated with such td were universal, and thus their complements were empty.

We also tested our algorithms on random automata with 7 states (Figure 13 in App. C), whose com-
plement automata can have, on avg., up to 100 states and more than 30,000 transitions. As above,
reducing automata with Heavy both before and after the complementation returned automata with sig-
nificantly fewer transitions than direct complementation (3,000 vs 35,000 in some cases), but the former
was clearly slower (avg. times up to 90s) than the latter (avg. times up to 2.5s) on the automata re-
gion where the difference between the two methods was most drastic. Still, for highly dense automata
(td ≥ 4), direct complementation was responsible for the highest times recorded (avg. times between
135s and 2170s). Due to the size of the complement automata, the saturation methods revealed to be too
slow to be viable in this case.

All experiments were run on an Intel Core i5 @ 3.20GHz x 4 machine with 8GB of RAM using a
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Figure 7: Reducing and complementing Tabakov-Vardi random tree automata with 4 states. Each
data point is the average of 300 automata. In general, applying Heavy(1,1) before the comple-
mentation (H(1,1)+C) yielded automata with fewer states, on avg., than direct complementation (C).
When Heavy(1,1) is also used after the complementation, the difference is even more significant -
H(1,1)+C+H(1,1) - and even more when Sat2(1,1) is used - H(1,1)+C+H(1,1)+S2(1,1).

64-bit version of Ubuntu 16.04.
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A Proofs and Counterexamples

For Lemma A.1 and Theorem 2 below we make use of the following auxiliary definitions. For every tree
t ∈ T(Σ) and every t-run π , let leveli(π) be the tuple of states that π visits at depth i in the tree, read
from left to right. Formally, let (v1, . . . ,vn), with each v j ∈ Ni, be the set of all tree positions of depth i
s.t. each v j ∈ dom(π), in lexicographically increasing order. Then leveli(π) = (π(v1), . . . ,π(vn)) ∈ Qn.
We say that st ∈ Q∗ is a subtuple of leveli(π), and write st ≤ leveli(π), if all states in st also appear in
leveli(π) and in the same order. By lifting preorders on Q to preorders on Qn, we can compare tuples of
states w.r.t. ⊆up(id).

Lemma A.1. Let A be a TDTA and (p1, . . . , pn) and (q1, . . . ,qn) two tuples of states of A such that
(p1, . . . , pn) ⊆up (id)(q1, . . . ,qn). Then, for every t ∈ T(Σ), every accepting t-run π and every tuple
(v1, . . . ,vn) of some leaves of π of the same depth i (i.e., (v1, . . . ,vn)≤ leveli(π)) s.t. (π(v1), . . . ,π(vn)) =
(p1, . . . , pn), there exists an accepting t-run π ′ of A such that (π ′(v1), . . . ,π

′(vn)) = (q1, . . . ,qn) and
π ′(v) = π(v) for every leaf v of π ′ other than v1, . . . ,vn.

Proof. Let π be an accepting t-run of A s.t. (π(v1), . . . ,π(vn)) = (p1, . . . , pn). We say that an accepting
t-run π ′′ is i-good iff i) for every node v j of π ′′, with j≤ i, π ′′(v j) = q j, and ii) for every v j, with i< j≤ n,
π ′′(v j) = p j. We will show, by induction on i, that for every i there exists an accepting t-run π ′′′ which is
i-good and s.t. π ′′′(v) = π(v) for every leaf v of π ′′′ other than v1, . . . ,vn. For the particular case of i = n
this proves the lemma.

The base case i = 0 is trivial, since the accepting t-run π is 0-good itself.
For the induction step, let π1 be an accepting (i− 1)-good t-run of A. If i > n, the lemma holds

trivially. Otherwise, we have π1(vi) = pi ⊆up(id) qi and thus there exists an accepting t-run π2 of A s.t.
π2(vi) = qi. And since the upward trace inclusion is parameterized by id, it follows, in particular, that
for every leaf v other than vi, π2(v) = π1(v). Thus, π2 is an accepting i-good t-run of A. Moreover, we
have that, on leaves other than v1, . . . ,vn, the run π2 coincides with π1 and consequently, by the induction
hypothesis, with π .

Theorem 2 S(⊆up(id),⊇up(id)) is GFS.

Proof. Let A be a TDTA and AS = Sat(A,S(⊆up(id),⊇up(id))). If t̂ ∈ AS, then there exists an accepting
t̂-run π̂ of AS. We will show that there exists an accepting t̂-run of A, which proves AS ⊆ A.

Let us first define an auxiliary notion. For every t ∈ T(Σ) and every t-run π , we say that π is i-good
iff it does not contain any transition of δS− δ from any position v ∈ N∗ s.t. |v| < i, i.e., all transitions
used in the first i levels of the tree are of A.

Next, we will show, by induction on i, that for every i there exists an accepting i-good t̂-run π̂ ′ of AS

s.t. leveli(π̂ ′) = leveli(π̂). For i equal to the height of t̂, this implies that there exists an accepting t̂-run
of A.

The base case i = 0 is trivial, since π̂ is 0-good itself.
For the induction step, let us first define some auxiliary notions. For every t ∈T(Σ) and every t-run π ,

we say that leveli′(π) is j-good iff π does not contain a transition of δS−δ from a state π(vk), s.t. k ≤ j
and π(vk) is the k-th state of leveli′(π). We now say that an accepting t̂-run π̂ ′′ of AS is (i−1, j)-good iff
i) it is (i−1)-good, ii) leveli−1(π̂

′′) is j-good, and iii) leveli(π̂ ′′) = leveli(π̂).
We will now show, by induction on j, that for every j there exists an accepting (i−1, j)-good t̂-run

of AS. Since trees are finitely-branching, we have that for a sufficiently large j there is an accepting t̂-run
π̂ ′′′ of AS which is i-good. And since, in particular, leveli(π̂ ′′′) = leveli(π̂), this will conclude the outer
induction.
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For the base case (i− 1,0), we know by the hypothesis of the outer induction that there exists an
accepting (i− 1)-good t̂-run π1 s.t. leveli−1(π1) = leveli−1(π̂). Then the t̂-run π2 which, on the levels
below i, coincides with π1 and, on the levels from i up, coincides with π̂ too is accepting and (i−1)-good.
Thus π2 is (i−1,0)-good.

For the induction step, let π1 be an accepting (i−1, j−1)-good t̂-run of AS, and let π ′1 be the prefix
of π1 which only uses transitions of A. π ′1 is thus an accepting run of A over some prefix tree t̂ ′ of t̂. Let
v j be the node of t̂ s.t. π ′1(v j) is the j-th state of leveli−1(π

′
1) and σ = t̂(v j) a symbol of rank r.

If r = 0, then v j is a leaf of t̂ and so there exists a transition 〈π ′1(v j),σ ,ψ〉 in AS. By the definition of
δS, there exists a transition 〈p,σ ,ψ〉 in A s.t. π ′1(v j)⊆up(id) p. Thus there exists an accepting t̂ ′-run π2 of
A s.t. π2(v j) = p and for any leaf v of π2 other than v j, π2(v) = π ′1(v). We now obtain a run over t̂ again
by extending π2 downwards according to π1, i.e., π2(vv′) := π1(vv′), for every leaf v of π2 other than v j

and for every v′ ∈N∗. It follows that leveli(π2) = leveli(π1) = leveli(π̂). π2 is clearly a (i−1)-good t̂-run
of AS and leveli−1(π2) is j-good. Thus π2 is an accepting (i−1, j)-good t̂-run of AS.

If r > 0, then v j is not a leaf and so there exists a transition 〈π ′1(v j),σ ,π1(v j1) . . .π1(v jr)〉 in AS. By
the definition of δS, there exists a transition trans: 〈p,σ ,q1 . . .qr〉 in A s.t. π ′1(v j)⊆up(id)p and
1) (q1 . . .qr)⊆up(id)(π1(v j1) . . .π1(v jr)). From π ′1(v j)⊆up(id) p we have that there exists an accepting
t̂ ′-run π2 of A s.t. π2(v j) = p and π2(v) = π ′1(v), for every leaf v of π2 other than v j. Extending π2 with
trans we obtain an accepting run of A s.t. π2(v jk) := qk for each child v jk of v j. Applying Lemma A.1 to
1), we obtain that there exists an accepting run π3 of A over the same prefix tree of t̂ as π2 s.t. 2) π3(v jk) =
π1(v jk) for each child v jk of v j, and π3(v) = π2(v) = π1(v) for every leaf v of π3 other than v j1, . . . ,v jr.
We now obtain a run over t̂ again by extending π3 downwards according to π1, i.e., 3) π3(vv′) := π1(vv′),
for every leaf v of π3 other than v j1, · · · ,v jr and for every v′ ∈ N∗. π3 is clearly a (i− 1)-good t̂-run of
AS and leveli−1(π3) is j-good. From 2) and 3), we obtain that leveli(π3) = leveli(π1) = leveli(π̂). Thus
π3 is an accepting (i−1, j)-good t̂-run of AS.
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Figure 8: S(id,≡up(≡dw)) is not GFS: if we add the dotted transitions, the tree a(b(c),b(c)) is now
accepted. The symbols c, b and a have ranks 0, 1 and 2, resp.
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Figure 9: S(≡up(≡dw), id) is not GFS: if we add the dotted transitions, the tree a(b,b) is now accepted.
The symbols b and a have ranks 0 and 1, respectively.
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Figure 10: S(≡up(R),≡dw) is not GFS for any relation R⊆Q×Q (example adapted from [9]): if we add
the dotted transition, the linear tree aac is now accepted. The symbol c has rank 0 and a has rank 1.
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B Variants of the Optimization to the Lookahead Simulation Game

In Section 3 we presented an optimization to the computation of the k-lookahead downward simulation
based on the caching of attacks in the simulation game between Spoiler and Duplicator. In this appendix
we present two alternative versions to this optimization, where we change the scope of the attacks cached.

Local caching of Spoiler’s attacks. Whenever Spoiler uses a transition t in an attack, Duplicator can
memorize which states in the automaton are able to defend against the target states of t. In Fig. 1 from
Section 3, in a round of the simulation game from (p2,q2), Spoiler is attempting the attack d(e,e) leading
to p5, p7. Duplicator tries responding with a d-transition to (q4,q5), and since there is a e-transition from
q4 to q7 and p5W q7, Duplicator caches the information that, against q4, the first sub-attack is a bad one.
However, q5 can only read f and so Duplicator will have to try a different defence. Duplicator now tries
the d-transition leading to q4 and q6 instead. Thanks to the information recorded, Duplicator now only
needs to find a defence from q6 against p6, which exists since q6 goes to q8 by e and p5W q8, and so
Duplicator declares victory against this particular attack.

Conversely, if the game configuration was (p2,q3), after trying to defend against the attack c(e,e)
using the c-transition to q9 and q10, Duplicator could reuse the information that the sub-attack e is good
against q9 when trying the c-transition to q9 and q11.

Global caching of Spoiler’s attacks. Here we expand the scope to the entire W -refinement. E.g.,
the good attacks from p2 against q2 or against q3 can be recalled even when a game from a different
configuration, say, (p8,q1) is played. However, the information about the bad attack from, say, p3
against q4 cannot be used outside of the local game in which it was saved, since Duplicator could only
defend against it based on the state of W at the time. Note the asymmetry between good and bad attacks:
good attacks remain good for the rest of the entire computation, but bad attacks may become good after
W changes.
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C More Charts from the Experimental Results
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Figure 11: Reducing and complementing Forester automata with at most 14 states. The complement
automata have fewer states if the complementation is preceded by applying Heavy(1,1) and Sat2(1,1) -
H(1,1)+S2(1,1)+C - or just Heavy(1,1) - H(1,1)+C. Applying Heavy(1,1) in the end reduces even more.
We include the initial number of states (I) for comparison purposes.
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Figure 12: Reducing and complementing Tabakov-Vardi random tree automata with 4 states. Each
data point is the average of 300 automata. In general, applying Heavy(1,1) before the complementation
(H(1,1)+C) yielded automata with fewer states and transitions, on average, than direct complementation
(C). When Heavy is used both before and after the complementation, the difference is even more signifi-
cant: H(1,1)+C+H(1,1) produced automata with less than 1/3 of the transitions of C for nearly all values
of td. Running Heavy followed by Sat2 after the complementation (H(1,1)+C+H(1,1)+S2(1,1)) offered
a trade-off between reduction in the states space and in the number of transitions (as well as in time).
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Figure 13: Reducing and complementing Tabakov-Vardi random tree automata with 7 states. Each
data point is the average of 300 automata. In general, applying Heavy(1,1) before the complementation
(H(1,1)+C) yields smaller automata than direct complementation (C), on average. When Heavy is used
both before and after the complementation (H(1,1)+C+H(1,1)), the difference is even more significant:
the automata produced by H(1,1)+C+H(1,1) had between 4 and 24 times less transitions than those
yielded by C, but the greater reductions took longer to compute. C still took the longest times recorded,
for highly dense automata.
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