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A universal deterministic inhibitor Petri net with 14 places, 29 transitions and 138 arcs was con-
structed via simulation of Neary and Woods’ weakly universal Turing machine with 2 states and 4
symbols; the total time complexity is exponential in the running time of their weak machine. To
simulate the blank words of the weakly universal Turing machine, a couple of dedicated transitions
insert their codes when reaching edges of the working zone. To complete a chain of a given Petri
net encoding to be executed by the universal Petri net, a translation of a bi-tag system into a Turing
machine was constructed. The constructed Petri net is universal in the standard sense; a weaker form
of universality for Petri nets was not introduced in this work.

1 Introduction

Standard universal Turing machines (TM) simulate an arbitrary given TM using tape with all cells, except
a finite working zone, filled with infinite repetition of a blank symbol (λ ). In weakly universal Turing
machines, an infinite repetition of definite blank words is written: wl to the left and wr to the right of the
working zone. Such a modification leads to obtaining smaller universal machines.

Neary and Woods [1, 2] improved on the work of Cook [6], to give the smallest weakly universal
Turing machines (WUTM) with state-symbol pairs of (2,4), (3,3), and (6,2); moreover, these machines
work in polynomial time.

A universal Petri net (UPN) was constructed in [3] using direct encoding of an arbitrary Petri net
by a definite number of nonnegative integer variables which are loaded as a marking of definite places
into the universal net. To obtain the small universal Petri net with 14 places and 42 transitions [4], small
universal TM of Neary and Woods (6,4) [5] was simulated by deterministic inhibitor Petri net (DIPN).
Besides, for Petri net encoding, a translation of DIPN into bi-tag system was constructed.

In the present paper, universal DIPN with 14 places and 29 transitions is presented as a result of
WUTM(2,4) [1, 2] simulation by DIPN. The simulation of weakness in TMs required an amendment
of the approach used in [4] in order to produce the codes of the blank words during the simulation.
Moreover, for a given DIPN encoding to be executed by simulated WUTM(2,4), a translation from bi-
tag system to TM was constructed.

Constructed in the present paper universal Petri net is universal in the standard sense; a weaker from
of universality for Petri nets was not introduced in this work.

2 Basic Notations and Definitions

2.1 A deterministic inhibitor Petri net

A deterministic inhibitor Petri net (DIPN) [4] is a bipartite directed graph supplied with a dynamic
process that has deterministic behavior. DIPN is denoted as a quadruple N = (P,T,F,µ0) , where P
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and T are disjoint sets of vertices called places and transitions respectively, the mapping F defines arcs
between vertices, and the mapping µ0 represents the initial state (marking). The transition choice order
is defined by their enumeration T = {t1, t2, ..., tn},n = |T |; places are also supposed been enumerated
P = {p1, p2, ..., pm},m = |P|, and the places’ marking is represented as a vector µ,µ j = µ(p j) with
integer index j,0 < j ≤ m, where µ j is a nonnegative integer equal to the number of tokens situated in
place p j.

The mapping F : (P×T )→{0,w−,−1}∪ (T ×P)→{0,w+} defines arcs, where w− and w+ are
positive integers, a zero value corresponds to the arc absence, a positive value – to the regular arc with
indicated multiplicity, and a minus unit – to the inhibitor arc. As it was mentioned in [4], Petri nets with
multiple arcs are easily converted to ordinary Petri nets with regular arcs’ multiplicity equal to unit.

In graphical form, places are drawn as circles and transitions as rectangles. An inhibitor arc is repre-
sented by a small hollow circle at its end, and a small solid circle (read arc) represents the abbreviation
of a loop. Regular arc’s multiplicity greater than unit is inscribed on it and place’s marking greater than
zero is written inside it.

The behavior (dynamics) of a DIPN is described by the state equation of inhibitor Petri net [3]
supplemented by the condition of the firable transition choice having the minimal number. The present
work considers the behavior as a result of sequential applying the following transition firing rule:

1. net transitions ti are checked sequentially with integer index i ranging from 1 to n;

2. transition ti is firable iff each place p j with a regular arc directed to transition ti contains at least
w−j,i tokens, and each place with an inhibitor arc directed to transition ti does not contain tokens
(∀ j : µ j ≥ w−j,i when F(p j, ti) = w−j,i and µ j = 0 when F(p j, ti) =−1);

3. the first firable transition fires (with the minimal value of index i);

4. when transition ti fires, it

(a) extracts w−j,i tokens from each its input place (for regular arcs) p j : F(p j, ti)≥ w−j,i;

(b) puts w+
k,i tokens into each its output place pk : F(ti, pk) = w+

k,i,w
+
k,i > 0;

5. the net halts if firable transitions are absent.

Step-by-step firing transitions consumes and produces tokens within their incidental places that looks
rather like moving tokens between places of a Petri net. In a classical Petri net, an arbitrary firable tran-
sition is chosen to fire at a step that induces a nondeterministic character of their behavior. Even general
nets with priorities are nondeterministic since equal priorities of firable transitions may occur. The behav-
ior of a DIPN is restricted by the firing the firable transition with the minimal number. Thus, transitions
numbers are interpreted as their priorities which are different inducing the deterministic character of a
DIPN behavior.

Petri nets are considered as a graphical canvas for concurrent programs, where a paradigm of com-
putation is not restricted by an instructions sequence or a set of sequences, promising hyper-parallel
implementations.

2.2 Turing machines

A Turing machine (TM) is denoted as M = (Ω,Σ, f ,us,uh), where Ω is the set of internal states, Σ is the
tape alphabet, f is the transition function, us is the start state, uh is the halt state.

A Turing machine consists of the tape infinite in both directions divided in cells and the control head
that moves along the tape, reads and replaces symbols in cells. An instruction of a Turing machine is
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a quintuple (x,u,x′,v,u′), where x is the current cell symbol, u is the current internal state, x′ is a new
symbol that replaces x in the current cell, v denote one of the head moves either to the left (le f t) or to
the right (right), or stand still (stay), u′ is a new internal state. Usually, instructions are represented by a
table (matrix) with keys given by the pair (x,u) and values written as triples of the form x′vu′. Initially,
blank symbols are written into cells. Computation of a Turing machine consists in transforming an input
word written on the tape into an output word read when the machine halts. The minimal part of the tape
containing nonblank symbols is named a working zone.

A universal Turing machine is a prototype of computers. It accepts as input any given Turing machine
(program) and its tape word (data) and executes the program over the data. The crucial point is an
encoding of a given program and data in an alphabet with limited number of symbols and employing a
limited number of internal states.

The following notation is adopted for minimal universal Turing machines [1]: UT M(m,n), where m
is the number of internal states and n is the number of tape symbols (including the blank symbol). The
size of the transition table of (m,n)-machine is m×n; in case not all feasible instructions are employed,
the actual number of instructions l ≤ m×n is an extra characteristic.

2.3 A bi-tag system

A bi-tag system (BTS) [5] is a quadruple B = (A,E,eh,R), where A and E are disjoint finite sets of
symbols (alphabets), eh ∈ E is the halt symbol and R is the finite set of productions in one of three valid
forms:

R(a) = a, R(e,a) ∈ AE, R(e,a) ∈ AAE,
where a ∈ A, e ∈ E and R are defined on all elements of the set {A∪ ((E−{eh})×A)} and undefined

on all elements of the set {eh}×A; the bi-tag system is deterministic. A BTS configuration is a word of
the form w = A∗(EA∪AE)A∗.

A BTS computation step consists of the application of productions in one of two valid ways:

• if w = as′, then as′�s′R(a),

• if w = eas′, then eas′�s′R(e,a).

A BTS computation is a finite sequence of computation steps that are consecutively applied to an
initial configuration. If eh is the leftmost symbol in the current configuration, the computation halts.

3 Design of UPN(14,29)

At first we choose the smallest known (weakly) universal TM for simulation. The two machines of
Turlough Neary and Damien Woods [1, 2] with state-symbol pairs of (2,4) and (3,3) use 8 instructions,
so they are equal in size for our purpose – they produce the same number of Petri net transitions when
simulating TM transition function. We choose WUTM(2,4), since it is defined on all state-symbol pairs.

Apart from Turing machines, many other computationally universal systems are known such as
Markov normal algorithms [7], tag systems [8], cellular automata [6] etc. Progress in constructing
smaller system for one of these models often evokes immediate progress for others. Manifold trans-
lations techniques among them also influence this process and are themselves an object of investigation
aimed to reduction in size and complexity. Direct simulation and chains of translations approaches com-
pete. Recent results [1] show that direct simulation is rather efficient. Traditionally, translations into tag
systems are applied to construct small universal TM.
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Σ\Ω u1 u2

s(Σ)\s(Ω) 0 1
0 1 3, le f t,0 4,right,0
1 2 4, le f t,1 3, le f t,1
0/ 3 4, le f t,0 1,right,1
1/ 4 4, le f t,0 2,right,1

Table 1: WUTM(2,4) behavior [1, 2] and its encoding

In the present paper WUTM(2,4) [1, 2] is simulated by a DIPN via technique presented in [4]. But
WUTM(2,4) itself simulates cellular automaton Rule 110 (CA) which was shown universal by Matthew
Cook [6]. Its input should be encoded in cyclic tag system (CTS) [6]. To fill the gap in the chain of
translating DIPN into cyclic tag system, a translation from bi-tag system to either cyclic tag system or
2-tag system is requited. But considering that cyclic tag system could be constructed directly on TM
[1, 2], the following chain of translations was chosen

DIPN→ BT S→ T M.
In the above chain, the translation DIPN→ BT S was constructed in [4], and the translation

BT S→ T M is constructed in the present paper. It is supposed, that afterwards, the translations
T M→CT S [1, 2] and CT S→CA [6] work, transforming obtained TM into CA code of glides for
execution by WUTM(2,4) which simulates cellular automaton behavior. So the complete chain looks
like

DIPN→ BT S→ T M→CT S→CA.
The technique in [4] simulates TM tape as a triple (L,X ,R) consisting of the current cell symbol

code X and codes of two stacks representing the left L and right R parts of the tape with respect to the
current cell symbol. The blank symbol is encoded by zero so hitting the stack bottom is not recognized
but produces a new blank symbol. Simulating weak TM by DIPN is rather different task.

In the present paper, the tape alphabet is encoded starting from unit via the function s(x) given by
column 2 of Table 1 while states of TM are encoded starting from zero via the function s(u) given by row
2 of Table 1; the radices for symbols and states encoding are denoted as rX = 5 and rU = 2 respectively.
Symbol ”r” is used to denote a radix, and symbol ”s” – to denote a code; notation like s(α) represents
the code of an object α , where α could be either a separate symbol or a chain of symbols written on the
tape. Codes of separate symbols are given by Table 1 and chains of symbols are encoded as numbers in
a positional (radix) notation

s(xl−1xl−2...x0) =
l−1

∑
i=0

s(xi) · ri. (1)

Table 1 represents WUTM(2,4) behavior [1, 2] with respect to the chosen encoding; the notation
”Σ\Ω” means the title ”Σ” of the column and the title ”Ω” of the row. Note that, in WUTM(2,4),
Ω = {u1,u2}, Σ = {0,1,0/,1/}, us = u1 and the machine does not halt in usual sense, since it simulates
Rule 110 computations with special halt conditions [6].

Remind that in weakly universal Turing machines, an infinite repetition of definite blank words is
written: wl to the left and wr to the right of the working zone. The left and right blank words [1, 2] are
wl = 000/1 and wr = 01/0/0/01/ respectively. According to (1), the codes of the left and right blank words
are calculated as follows:
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Figure 1: General arrangement of UPN(14,29)

swl = s(wl) = ((s(0) · rX + s(0)) · rX + s(0/)) · rX + s(1) = ((1 ·5+1) ·5+3) ·5+2 = 167,
swr = s(wr) = ((((s(1/) · rX + s(0)) · rX + s(0/)) · rX + s(0/)) · rX + s(1/)) · rX + s(0) =

= ((((4 ·5+1) ·5+3) ·5+3) ·5+4) ·5+1 = 13596.
Following the stack order of encoding/decoding regarding the current cell symbol, the left blank

word was encoded from left to right while the right blank word – from right to left.
Encoding tape symbols starting from unit allows recognition the left and right edges of the tape

working zone via encountering zero value of the corresponding code. Obtaining zero is possible for only
one tape side at a time: for the left side after moving to the left and for the right side after moving to the
right. Substituting obtained zero by the corresponding code swl or swr models infinite blank words.

4 Simulating WUTM(2,4) by DIPN

WUTM(2,4) is simulated by a DIPN using the technique presented in [4]; as a result UPN(14,29) was
obtained which general scheme of work is shown in Fig. 1. Subnets are depicted as rectangles with double
line border. Some vertices have mnemonic names besides their numbers; place U contains encoded TM
state s(u), place X contains encoded current cell symbol s(x) (according to Table 1), and places L and R
contain encoded via equation (1) left and right parts of the tape working zone respectively regarding the
current cell.

Comparing [4], the following modifications and amendments have been done:

• subnet FS was constructed on Table 1, which simulates WUTM(2,4) transition function;

• arc multiplicity of subnets MA5LR, MD5LR is equal to 5 (instead of 4 in MA4LR, MD4LR);

• to simulate peculiarities of weakly universal TM work, two transitions lb and rb are appended
which add the blank word codes swl and swr to the codes of the left and right parts of tape L and
R correspondingly when its value is equal to zero.

At the beginning of each computation step, place ST EP launches subnet FS, which simulates
WUTM(2,4) transition function f given in Table 1. Subnet FS produces the encoding s(u′) of the new
state and the encoding s(x′) of the new symbol in places U and X respectively to simulate the Turing
machine instruction. Subnet FS also puts a token into place RIGHT if the simulated machine instruction
is a right move instruction. Place MOV E launches the sequence of subnets MA5LR, MD5LR, which
simulates the control head moves, after subnet FS has finished. At the end of a simulated computation
step a token is put into place ST EP that allows the simulation of the next instruction to begin.

Subnet FS (shown in Fig. 2) simulates the transition function of WUTM(2,4) as follows: the Turing
machine instruction for each pair (x,u) from Table 1 is encoded by a transition with the label (s(x),s(u))
in the FS net; its input arcs from places X and U have corresponding multiplicity, zero multiplicity means
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Figure 2: Subnet FS simulating WUTM(2,4) transition function

the arc absence. For a TM instruction (x,u,x′,v,u′), output arcs to places X and U have multiplicity s(x′)
and s(u′) correspondingly with an extra arc to place RIGHT when v = right. Subnet FS of UPN(14,29)
is represented in Fig. 2; besides, each transition has an incoming arc from place ST EP and outgoing
arc to place MOV E which are not shown explicitly. Transitions are not enumerated yet, so the required
relations of priorities are shown via arcs connecting transitions, providing only one firable transition on
each step of TM simulation.

UPN(14,29) is composed according to Fig. 1 via inserting subnets and merging places with the same
names. Transitions are enumerated to provide required relations of priorities; places are enumerated in
an arbitrary order; the number of arcs is 138. The obtained UPN(14,29) is shown in Fig. 3 and Table 2;
either of them specifies the net but graphical representation is rather tangled. Note that, arcs, connecting
transitions, are redundant and could be omitted. Table 2 entry of form x,y specifies the multiplicity of
transition’s incoming and outgoing arcs correspondingly for each transition-place pair. Zero multiplicity
means absence of arcs; inhibitor arcs are represented by the value −1; empty entries mean two zeroes
(no arcs).

The movement of the tape head on the tape is simulated by the two connected subnets MA5LR
and MD5LR inserted in the bottom part of Fig. 3. The meaning of subnets’ names is the following:
MA5 multiplication and addition with radix 5 (S := S ·5+X), MD5 modulo and division with radix 5
(S := S div 5, X := S mod 5); LR choice of places either L or R, where codes of the left and right parts
of the tape, regarding the current cell symbol code X , are stored, depending on the marking of place
RIGHT . In other words, subnet MA5 is used to simulate adding a symbol x to either the left or right tape
sequence, while subnet MD5 simulates removing a symbol x from either the left or right tape sequence.
MA5 and MD5 are represented in Fig. 4.

Thus, the sequence of subnets MA5LR, MD5LR implements the following operations:

• to simulate a left move(when place RIGHT = 0): R := R ·5+X , L := L div 5, X := L mod 5;

• to simulate a right move(when place RIGHT = 1): L := L ·5+X , R := R div 5, X := R mod 5.

In Fig. 4, the place and transition numbers were preserved in accordance with Fig. 3. For instance,
subnet MA5 calculates 34 = 6 ·5+4 via the following sequence of transitions’ firing
(t12)

6t13(t15)
30t16(t18)

4t19 moving the subnet from its initial marking L = 6,X = 4,MOV E = 1 to the
final marking L = 34,X = 0,MOV E1 = 1. Subnet MD5 calculates 6 = 34 div 5, 4 = 34 mod 5 via the
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Figure 3: UPN(14,29) in graphical form
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Figure 4: Basic subnets of the tape encoding end decoding: a) add a symbol to the code MA5; b) extract
a symbol from the code MD5

following sequence of transitions’ firing (t21)
6t22(t24)

4t25(t27)
6t29 moving the subnet from its initial mark-

ing L = 34,X = 0,MOV E1 = 1 to the final marking L = 6,X = 4,ST EP = 1.
When constructing MA5LR on MA5, transitions t12, t15, t18 work with the code L while their twins

t11, t14, t17 correspondingly work with the code R; the choice in controlled by place RIGHT . Simi-
larly, when constructing MD5LR on MD5, transitions t21, t24, t27 work with the code L while their twins
t20, t23, t26 correspondingly work with the code R; the choice is controlled by place RIGHT ; moreover,
transition t28 (which is a twin of t29) finally cleans place RIGHT in case it contained a token.
Lemma 1. Sequence of subnets MA5LR, MD5LR, supplied with transitions lb, rb having higher priority
(Fig. 1) and encoding tape symbols starting from unit, simulates work with weakly universal TM tape.

Proof. After the sequence MA5LR, MD5LR, only one of places L, R can become zero: L – for the left
move and R – for the right move as a result of division operation that means hitting the corresponding
edge of the tape working zone. Then place ST EP enables one of transition lb, rb which fires before FS
work and inserts the corresponding blank word code disabling the fired transition. Then, as lb, rb are
disabled, subnet FS starts.

As far as the check on zero is implemented before the current step, blank words are not encoded in
the initial configuration.
Theorem 1. UPN(14,29) simulates WUTM(2,4) in time O(k ·5k) and space O(k), where k is the number
of WUTM(2,4) steps.

Theorem 1 is an immediate conclusion of lemma 1 and analogous theorem proven in [4] for
UPN(14,42). The radix for tape encoding is 5, so, in the worst case, on each step, TM goes to the
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Sub T\P p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14
net X U L R ST EP MOV E RIGHT MOV E1
lb t1 −1, 1,1

167
rb t2 −1, 1,1

13596
t3 4,2 1,1 1,0 0,1 0,1
t4 4,4 1,0 0,1
t5 3,1 1,1 1,0 0,1 0,1

F t6 3,4 1,0 0,1
S t7 2,3 1,1 1,0 0,1

t8 2,4 0,1 1,0 0,1
t9 1,4 1,0 1,0 0,1 0,1
t10 1,3 1,0 0,1
t11 1,0 1,1 −1,0 0,5
t12 1,0 1,1 1,1 0,5

M t13 1,0 0,1
A t14 0,1 −1,0 1,0 1,1
5 t15 0,1 1,1 1,0 1,1
L t16 1,0 0,1
R t17 1,0 0,1 −1,0 1,1

t18 1,0 0,1 1,1 1,1
t19 0,1 1,0
t20 5,0 1,1 1,1 0,1
t21 5,0 −1,0 1,1 0,1

M t22 1,0 0,1
D t23 0,1 1,0 1,1 1,1
5 t24 0,1 1,0 −1,0 1,1
L t25 1,0 0,1
R t26 0,1 1,1 1,1 1,0

t27 0,1 −1,0 1,1 1,0
t28 0,1 1,0 1,0
t29 0,1 1,0

Table 2: UPN(14,29) in tabular form

left (right) and after insertion of a blank word, the working zone width is k+4 (k+6). In the worst case,
insertion of a blank word to the left (right) requires an extra transition firing on each of k/4 (k/6) steps.
Considered peculiarities of UPN(14,29) bring constant summands and multipliers (which were omitted)
to the estimations.

An example of UPN(14,29) work, on the sequence of WUTM(2,4) configurations described in [1, 2],
is represented in Table 3. The codes of state and tape are shown for markings when place STEP contains
a token (before running current TM step simulation). Initial tape code corresponds to the word 000 on
the left and the current cell symbol 1. Before executing the step simulation, transition rb fires and puts
the code of the right blank word swr = 13596 into place R. A similar situation arises after step 5 and
the code of the left blank word swl = 167 is put by transition lb into place L. The part of the encoded
TM configuration (the tape working zone) is highlighted in a bold font. The decoded result on each step
completely corresponds with configurations considered in [1, 2].

5 Simulating BTS by TM

In [5] BTS was constructed, as an intermediate system, on TM via cyclic TM. Here we solve an inverse
task that is rather simple but required to supply a missed link in the chosen chain of DIPN encoding
described in section 3.
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Code of
Step Configuration state tape

U (L,X ,R)
0 u1, ...000/1 000/1 0001 01/0/0/01/ 01/0/0/01/... 0 (31,2,0)

u1, ...000/1 000/1 0001 01/0/0/01/ 01/0/0/01/... 0 (31,2,13596)
1 u2, ...000/1 000/1 0001/ 01/0/0/01/ 01/0/0/01/... 1 (6,1,67984)
2 u1, ...000/1 000/1 001/1/ 01/0/0/01/ 01/0/0/01/... 0 (34,4,13596)
3 u1, ...000/1 000/1 001/1/ 01/0/0/01/ 01/0/0/01/... 0 (6,4,67984)
4 u1, ...000/1 000/1 001/1/ 01/0/0/01/ 01/0/0/01/... 0 (1,1,339924)
5 u1, ...000/1 000/1 00/1/1/ 01/0/0/01/ 01/0/0/01/... 0 (0,1,1699623)

u1, ...000/1 000/1 00/1/1/ 01/0/0/01/ 01/0/0/01/... 0 (167,1,1699623)
6 u1, ...000/1 000/1 0/0/1/1/ 01/0/0/01/ 01/0/0/01/... 0 (33,2,8498118)
7 u2, ...000/1 000/1/ 0/0/1/1/ 01/0/0/01/ 01/0/0/01/... 1 (6,3,42490594)
8 u2, ...000/1 0001/ 0/0/1/1/ 01/0/0/01/ 01/0/0/01/... 1 (31,4,8498118)
9 u2, ...000/1 0001 0/0/1/1/ 01/0/0/01/ 01/0/0/01/... 1 (157,3,1699623)
10 u2, ...000/1 0001 00/1/1/ 01/0/0/01/ 01/0/0/01/... 1 (786,3,339924)
11 u2, ...000/1 0001 001/1/ 01/0/0/01/ 01/0/0/01/... 1 (3931,4,67984)
12 u2, ...000/1 0001 0011/ 01/0/0/01/ 01/0/0/01/... 1 (19657,4,13596)
13 u2, ...000/1 0001 0011 01/0/0/01/ 01/0/0/01/... 1 (98287,1,2719)
14 u1, ...000/1 0001 0011 1/1/0/0/01/ 01/0/0/01/... 0 (491439,4,543)
... ... ... ...

Table 3: Trace of UPN(14,29) running
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No Instruction Description
1.1 (qs,eh,qh,S,eh); halt
2.1 (qs,a,qa,R,λ ),
2.2 (qa,x,qa,R,x), x 6= λ , bring a to the tail for R(a) = a
2.3 (qa,λ ,ql,L,a);
3.1 (qs,e,qe,R,λ ),
3.2 (qe,a,qe,a,R,λ ), bring R(e,a) to the tail
3.3 (qe,a,x,qe,a,R,x), x 6= λ , for R(e,a) ∈ AE or R(e,a) ∈ AAE:
3.4 (qe,a,λ ,q1e,a,R,s1e,a), s1e,a = a′, s2e,a = e′, s3e,a = λ for R(e,a) = a′e′

3.5 (q1e,a,λ ,q2e,a,R,s2e,a), s1e,a = a′, s2e,a = a′′, s3e,a = e′ for R(e,a) = a′a′′e′

3.6 (q2e,a,λ ,ql,L,s3e,a);
4.1 (ql,x,ql,L,x), x 6= λ , move to the head
4.2 (ql,λ ,qs,R,λ ).

Table 4: Instructions of Turing machine MB

Let BTS B = (A,E,eh,R) be given. We construct TM MB = (Ω,Σ, f ,qs,qh), where states are de-
noted with letters ”q” to distinguish MB from WUTM(2,4) and

Ω = qs∪qh∪ql∪{qa|a ∈ A}∪{qe|e ∈ E}∪
∪{qe,a|e ∈ E,a ∈ A}∪{q1e,a|e ∈ E,a ∈ A}∪{q2e,a|e ∈ E,a ∈ A},

Σ = λ ∪A∪E.
The BTS initial configuration is written directly on the MB tape with the control head in state qs on

its leftmost symbol. Apart from the start qs and halt qh states, MB contains:

• a state ql for the left move to the BTS configuration head after insertion into its tail;

• a state qa for each symbol a ∈ A to store the first symbol a ∈ A of the BTS configuration after its
deletion to bring it to the tail according to productions of form R(a) = a;

• a state qe for each symbol e ∈ E to store the first symbol e ∈ E of the BTS configuration after its
deletion to process the following symbol a ∈ A according to productions of forms R(e,a) = AE
and R(e,a) = AAE;

• a state qe,a for each pair of symbols e ∈ E, a ∈ A to store the current production after deletion of
symbols’ pair ea from the beginning of the BTS configuration;

• states q1e,a, q2e,a for each pair of symbols e ∈ E, a ∈ A for insertion of the second and third
symbols of the right part of productions of forms R(e,a) = AE and R(e,a) = AAE.

The MB transition function f is described in Table 4.

Theorem 2. Turing machine MB (Table 4) simulates bi-tag system B in time O(k2) with space O(k),
where k is the number of applied productions.

Proof. At first, we show that MB simulates B. Its initial tape working zone coincides with the initial
configuration of B and the control head is positioned on the leftmost symbol. If w = eas′ and e = eh, it
halts according to instruction 1.1.

If w = as′, it stores the first symbol a with state qa and deletes it via instructions 2.1, moves to the
tail via instructions 2.2, replaces the first blank symbol λ with the stored symbol a via instructions 2.3
and switches to state ql that completely corresponds to the application of production of type R(a) = a.
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If w = eas′, it stores the first symbol e with state qe, deletes it and moves to the left via instruction
3.1, stores the combination (e,a) with state qe,a and deletes a via instructions 3.2, moves to the tail via
instructions 3.3, replaces the first blank symbol λ with symbol s1e,a via instructions 3.4, replaces the
second blank symbol λ with symbol s2e,a via instructions 3.5, replaces the third blank symbol λ with
symbol s3e,a via instructions 3.6 and switches to state ql that completely corresponds to the application
of production of either type R(e,a) = AE or R(e,a) = AAE.

After applying a production, the control head is positioned at the rightmost or previous to the right-
most symbol of the working zone in state ql. Then instructions 4.1 and 4.2 return it to the leftmost
symbol. As there are no other valid sequences except described, MB simulates B.

Neglecting the initial BTS configuration length, note that each production application extends it
by unit in the worst case, thus space complexity is O(k). Implementation of each production requires
scanning the current word twice; thus, time complexity is O(2 · k · k)≈ O(k2).

Combining theorems 1 and 2 with results on complexity estimations of simulations DIPN→ BT S
[5] and T M→WUT M(2,4) [1, 2], we come to the following corollary.
Corollary 1. UPN(14,29) simulates a given DIPN N in exponential time and polynomial space with
respect to the number of N steps.

Definite forms of complexity functions could be obtained via substitution. BT S simulates DIPN [4]
in time x = O(k3) with space y = O(k), where k is the number of N steps. T M simulates BT S (theorem 2)
in time u = O(x2) with space v = O(x). WUPN(2,4) simulates T M [1, 2] in time r = O(u4 · log2u). And
UPN(14,29) simulates WUPN(2,4) (theorem 1) in time O(r ·5r) with space O(r). Thus UPN(14,29)
simulates a given DIPN in time O(z ·5z) with space O(z), where z = k24 · log12k.

6 Conclusions

Thus, the universal deterministic inhibitor Petri net with 14 places and 29 transitions was constructed
based on direct encoding of Neary and Woods weakly universal Turing machine with 2 states and 4
symbols using early presented technique [4]; universal net contains 13 transitions lesser comparing [4].

A technique for the blank words simulation of the weakly universal TM tape was developed that
consists in adding blank words’ codes when reaching zero value of the tape codes, so constructed DIPN
is not weak. Moreover, a simulation of a bi-tag system by a TM was developed to fill the gap in the chain
of source DIPN translation.

Resulting universal Petri net runs in exponential time and polynomial space with respect to the target
DIPN transitions’ firing sequence length. Constructing efficient UPN is a direction for future work.
But the main obstacle consists in the arithmetic encoding/decoding technique via increment/decrement
operations implemented by PN transitions.
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