
T. Neary and M. Cook (Eds.):
Machines, Computations and Universality (MCU 2013)
EPTCS 128, 2013, pp. 150–166, doi:10.4204/EPTCS.128.20

AND and/or OR:
Uniform Polynomial-Size Circuits

Niall Murphy∗

Facultad de Informática
Universidad Politécnica de Madrid

CEI-Moncloa UCM-UPM
Madrid, Spain

niall.murphy@upm.es

Damien Woods†

Computer Science
Center for Mathematics of Information

California Institute of Technology
Pasadena, CA 91125, USA
woods@caltech.edu

We investigate the complexity of uniform OR circuits and AND circuits of polynomial-size and
depth. As their name suggests, OR circuits have OR gates as their computation gates, as well as the
usual input, output and constant 0/1 gates. As is the norm for Boolean circuits, our circuits have
multiple sink gates, which implies that an OR circuit computes an OR function on some subset of its
input variables. Determining that subset amounts to solving a number of reachability questions on
a polynomial-size directed graph (which input gates are connected to the output gate?), taken from
a very sparse set of graphs. However, it is not obvious whether or not this (restricted) reachability
problem can be solved, by say, uniform AC0 circuits (constant depth, polynomial-size, AND,OR,NOT
gates). This is one reason why characterizing the power of these simple-looking circuits in terms of
uniform classes turns out to be intriguing. Another is that the model itself seems particularly natural
and worthy of study.

Our goal is the systematic characterization of uniform polynomial-size OR circuits, and AND
circuits, in terms of known uniform machine-based complexity classes. In particular, we consider
the languages reducible to such uniform families of OR circuits, and AND circuits, under a variety
of reduction types. We give upper and lower bounds on the computational power of these language
classes. We find that these complexity classes are closely related to tallyNL, the set of unary languages
within NL, and to sets reducible to tallyNL. Specifically, for a variety of types of reductions (many-
one, conjunctive truth table, disjunctive truth table, truth table, Turing) we give characterizations of
languages reducible to OR circuit classes in terms of languages reducible to tallyNL classes. Then,
some of these OR classes are shown to coincide, and some are proven to be distinct. We give analogous
results for AND circuits. Finally, for many of our OR circuit classes, and analogous AND circuit
classes, we prove whether or not the two classes coincide, although we leave one such inclusion open.

Keywords: Computational complexity; uniform Boolean circuits; AND circuits; OR circuits; NL;
AC0

1 Introduction

We look at the complexity of simple problems: those defined by uniform OR circuits and AND circuits of
polynomial-size and depth. As their name suggests, OR circuits have only OR gates as their computation
gates, as well as the usual input gates, constant (0/1) gates, and an output gate. As is the norm for Boolean
circuits, our circuits have multiple sink gates, which implies that an OR circuit computes an OR function
on some subset of its input variables. Determining that subset amounts to solving a number of reachability
∗N. Murphy was supported by the Campus de Excelencia Internacional Moncloa UCM-UPM PICATA Program and the Irish

Research Council for Science, Engineering and Technology’s EMBARK Initiative.
†D. Woods was supported by National Science Foundation (United States) grants CCF-1219274, CCF-1162589, and 0832824

(The Molecular Programming Project), and Junta de Andalucı́a (Spain) grant TIC-581.

http://dx.doi.org/10.4204/EPTCS.128.20
niall.murphy@upm.es
woods@caltech.edu

N. Murphy and D. Woods 151

questions on a polynomial-size directed graph (i.e. which input gates are connected to the output gate?),
taken from a very sparse set of graphs. It is not obvious whether or not these reachability questions can be
solved, in say, uniform AC0. Yet these problems are trivially in non-uniform-AC0. This is one reason
why characterizing the power of these simple-looking circuits in terms of uniform classes turns out to be
intriguing. Another is that the model itself seems particularly natural and worthy of study.

Our goal is the systematic characterization of polynomial-size uniform OR circuits, and AND circuits,
in terms of known uniform machine-based complexity classes. In particular, we consider the languages
reducible to such circuit classes, under a variety of reductions. We give upper and lower bounds on
the computational power of these classes. We find that they are closely related to tallyNL, the set of
unary languages within NL, and to sets reducible to tallyNL. Specifically, for a variety of types of
reductions (AC0 many-one, conjunctive truth-table, disjunctive truth-table, truth-table, Turing) we give
characterizations of languages reducible to OR circuit classes in terms of languages reducible to tallyNL
classes. Two of the OR classes are shown to coincide, and others are proven to be distinct. We give
analogous results for AND circuits. Finally, for many of our OR circuit classes, and analogous AND

circuit classes, we prove whether or not the two classes coincide, although we leave one such inclusion
open. These results are summarized in Figure 1.

We also look at a related notion called semi-uniformity where the uniformity function for a circuit
family gets access to the input word (and not merely its length). For sufficiently weak uniformity functions,
this notion is analogous to a reduction to a circuit value problem, and there is a very simple proof that
uniformity is a strictly weaker notion than semi-uniformity. Although not covered in this paper, these
ideas can be used in an analogous proof that semi-uniformity is strictly stronger than uniformity in a
model called membrane systems [21], answering an open question in that field [24], but which is much
simpler to state and prove here in the setting of Boolean circuits.

The paper is structured as follows. We begin with basic definitions and results in Sections 2 and 3.
Section 4 contains our main results on characterizing the power of polynomial-size uniform OR circuits.
We give lower and upper bounds, or characterizations, of the complexity classes defined by OR circuits
under various kinds of reductions. Specifically, we show that polynomial-size uniform OR circuits contain
tallyNL and are properly contained in FAC0

dtt(tallyNL), i.e. the class of languages AC0 disjunctive truth-
table reducible to tallyNL. We go on to show that the following three classes coincide: languages many-
one reducible, and disjunctive truth-table reducible, to uniform OR circuits, and the class FAC0

dtt(tallyNL).
These results are shown on the left hand side of Figure 1. Analogous results for AND circuits are shown
on the right of the same figure and are presented in Section 5. Results on semi-uniformity are given in
Section 6.

Since we are working with extremely weak classes it is important to use appropriate reductions
between problems and appropriate uniformity requirements on circuits. We use DLOGTIME-uniform
FAC0 [8] for reductions [5, 4, 3] and circuit uniformity [1, 2], which is powerful enough to implement a
variety of encoding/decoding functions, but yet suitable for use with our (weak) classes.

One way to think about uniform OR circuits is that they compute the OR function on a subset of n
input variables, that subset being defined via a number of directed graph connectivity questions that are
implicitly encoded by the uniformity condition. The seemingly simpler OR function on all n variables
is trivially in depth 1 uniform AC0, yet there are unanswered questions there too. For example, it is
not known if the OR function on all n variables (or indeed the AND function) is in CC0[q], the class of
problems accepted by constant depth polynomial-size circuits that use MODq gates [15].

Figure 1 suggests a number of open questions. Are there other classes that can be used to give
a tighter characterization of the class of problems solved by polynomial-size uniform OR circuits
(FAC0-uniform-OR)? Also, FAC0-uniform-AND? Is there a language in FAC0-uniform-OR that is

152 AND and/or OR: Uniform Polynomial-Size Circuits

lengthNL

FAC0
m(tallyNL)

FAC0
tt(tallyNL)

FAC0
T(tallyNL)

NL

P FAC0-semi-uniform-AND-OR

FAC0-semi-uniform-OR FAC0-semi-uniform-AND

FAC0-uniform-OR FAC0-uniform-AND

FAC0
dtt(tallyNL) FAC0

ctt(tallyNL)FAC0
m(FAC0-uniform-OR) FAC0

m(FAC0-uniform-AND)

FAC0
dtt(FAC0-uniform-OR) FAC0

ctt(FAC0-uniform-AND)

(29) (30)

((11)((11)

(

)(12))(12)

((13)((13)

((20)((20)

)(21))(21)

(14) (22)

6=
(4)
6=
(4)

6= 6=

(28)

Figure 1: Summary of results. The left side shows relationships between uniform polynomial-size OR

circuit languages, tallyNL and sets reducible to these classes. The right side shows analogous relationships
for AND circuit classes. FAC0

r (C) denotes AC0 computable reductions of type r to a class C. Numerical
labels refer to theorem statements, and symbols are used to show inclusion type, with an unlabelled arrow
denoting ⊆. To save space, Theorems 18 and 19 are not shown.

not in FAC0
m(tallyNL)? It would be interesting to look at the power of uniform polynomial-size circuits

consisting of other, apparently weak, gates, such as XOR. Ko [19] shows that the classes of languages
polynomial time disjunctive and conjunctive reducible to tally are distinct. If it is possible to apply Ko’s
technique, or something like it, to our much more restrictive setting (i.e. AC0 disjunctive/conjunctive
reducible to tallyNL), this would show that the four classes AC0 many-one, disjunctive truth-table, con-
junctive truth-table, and truth-table reducible to tallyNL are in fact distinct, which would in turn clarify
the relationship between the OR and AND classes that we consider.

2 Definitions

We now give some basic definitions based on those in the literature [4, 6, 14]. For more details on Boolean
circuits see [26].

For a function f : {0,1}∗→{0,1}∗ and integers m,n≥ 1 let fn : {0,1}n→{0,1}m be the restriction
of f to domain and range consisting of strings of length n and m respectively (we consider only functions f
where for each n there is an m where all length-n strings in f ’s domain are mapped to length-m strings,

N. Murphy and D. Woods 153

thus f =
⋃

n fn).
A circuit on n variables w0, . . . ,wn−1 is a directed acyclic multi-graph (there may be multiple edges,

or wires, between vertices—useful for oracle gates). The vertices of the circuit are generally referred to as
gates. The in-degree (out-degree) of a gate is called its fan-in (fan-out). Each source vertex (fan-in 0) is
labelled either by one of the input variables w0, . . . ,wn−1 or by a constant “0” or “1” (false or true). Each
non-source vertex is labelled by a function name, such as AND, OR, NOT, or ORACLE.

In this paper, we use ORACLE gates. For a given circuit C, it will be the case that all ORACLE gates
in C compute exactly the same Boolean function g : {0,1}n→{0,1} for n > 1, although of course their
inputs may be different. We are using the following conventions for circuits with tally oracles. The tally
alphabet is {1}. A tally oracle gate with n ordered input wires, takes a string of the form 0n−i1i, 0≤ i≤ n
(encoding the unary word 1i) as input, and outputs a single bit.

Gates with fan-out of 0 (called sinks) may or may not be designated as output gates.
Given an input w ∈ {0,1}n, one can inductively assign a Boolean value to each vertex of a circuit

as follows: each source (input) vertex labelled by an input variable gets the value of that variable, each
source (constant) vertex labelled by a constant gets the value of that constant, and each other vertex gets
the value of the function that labels it applied to the values of its children. Incoming and outgoing edges
to a vertex are assumed to be ordered (for oracle gates).

The depth of a circuit is the length of the longest path from an input vertex to an output vertex. The
size of a circuit is the number of wires it contains [4]. A circuit computes a function on a fixed number of
Boolean variables. We consider functions of an arbitrary number of variables by defining (possibly infinite)
families of circuits. We say a family of circuits C = {Cn | n∈N} computes a function f : {0,1}∗→{0,1}∗
if for all n ∈ N, and for all w ∈ {0,1}n circuit Cn outputs the string f (w) (we consider only functions f
where for each n there is an m where all length-n strings in f ’s domain are mapped to length-m strings).
We say a family of circuits C decides a language L ⊆ {0,1}∗ if for each w ∈ {0,1}n circuit Cn ∈ C on
input w outputs 1 if w ∈ L and 0 if w /∈ L.

In a non-uniform family of circuits there is no required similarity between family members. In
order to specify such a requirement we use a uniformity function that algorithmically specifies the
similarity between members of a circuit family. Roughly speaking, a uniform circuit family C is an infinite
sequence of circuits with an associated function f : {1}∗→C that generates members of the family and is
computable within some resource bound. More precisely:

Definition 1 (C-Uniform circuit family). Let C be a set of functions. A circuit family C is C-uniform, if
there is function f ∈ C, f : {1}∗→C, where f (1n) =Cn for all n ∈ N, and Cn ∈ C is a description of a
circuit with n input gates (we use Cn to denote either a circuit or its encoding as a binary string).

When dealing with uniformity for small complexity classes one of the preferred uniformity conditions
is DLOGTIME-uniformity [8]. This definition uses an ordering on wires that leave and enter a given
gate.

Definition 2 ([4]). A circuit family C is DLOGTIME-uniform if there is a procedure that on input
(n, i,r, j,s, t), where n, i,r, j,s ∈ N are encoded in binary and t is a gate type (e.g., AND, OR, NOT, input,
0, 1) encoded in binary, runs in time linear in its input size and accepts if and only if the gate of Cn having
label i is of type t and its r-th child is the s-th output of the gate having label j. In the case where gate
i is an input gate, the procedure accepts if gate i takes the value of the s-th input bit. Furthermore, the
procedure accepts inputs of the form (n, i, j,s,out put) if and only if the s-th output wire of gate i is the
j-th output gate of the circuit Cn. We also require that the procedure accepts the input (n, i,d) if and only
if d is equal to the fan-in of the gate of Cn having label i.

154 AND and/or OR: Uniform Polynomial-Size Circuits

AC0 is the set of languages decidable by constant-depth polynomial-size (in input length n)
DLOGTIME-uniform circuits built using unbounded fan-in AND and OR gates, and NOT gates with fan-
in 1. FAC0 is the class of functions computable by polynomial-size constant-depth DLOGTIME-uniform
circuits built using unbounded fan-in AND and OR gates, and NOT gates with fan-in 1.

An OR circuit is a circuit that uses only disjunctive logic, that is, a circuit that has only OR, constant,
and input gates. One of the OR gates is denoted as the output gate. Similarly an AND circuit is a circuit
that uses only conjunctive logic, that is, a circuit that has only AND, constant, and input gates. One
of the AND gates is denoted as the output gate. Note that OR and AND circuits may have multiple
non-output sinks. Let non-uniform-OR (non-uniform-AND) be the set of decision problems that solved
by non-uniform families of OR (AND) circuits.

In this paper, we are concerned with FAC0-uniform-OR: the class of languages solved by uniform
polynomial size OR circuits, formally defined as follows.

Definition 3. Let FAC0-uniform-OR be the set of decision problems over the alphabet {0,1} that are
solved by FAC0 uniform families of OR circuits.

The class FAC0-uniform-AND is defined analogously, but using AND instead of OR circuits.

Lemma 4. FAC0-uniform-OR 6= FAC0-uniform-AND.

Proof. An OR circuit computes an OR function on some subset of its inputs; in general there is no AND

circuit that computes the same function, and vice-versa.

NL is the class of languages accepted by non-deterministic logarithmic-space Turing machines. Such
machines have a read-only input tape, a write-only output tape and a read-write work tape whose length
is a logarithmic function of input length. The class of functions f : {0,1}∗→{0,1}∗ computed by non-
deterministic logarithmic-space Turing machines (with an additional write-only output tape) is denoted
FNL. Let tally be the set of all languages over the one-letter alphabet {1}. Let length be the set of all
languages L⊆ {0,1}∗ such that if w ∈ L then all words in {0,1}|w| are in L.

We define tallyNL = tally∩NL, i.e. the class of all tally languages and length encoded languages
in NL. Let tallycoNL = tally∩ coNL. The following lemma follows from NL = coNL, (i.e. let L ∈
tallyNL(NL= coNL, then L∈ coNL implies L∈ tallycoNL; a similar argument holds for the converse):

Lemma 5. tallyNL = tallycoNL

Let lengthNL = length∩NL and lengthcoNL = length∩ coNL. Also lengthNL = lengthcoNL.
We make use of functions from the class tallyFAC0 = tally∩FAC0 which is contained in tallyNL.

Each language L⊆{0,1}∗ has an associated total characteristic function χL : {0,1}∗→{0,1} defined
by χL(w) = 1 if and only if w ∈ L.

Parity ⊆ {0,1}∗ is the set of binary strings that contain an odd number of 1s.

2.1 Reductions

For concreteness, we explicitly define some standard types of reductions. Let A,B⊆ {0,1}∗.
Definition 6 (Many-one reducible). Set A is many-one reducible to set B, written A≤C

m B, if there is a
function f that is C-computable with the property that for all w, w ∈ A, if and only if f (w) ∈ B.

The following definition of truth table reductions comes from [9, 10], for a more formal definition
see [20].

N. Murphy and D. Woods 155

Definition 7 (Truth-table reduction). Set A is C truth-table reducible to B, written A≤C
tt B, if there exists

C-computable functions τ and σ such that for all w∈ {0,1}∗, τ(w) is a list of `∈N strings a1, . . . ,a`, also
σ(w) is a truth table (Boolean function) with ` variables, and w ∈ A if and only if σ(χB(a1), . . . ,χB(a`))
evaluates to true, where χB is the characteristic function of B.

A disjunctive truth table reduction (dtt) is one where at least one string generated by τ(w) is in B. Or
equivalently, where σ(w) =

∨
1≤i≤` χB(ai). A conjunctive truth table reduction (ctt) is one where all the

strings generated by τ(w) are in B. Or equivalently, where σ(w) =
∧

1≤i≤` χB(ai).
Definition 8 (Turing reducible). Set A is C Turing reducible to B, written A ≤C

T B, if there is a C-
computable oracle circuit (or Turing machine) M such that w ∈ A iff M accepts w with B as its oracle.

The following implications follow directly from these definitions, for more details see [20].

=⇒A≤C
dtt B=⇒

A≤C
m B A≤C

tt B =⇒ A≤C
T B=⇒ A≤C

ctt B =⇒

Let FAC0
r (C) be the set of all languages that are FAC0 reducible to languages in C via some type of

reduction r ∈ {m, dtt, ctt, tt, T}.

2.2 Some useful FAC0 functions

Pairing function We require a pairing function that is injective and extremely easy (FAC0) to compute.
We use the pairing function that interleaves the bits of two binary string arguments a and b. For example,
the binary strings a = a2a1a0 and b = b2b1b0 are paired as the interleaved string 〈a,b〉= b2a2b1a1b0a0.
The circuits for interleaving and de-interleaving have only a single input gate layer and a single output
gate layer (and so are 2-layer AC0 circuits). This circuit can be shown to be DLOGTIME-uniform.

Binary to Unary There is a constant depth circuit family where circuit Cn takes as input some word
w ∈ {0,1}n and outputs 1x where x is the positive integer encoded in the first dlog2 ne bits of w [11]. It
can be shown that this circuit family is DLOGTIME uniform and so this conversion from short binary
strings to unary is in FAC0.

Unary to Binary There is a constant depth circuit family where circuit Cn takes as input some word
w = 0n−x1x where 0≤ x≤ n, and outputs the binary encoding of x [11]. It can be shown that this circuit
family is DLOGTIME uniform and so unary to binary conversion is in FAC0.

2.3 Configuration graphs

Definition 9 (Configuration Graph). Let w ∈ {0,1}∗ be the input to a halting Turing machine M. The
configuration graph CM,w is a directed acyclic graph where each vertex encodes a configuration of M on
inputs of length |w|. The graph CM,w has a directed edge from a vertex c to a vertex c′ if the configuration
encoded by c′ can be reached from the configuration encoded by c in one step via M’s transition function.

A configuration graph CM,w has the property that there is a directed path from the vertex cs representing
the start configuration, to the accept vertex ca if an only if M accepts input w. Lemma 10 follows
from [16, 18].
Lemma 10. Given the binary encoding of a Turing machine M, which has state set Q and has an
FAC0 computable space bound s =O(log |w|), and given an input w, the configuration graph CM,w is
computable in DLOGTIME-uniform-FAC0 and is of size O(2s|w||Q|).

156 AND and/or OR: Uniform Polynomial-Size Circuits

x0
T (11)

x1
T (12)

x2
T (13)

...
...

... ...

xm−1
T (1m)

0

Figure 2: A gadget that simulates a single tally oracle gate. Gates of the form T (1i) are constant gates
that simulate a Turing machine T : where T (1i) = 1 if the Turing machine T accepts input 0m−i1i, and
T (1i) = 0 otherwise.

3 Languages reducible to tallyNL

In this work we consider the class tallyNL as well as classes AC0 many-one, disjunctive truth-table,
conjunctive truth-table, truth-table, and Turing reducible to tallyNL. Their containment relationships are
shown in Figure 1. We prove the following for completeness.

Lemma 11. FAC0
T(tallyNL)(NL

Proof. (⊆) Let L ∈ FAC0
T(tallyNL). Since the circuit and the oracles compute functions in NL, there is a

non-deterministic logspace Turing machine that computes the composition of these functions.
(6=) Parity ∈ NL. We know that Parity 6∈ non-uniform-AC0 [12] and that tally⊆ non-uniform-AC0,

hence it is sufficient to prove that FAC0
T(tallyNL)⊆ non-uniform-AC0.

Let L ∈ FAC0
T(tallyNL). Consider a family of circuits CL that recognizes L and makes use of the

Turing machineM as the tally oracle. Let w ∈ {0,1}∗, and consider the circuit C|w| ∈ CL that decides
whether or not w ∈ L. There is some number k ∈ N of oracle gates in C|w|. The ith such oracle gate,
i ∈ {1,2, . . . ,k}, takes one of m+1 inputs where m is the number of wires into the gate (recall that inputs
to the gate are of the form 0m− j1 j). We (non-uniformly) replace oracle gate i with the gadget shown
in Figure 2. This gadget encodes tally machine answers as constants. The replacement can be done
knowing |w| (and not knowing w). We replace all k tally oracle gates with this gadget to get a new circuit
that is a constant factor (i.e. 5 times) deeper than C|w| and polynomially (in |w|) larger. Applying this
transformation to the entire family C results in a non-uniform AC0 circuit family that recognizes L.

The same proof gives FAC0
T(tally)⊆ non-uniform-AC0 and hence FAC0

T(tally) 6= NL, which holds
for tally as opposed to tallyNL, and also for Turing reductions that are uniform-FAC0, or non-uniform-
FAC0.

N. Murphy and D. Woods 157

4 Uniform OR circuits

In this section we consider the relationship between uniform polynomial-size OR circuits and tallyNL.
We also consider the classes of languages reducible to these classes by suitably weak reductions. We
begin with a lengthNL lower bound on uniform polynomial size OR circuits. For this lower bound we
consider lengthNL rather than tallyNL because OR circuits act on binary strings and lengthNL is a
binary analogue of tallyNL (with almost the same proof we get an analogous tallyNL lower bound for
FAC0-uniform-OR if we restrict to inputs from {1}∗).
Theorem 12. lengthNL (FAC0-uniform-OR.

Proof. Let L ∈ lengthNL. L is accepted by a non-deterministic logspace Turing machineM, for which
one or more computation paths are accepting exactly for those words w ∈ L⊆ {0,1}∗. The configuration
graph CM,w for M on input w ∈ {0,1}∗ is FAC0 computable from M and w (see Lemma 10). We
construct the configuration graph assuming that its input w is 1|w| (recall that if w ∈ L then all words in
{0,1}|w| are in L). We modify the graph CM,w to create an OR circuit as follows. Each edge becomes a
wire and each vertex becomes an OR gate, except the start vertex (representing the initial configuration of
M on input 1|w|) which becomes a constant 1 gate. We add |w| “dummy” input gates that are not wired to
anything. We add a new OR gate that is the circuit’s output gate, and a constant 0 is wired into the every
OR gate in the circuit. All accept-vertices (representing the accepting configurations) are wired into this
output gate. If w ∈ L the circuit accepts since there is a path from 1 to the output gate. If w 6∈ L the circuit
rejects since there is no path from 1 to the output gate.

If we apply this transformation to the set of all configurations graphs for the fixed machineM over
all inputs w ∈ {1}∗, we get a circuit family C. Members of such a circuit family are computable by an
FAC0 function fM : {1}∗→C.

Consider the language L = {w | w has at least one 1} which is easily seen to be in FAC0-uniform-OR
but not in lengthNL, giving the required inequality for strict containment.

Next we show that the languages accepted by uniform polynomial-size OR circuits are strictly
contained in those disjunctive truth-table reducible to tallyNL.

Theorem 13. FAC0-uniform-OR (FAC0
dtt(tallyNL)

Proof. It is trivially the case that FAC0-uniform-OR⊆ FAC0
m(FAC0-uniform-OR). Then, by applying

Theorem 14 (stated and proved below) we get that FAC0-uniform-OR ⊆ FAC0
dtt(tallyNL) =

FAC0
m(FAC0-uniform-OR). To show strict containment, observe that FAC0

dtt(tallyNL) contains lan-
guages in AC0∩ non-uniform-AND that are not accepted by any OR circuit family.

Since the previously stated upper and lower bounds on FAC0-uniform-OR are both strict, it is nat-
ural to ask how FAC0-uniform-OR relates to the most obvious class that lies between these bounds,
namely FAC0

m(tallyNL). In fact, we get an inequality: FAC0-uniform-OR 6= FAC0
m(tallyNL), as

FAC0
m(tallyNL) contains languages in AC0∩ non-uniform-AND that are not accepted by any OR circuit

family.
The remainder of this section is concerned with the proof of Theorem 14, which was used in

Theorem 13 to give an upper bound on FAC0-uniform-OR, and shows the equivalence of three complexity
classes.

Theorem 14. The following classes are equal:
• FAC0

m(FAC0-uniform-OR)

158 AND and/or OR: Uniform Polynomial-Size Circuits

• FAC0
dtt(FAC0-uniform-OR)

• FAC0
dtt(tallyNL)

This theorem is proven by the inclusion cycle in Lemmas 15, 16, and 17 below.

Lemma 15. FAC0
m(FAC0-uniform-OR)⊆ FAC0

dtt(FAC0-uniform-OR)

Proof. The latter class is a generalization of the former.

Lemma 16. FAC0
dtt(FAC0-uniform-OR)⊆ FAC0

dtt(tallyNL)

Proof. Let L ∈ FAC0
dtt(FAC0-uniform-OR) with oracle language L′ ∈ FAC0-uniform-OR. That is, there

exists a function τ ∈ FAC0 mapping from {0,1}∗ to the set of tuples of binary words where at least one
word in the tuple τ(w) = (x1,x2, . . . ,xm) is in L′ iff w ∈ L.

To show that any of the binary words τ(w) = (x1,x2, . . . ,xm) are in L′ (i.e. are accepted by the OR

circuit family) it is sufficient to show that there is a single bit 1 in a word from τ(w) such that the bit’s
assigned input gate is on a path to the output gate in the appropriate OR circuit (or that there is a constant
1 gate in some circuit that is on a path to the output gate).

With this in mind, we define the function τ ′ ∈ FAC0, from {0,1}∗ to the set of tuples of unary words.
τ ′(w) = (u1, . . . ,uq(|w|)), where q(|w|) is polynomial in |w|, such that for each bit i in each word xl in
τ(w), there is a unary word ul,i in τ ′(w) that encodes both |xl| (i.e. the length of xl) and i, specifically:

ul,i =


1〈|xl |,|xl |〉 if i = |xl|,
1〈i,|xl |〉 if 0≤ i≤ |xl|−1 and bit i of xl is 1,
1 if 0≤ i≤ |xl|−1 and bit i of xl is 0.

(1)

Here ul,i is the (l, i)th word in τ ′(w), xl is the lth word in τ(w) and 〈·, ·〉 denotes the pairing function in
Section 2.2. (Note that 0 bits are not uniquely encoded; our construction does not require it.)

Now we argue that τ ′ ∈ FAC0. Each of the q(|w|) unary words in τ ′(w) are computed independently
and in parallel. The (l, i)th unary word is computed as follows: First compute xl ∈ {0,1}∗, which is
the lth word in τ(w). If the ith bit of xl is 0 then output the unary word 1. Otherwise compute the
pairing k = 〈i, |xl|〉 (Section 2.2), convert the binary number k to unary to give 1k which is then output
in an encoded form as 0z−k1k where 1 ≤ k < z, z = 22dlog |w|+1e ∈ O(|w|2). The (l, i)th sub-circuit of
τ ′ is composed of a constant number of FAC0 computable routines from Section 2.2 along with the
computation of τ which is, by hypothesis, in FAC0. The polynomial number q(|w|) of such constant depth
computations are done in parallel, hence τ ′ ∈ FAC0.

Let f ∈ FAC0, f : {1}∗ → C, be the uniformity function of the OR-circuit family that recognises
L′. We next define a non-deterministic Turing machineM f that takes unary input, and makes use of f .
The machineM f is defined to reject on input word 1 and accept input 1k if k > 1 and if the un-pairing
(see Section 2.2) of the binary encoding of k gives two binary numbers n and i, such that there is a path
from the ith input gate to the output gate of circuit f (1n). M f also accepts if i = n and there is a path
from some constant 1 gate to the output gate of circuit f (1n). M f works as follows. M f computes
the unary to binary conversion and the un-pairing routine in logspace (see Section 2.2). By hypothesis,
the uniformity function f is in FAC0 so, by using the standard re-computation trick [7, 22] for logspace
Turing machines,M f both computes f and tests reachability from input gate i to the output gate of circuit
f (1n) in non-deterministic logspace. Hence, if there is a path from input gate i (or some constant 1 gate)
to the output gate thenM f accepts, otherwise if no path is found thenM f rejects. Moreover, sinceM f

uses space O(logk), the language it accepts is in tallyNL.

N. Murphy and D. Woods 159

M f will be our tallyNL oracle machine. We now prove that for any w ∈ {0,1}∗, at least one word in
the tuple τ ′(w) is accepted by at least one of theM f oracle machines iff w ∈ L. If w ∈ L then there exists
a word x in the tuple τ(w) with at least one bit with value 1 that is assigned to an input gate that is on a
path to the output gate in OR circuit f (1|x|). This means that the tuple of words τ ′(w) contains at least
one unary word that encodes |x| and i, where i is the bit position assigned to 1. By the construction in the
previous paragraph, this word in τ ′(w) is accepted byM f .

If w /∈ L then by hypothesis there are no words in τ(w) that are accepted by the uniform OR circuit
family. Any 0’s in words from τ(w) become encoded as the input 1 toM f , which is rejected byM f

since k = 1. While τ(w) may contain words x with bits set to 1 (or constant bits set to 1), these bits are
assigned to input (or constant) gates that do not have a path to the output gate in the circuit f (1|x|). Hence,
none of these words in τ ′(w) will be accepted by the oracle calls toM f .

Therefore τ ′ is a disjunctive truth-table reduction from L to a language in tallyNL.

Lemma 17. FAC0
dtt(tallyNL)⊆ FAC0

m(FAC0-uniform-OR)

Proof. Let L ∈ FAC0
dtt(tallyNL) with T ∈ tallyNL as the oracle language. That is, there exists a function

τ ∈ FAC0 that maps {0,1}∗ to the set of tuples of unary words, where at least one word in the tuple
τ(w) = (x1,x2, . . . ,x`) is in T iff w ∈ L.

Let r : {0,1}∗→{0,1}∗. Let the notation r(w)k denote the kth bit of the word r(w). The function r is
defined in a bitwise fashion as follows:

r(w)k =

{
1 if 1k is in the tuple τ(w),
0 otherwise.

(2)

We claim that r is an FAC0 many-one reduction from L to a language in FAC0-uniform-OR.
First we prove that r ∈ FAC0. The circuit that computes r(w) first computes the tuple τ(w), which

is possible since τ ∈ FAC0. Without loss of generality we say that τ(w) is a tuple of ` ∈ N unary words,
each of length ≤ q ∈ N, and each of which is padded up to length q with 0’s (i.e. the unary word 1k is
padded to be 0q−k1k; this technicality comes from the fact that the circuit has a fixed number q of wires
used encode a unary string which is dependent on the circuit input). Then, in constant depth, the circuit
translates each string of the form 0q−k1k into a string of the form 0q−k10k−1. All ` such words are then
bitwise ORed to give a single binary string of length q, that represents r(w). This is all easily achieved in
FAC0.

We now describe a uniform polynomial-size OR circuit family C. Let fM : {1}∗→C be the uniformity
function of the circuit family C. On 1m, the function fM creates m configuration graphs: one configuration
graph CM,k of machineM (that accepts T) on input 1k for each k ∈ {1, . . . ,m} (a generalization of the
technique used in the proof of Theorem 12). Then, each of the m graphs are modified and connected
together to create a single OR circuit as follows. Each edge becomes a wire. The vertex in CM,k that
represents the start configuration ofM on input 1k becomes the kth input gate of the OR circuit. All other
vertices become an OR gate. For each k, all accept vertices of the graph CM,k (representing the accepting
configurations) are wired into a new OR gate ok. We add a single constant 0 gate which is wired into
every OR gate in the circuit. Finally each of the ok gates, where 1≤ k ≤ m, are wired into a single OR

gate which is the output gate. C is of polynomial size (each circuit fM(1m) is of size polynomial in m),
and it is relatively straightforward to verify that C is FAC0 uniform.

We need to argue that the circuit family C accepts r(w) iff w ∈ L. Suppose w ∈ L. This implies
that the tuple τ(w) contains at least one word 1 j in the tally set T . In turn, this implies that bit j in
r(w) is 1 (formally, r(w) j = 1). Let |r(w)| = m. The fact that M accepts 1 j implies that the circuit

160 AND and/or OR: Uniform Polynomial-Size Circuits

cm = fM(1m) ∈ C is constructed in such a way that its jth input gate is on a path to its output gate. Input
gate j is set to 1, therefore circuit cm accepts r(w).

Suppose w 6∈ L. Hence, no word in the tuple τ(w) is in the tally set T . Let 1 j be any unary word in the
tuple τ(w). In turn, this implies that bit j in r(w) is 1 (formally, r(w) j = 1). Let |r(w)|= m. Consider the
circuit Cm = fM(1m) ∈ C. Since the Turing machineM does not accept 1 j, this implies that there is no
path from input gate j in Cm to the output gate of Cm. Since Cm is an OR circuit with no paths from the
input gates that are set to 1 to the output gate, and where there are no constant 1 gates, it rejects r(w).

Therefore r is a many-one reduction from L to a language in FAC0-uniform-OR.

Section 5 contains our results on AND circuits, analogous to those shown here for OR circuits.
We omit the proofs of the following theorems, which can be obtained using the techniques in this

section and those in Section 5.
Theorem 18. The following classes are equal:
• FAC0

T(FAC0-uniform-OR)
• FAC0

T(FAC0-uniform-AND)
• FAC0

T(tallyNL)
Theorem 19. The following classes are equal:
• FAC0

tt(FAC0-uniform-OR)
• FAC0

tt(FAC0-uniform-AND)
• FAC0

tt(tallyNL)

5 Uniform AND circuits

Here we give upper bounds and lower bounds on the power of uniform AND circuits in terms of tallyNL
and problems reducible to tallyNL. The proofs have a similar flow to those for OR circuits in the Section 4,
although in a number of cases different tricks are used.

We begin with an upperbound and lowerbound on polynomial-size uniform AND circuits: i.e. the
class FAC0-uniform-AND.
Theorem 20. lengthNL (FAC0-uniform-AND.

Proof. Let L ∈ lengthNL. Since lengthNL = lengthcoNL, this implies that L is accepted by a co-non-
deterministic logspace Turing machineM, for which all computation paths are accepting exactly for
those words w ∈ L. The configuration graph CM,w forM on input w ∈ {0,1}∗ is FAC0 computable from
M and w (see Lemma 10). We construct the configuration graph assuming that its input w is 1|w| (recall
that if w ∈ L then all words in {0,1}|w| are in L). We modify the graph CM,w to create an AND circuit
as follows. Each edge becomes a wire and each vertex becomes an AND gate, except the start vertex
(representing the initial configuration ofM on input w) which becomes a constant 0 gate. We add |w|
“dummy” input gates that are not wired to anything. We add a new AND gate that is the circuit’s output
gate, and a constant 1 is wired into every AND gate in the circuit. All reject vertices (representing the
rejecting configurations) are wired into the output gate. If w ∈ L the circuit accepts since there is no path
from 0 to the output gate. If w 6∈ L the circuit rejects since there is a path from 0 to the output gate.

If we apply this transformation to the set of all configurations graphs for the fixed machineM over
all inputs w ∈ {1}∗, we get a circuit family C. Members of such a circuit family are computable by an
FAC0 function fM : {1}∗→C.

Consider the language L = {1n | n ∈ N} which is easily seen to be in FAC0-uniform-AND but not in
lengthNL, giving the required inequality for strict containment.

N. Murphy and D. Woods 161

Next we show that languages accepted by uniform polynomial-size AND circuits are strictly contained
in those conjunctive truth-table reducible to tallyNL.

Theorem 21. FAC0-uniform-AND (FAC0
ctt(tallyNL)

Proof. It is trivially the case that FAC0-uniform-AND ⊆ FAC0
m(FAC0-uniform-AND). Then, by ap-

plying Theorem 22 (stated and proved below) we get that FAC0-uniform-AND ⊆ FAC0
ctt(tallyNL) =

FAC0
m(FAC0-uniform-AND). To show strict containment, observe that FAC0

ctt(tallyNL) contains lan-
guages in AC0∩ non-uniform-OR that are not accepted by any AND circuit family.

We also get the following inequality: FAC0-uniform-AND 6= FAC0
m(tallyNL), as FAC0

m(tallyNL)
contains languages in AC0∩ non-uniform-OR that are not accepted by any OR circuit family.

The remainder of this section is concerned with the proof of Theorem 22, which was used in Theo-
rem 21 to give an upper bound on FAC0-uniform-AND, and shows the equivalence of three complexity
classes.

Theorem 22. The following classes are equal:
• FAC0

m(FAC0-uniform-AND)
• FAC0

ctt(FAC0-uniform-AND)
• FAC0

ctt(tallyNL)

This theorem is proven by the cycle of inclusions in Lemmas 23, 24, and 25 below.

Lemma 23. FAC0
m(FAC0-uniform-AND)⊆ FAC0

ctt(FAC0-uniform-AND)

Proof. The latter class is a generalization of the former.

Lemma 24. FAC0
ctt(FAC0-uniform-AND)⊆ FAC0

ctt(tallyNL)

Proof. Let L ∈ FAC0
ctt(FAC0-uniform-AND) with oracle language L′ ∈ FAC0-uniform-AND. That is,

there exists a function τ ∈ FAC0 mapping from {0,1}∗ to the set of tuples of binary words where all
words in the tuple τ(w) = (x1,x2, . . . ,xm) are in L′ iff w ∈ L.

To show that any of the binary words τ(w) = (x1,x2, . . . ,xm) are not in L′ (i.e. are rejected by the
AND circuit family) it is sufficient to show that there is a single bit 0 in a word from τ(w) such that the
bit’s assigned input gate is on a path to the output gate in the appropriate AND circuit (or that there is a
constant 0 gate in some circuit that is on a path to the output gate).

With this in mind, we define the function τ ′ ∈ FAC0, from {0,1}∗ to the set of tuples of unary words.
τ ′(w) = (u1, . . . ,uq(|w|)), where q(|w|) is polynomial in |w|, such that for each bit i in each word xl in
τ(w), there is a unary word ul,i in τ ′(w) that encodes both |xl| (i.e. the length of xl) and i, specifically:

ul,i =


1〈|xl |,|xl |〉 if i = |xl|,
1〈i,|xl |〉 if 0≤ i≤ |xl|−1 and bit i of xl is 0,
1 if 0≤ i≤ |xl|−1 and bit i of xl is 1.

(3)

Here ul,i is the (l, i)th word in τ ′(w), xl is the lth word in τ(w) and 〈·, ·〉 denotes the pairing function in
Section 2.2. (Note that 1 bits are not uniquely encoded; our construction does not require it.)

Now we argue that τ ′ ∈ FAC0. Each of the q(|w|) unary words in τ ′(w) are computed independently
and in parallel. The (l, i)th unary word is computed as follows: First compute xl ∈ {0,1}∗, which is
the lth word in τ(w). If the ith bit of xl is 1 then output the unary word 1. Otherwise compute the
pairing k = 〈i, |xl|〉 (Section 2.2), convert the binary number k to unary to give 1k which is then output

162 AND and/or OR: Uniform Polynomial-Size Circuits

in an encoded form as 0z−k1k where 1 ≤ k < z, z = 22dlog |w|+1e ∈ O(|w|2). The (l, i)th sub-circuit of
τ ′ is composed of a constant number of FAC0 computable routines from Section 2.2 along with the
computation of τ which is, by hypothesis, in FAC0. The polynomial number q(|w|) of such constant depth
computations are done in parallel, hence τ ′ ∈ FAC0.

Let f ∈ FAC0, f : {1}∗→C, be the uniformity function of the AND-circuit family that recognises L′.
We next define a non-deterministic Turing machineM f that takes unary input, and makes use of f . The
machineM f is defined to accept on input word 1 and reject input 1k if k > 1 and if the un-pairing (see
Section 2.2) of the binary encoding of k gives two binary numbers n and i, such that there is a path from
the ith input gate to the output gate of circuit f (1n). M f also accepts if i = n and there is a path from
some constant 0 gate to the output gate of circuit f (1n).M f works as follows.M f computes the unary to
binary conversion and the un-pairing routine in logspace (see Section 2.2). By hypothesis, the uniformity
function f is in FAC0 so, by using the standard re-computation trick [7, 22] for logspace Turing machines
and the un-reachability algorithm [17, 25]M f both computes f and tests non-reachability from input
gate i to the output gate of circuit f (1n) in non-deterministic logspace. Hence, if there is a path from input
gate i (or some constant 0 gate) to the output gate thenM f rejects, otherwise if no path is found thenM f

accepts. Moreover, sinceM f uses space O(logk), the language it accepts is in tallyNL = tallycoNL.
M f will be our tallyNL oracle machine. We now prove that for any w ∈ {0,1}∗, all words in the

tuple τ ′(w) are accepted by theM f oracle machines iff w ∈ L. If w /∈ L then there exists a word x in the
tuple τ(w) with at least one bit with value 0 that is assigned to an input gate that is on a path to the output
gate in AND circuit f (1|x|). This means that the tuple of words τ ′(w) contains at least one unary word that
encodes |x| and i, where i is the bit position assigned to 0. By the construction in the previous paragraph,
this word in τ ′(w) is rejected byM f .

If w ∈ L then by hypothesis there are no words in τ(w) that are rejected by the uniform AND circuit
family. Any 1’s in words from τ(w) become encoded as the input 1 toM f , which is accepted byM f

since k = 1. While τ(w) may contain words x with bits set to 0 (or constant bits set to 0), these bits are
not assigned to input (or constant) gates that have a path to the output gate in the circuit f (1|x|). Hence,
none of the words in τ ′(w) will be rejected by the oracle calls toM f .

Therefore τ ′ is a conjunctive truth-table reduction from L to a language in tallyNL.

Lemma 25. FAC0
ctt(tallyNL)⊆ FAC0

m(FAC0-uniform-AND)

Proof. Let L ∈ FAC0
ctt(tallyNL) with T ∈ tallyNL as the oracle language. That is, there exists a function

τ ∈ FAC0 that maps {0,1}∗ to the set of tuples of unary words, where all words in the tuple τ(w) =
(x1,x2, . . . ,x`) are in T iff w ∈ L.

Let r : {0,1}∗→{0,1}∗. Let the notation r(w)k denote the kth bit of the word r(w). The function r is
defined in a bitwise fashion as follows:

r(w)k =

{
0 if 1k is in the tuple τ(w),
1 otherwise.

(4)

We claim that r is an FAC0 many-one reduction from L to a language in FAC0-uniform-AND.
First we prove that r ∈ FAC0. The circuit that computes r(w) first computes the tuple τ(w), which

is possible since τ ∈ FAC0. Without loss of generality we say that τ(w) is a tuple of ` ∈ N unary words,
each of length ≤ q ∈ N, and each of which is padded up to length q with 0’s (i.e. the unary word 1k is
padded to be 0q−k1k; this technicality comes from the fact that the circuit has a fixed number q of wires
used encode a unary string which is dependent on the circuit input). Then, in constant depth, the circuit
translates each string of the form 0q−k1k into a string of the form 1q−k011k−1. All ` such words are then

N. Murphy and D. Woods 163

bitwise ANDed to give a single binary string of length q, that represents r(w). This is all easily achieved
in FAC0.

We now describe a uniform polynomial-size AND circuit family C. Let fM : {1}∗ → C be the
uniformity function of the circuit family C. On 1m, the function fM creates m configuration graphs:
one configuration graph CM,k of machine M (that accepts T) on input 1k for each k ∈ {1, . . . ,m} (a
generalization of the technique used in the proof of Theorem 20). Then, each of the m graphs are modified
and connected together to create a single AND circuit as follows. Each edge becomes a wire. The
vertex in CM,k that represents the start configuration ofM on input 1k becomes the kth input gate of the
AND circuit. All other vertices become an AND gate. For each k, all reject vertices of the graph CM,k
(representing the rejecting configurations) are wired into a new AND gate ok. We add a single constant 1
gate which is wired into every AND gate in the circuit. Finally each of the ok gates, where 1≤ k ≤ m, are
wired into a single AND gate which is the output gate. C is of polynomial size (each circuit fM(1m) is of
size polynomial in m), and it is relatively straightforward to verify that C is FAC0 uniform.

We need to argue that the circuit family C accepts r(w) iff w ∈ L. Suppose w /∈ L. This implies
that the tuple τ(w) contains at least one word 1 j not in the tally set T . In turn, this implies that bit j
in r(w) is 0 (formally, r(w) j = 0). Let |r(w)| = m. The fact thatM rejects 1 j implies that the circuit
cm = fM(1m) ∈ C is constructed in such a way that its jth input gate is on a path to its output gate. Input
gate j is set to 0, therefore circuit cm rejects r(w).

Suppose w ∈ L. Hence, all words in the tuple τ(w) are in the tally set T . Let 1 j be any unary word in
the tuple τ(w). In turn, this implies that bit j in r(w) is 0 (formally, r(w) j = 0). Let |r(w)|= m. Consider
the circuit Cm = fM(1m) ∈ C. Since the Turing machineM does not reject 1 j, this implies that there is
no path from input gate j in Cm to the output gate of Cm. Since Cm is an AND circuit with no paths from
the input gates that are set to 0 to the output gate, and where there are no constant 0 gates, it accepts r(w).

Therefore r is a many-one reduction from L to a language in FAC0-uniform-AND.

6 Semi-uniform circuit families

We introduce a definition of semi-uniform families of Boolean circuits. This definition is inspired by the
concept in membrane systems [23]. Polynomial-size semi-uniform OR circuits, and AND circuits, are
shown to characterize NL.

Definition 26 (Semi-uniform circuit family). A semi-uniform circuit family C is a set of Boolean circuits,
each with a single output gate and no input gates, such that there is a function h : {0,1}∗→C (computable
within some resource bound) where h(x) = Cx. We say that a semi-uniform circuit family C decides a
language X if for each x, the circuit h(x) =Cx ∈ C evaluates to 1 if x ∈ X and 0 if x /∈ X.

Here, h is called the semi-uniformity function of C. The intuition behind the definition is that the
semi-uniformity function has access to the entire input word, whereas more standard uniformity functions
access only the input word length (in unary).

Definition 27 (FAC0-semi-uniform-OR). Let FAC0-semi-uniform-OR be the set of decision problems
over a binary alphabet that are solved by FAC0 semi-uniform families of OR circuits.

FAC0-semi-uniform-AND is defined analogously using AND circuits. Finally, the class
FAC0-semi-uniform-AND-OR is defined analogously using circuits that have both AND and OR gates.
The proof of the following lemma is straightforward.

Lemma 28. FAC0-semi-uniform-AND-OR = P

164 AND and/or OR: Uniform Polynomial-Size Circuits

Proof. Any problem in P has a circuit family C with circuits using AND, OR, and NOT gates that is
uniform by some function f ∈ FAC0, f : {1}∗→C. There is a semi-uniformity function f ′ : {0,1}∗→C′
for a semi-uniform circuit family C′, that simulates f in the following way: For all x ∈ {0,1}∗, f ′(x)
produces a circuit without input gates and where the string x and its bitwise complement are available as
constants, and the circuit carries out a dual-rail logic simulation [13, 14] of the circuit f (|x|).

Lemma 29. FAC0-semi-uniform-OR = NL.

Proof. (NL⊆FAC0-semi-uniform-OR) Let L∈NL. L is accepted by a non-deterministic logspace Turing
machine M, i.e. one or more computation paths are accepting exactly for those words w ∈ L⊆ {0,1}∗.
Consider the configuration graph CM,w for M on input w ∈ {0,1}∗, which is FAC0 computable from
M and w (see Section 2.3). We modify the graph CM,w to create an OR circuit as follows. Each edge
becomes a wire and each vertex becomes an OR gate, except the start vertex (which represents the initial
configuration of M on w) which becomes a constant 1 gate. All accepting vertices (representing accepting
configurations) are also wired to this output gate. We add a single constant 0 gate which is wired into
every OR gate in the circuit. If w ∈ L the circuit accepts since there is a path from 1 to the output gate. If
w 6∈ L the circuit rejects since there is no path from 1 to the output gate and a 0 feeds into that gate. These
simple modifications can be made in FAC0.

Fixing the machine M, and then considering this transformation on the set of all configurations graphs,
one for each input w ∈ {0,1}∗, we get a semi-uniform circuit family C. Members of such a semi-uniform
circuit family are computable by an FAC0 function fM : {0,1}∗→C.

(FAC0-semi-uniform-OR ⊆ NL) Let C be a semi-uniform OR circuit family that recognizes L ∈
FAC0-semi-uniform-OR, we claim that there is a non-deterministic logspace Turing machine M that
recognizes L. Let h : {0,1}∗→C be the semi-uniformity function of C. On input x ∈ {0,1}∗, M computes
h(x) and performs a simple reachability on the resulting OR circuit in the following way: M guesses a
gate, if that gate is a constant 1-gate M then guesses a path from that gate, if the path ends at the output
gate M accepts.

Lemma 30. FAC0-semi-uniform-AND = NL.

Proof. (NL⊆ FAC0-semi-uniform-AND) Let L ∈ tallyNL. Since tallyNL = tallycoNL (Lemma 5), this
implies that L is accepted by a co-non-deterministic logspace Turing machine M, for which all computation
paths accept exactly for those words w ∈ L⊆ {0,1}∗. Consider the configuration graph CM,w for M on
input w ∈ {0,1}∗, which is FAC0 computable from M and w (see Section 2.3). We modify the graph CM,w

to create an AND circuit as follows. Each edge becomes a wire and each vertex becomes an AND gate,
except the start vertex (which represents the initial configuration on M on w) which becomes a constant 0
gate. We add a new AND gate that is the circuit’s output gate. All reject vertex (representing the reject
configurations) are wired into this output gate. We add a single constant 1 gate which is wired into every
AND gate in the circuit. These modifications can be made in FAC0. If w ∈ L the circuit accepts since
there is no path from 0 to the output gate. If w 6∈ L the circuit rejects since there is a path from 0 to the
output gate.

Fixing the machine M, and then considering this transformation on the set of all configurations graphs,
one for each input w ∈ {0,1}∗, we get a semi-uniform circuit family C. Members of such a semi-uniform
circuit family are computable by an FAC0 function fM : {0,1}∗→C.

(FAC0-semi-uniform-AND ⊆ NL) Let C be a semi-uniform AND circuit family that recognizes
L ∈ FAC0-semi-uniform-AND. We claim that there is a co-nondeterministic logspace Turing machine
M that recognizes L and thus L ∈ NL. Let h : {0,1}∗ → C be the semi-uniformity function of C. On

N. Murphy and D. Woods 165

input x ∈ {0,1}∗, M computes h(x) and performs a simple reachability on the resulting AND circuit in
the following way. Starting at the output gate, M guesses a path along the reverse direction of the edges
(wires) until the path terminates. If the path terminates at a constant 1 gate M accepts, otherwise M rejects
(in the latter case the path terminates at a 0 gate, as by definition there are no AND gates with in-degree
0 in the circuit). M accepts x if and only if all of its computations accept, which is equivalent to saying
that each path from an in-degree 0 gate to the circuit’s output gate begins at a constant 1 gate, and so the
circuit accepts.

We have the following separation between uniform polynomial-size and semi-uniform OR circuits.
The result also holds for AND circuits.

Theorem 31.
• FAC0-uniform-OR (FAC0-semi-uniform-OR
• FAC0-uniform-AND (FAC0-semi-uniform-AND

Proof. Follows from Theorem 11 and the containments in Figure 1.

Acknowledgements

Many thanks to Eric Allender for valuable comments and discussion on uniform Boolean circuits and
complexity classes within P. We also thank Antonio E. Porreca, David Doty, Jack Lutz and Dirk Walther
for interesting discussions.

References
[1] Manindra Agrawal (2001): The First-Order Isomorphism Theorem. In: FST TCS ’01: Proc. of the 21st

Conference on Foundations of Software Technology and Theoretical Computer Science, LNCS 2245, Springer-
Verlag, London, UK, pp. 70–82, doi:10.1007/3-540-45294-X 7.

[2] Manindra Agrawal (2011): The Isomorphism Conjecture for constant depth reductions. Journal of Computer
and System Sciences 77(1), pp. 3–13, doi:10.1016/j.jcss.2010.06.003.

[3] Eric Allender (2012): Investigations Concerning the Structure of Complete Sets. In: Workshop on Complexity
and Logic.

[4] Eric Allender & Michal Koucký (2010): Amplifying lower bounds by means of self-reducibility. Journal of the
ACM 57, pp. 14:1–14:36, doi:10.1145/1706591.1706594.

[5] Eric Allender, David A. Mix Barrington, Tanmoy Chakraborty, Samir Datta & Sambuddha Roy (2009):
Planar and Grid Graph Reachability Problems. Theory of Computing Systems 45(4), pp. 675–723,
doi:10.1007/s00224-009-9172-z.

[6] Carme Álvarez & Birgit Jenner (1993): A very hard log-space counting class. Theoretical Computer Science
107(1), pp. 3–30, doi:10.1016/0304-3975(93)90252-O.

[7] Sanjeev Arora & Boaz Barak (2009): Computational Complexity: A Modern Approach. 978-0-511-53381-5,
Cambridge University Press, doi:10.1017/CBO9780511804090.

[8] David A. Mix Barrington, Neil Immerman & Howard Straubing (1990): On Uniformity within NC1. Journal
of Computer and System Sciences 41(3), pp. 274–306, doi:10.1016/0022-0000(90)90022-D.

[9] Ronald V. Book & Ker-I Ko (1988): On Sets Truth-Table Reducible to Sparse Sets. SIAM Journal of
Computing 17(5), pp. 903–919, doi:10.1137/0217056.

[10] Harry Buhrman, Edith Hemaspaandra & Luc Longpre (1995): SPARSE Reduces Conjunctively to TALLY.
SIAM Journal of Computing 24, pp. 673–681, doi:10.1137/0224044.

http://dx.doi.org/10.1007/3-540-45294-X_7
http://dx.doi.org/10.1016/j.jcss.2010.06.003
http://dx.doi.org/10.1145/1706591.1706594
http://dx.doi.org/10.1007/s00224-009-9172-z
http://dx.doi.org/10.1016/0304-3975(93)90252-O
http://dx.doi.org/10.1017/CBO9780511804090
http://dx.doi.org/10.1016/0022-0000(90)90022-D
http://dx.doi.org/10.1137/0217056
http://dx.doi.org/10.1137/0224044

166 AND and/or OR: Uniform Polynomial-Size Circuits

[11] Ashok K. Chandra, Larry J. Stockmeyer & Uzi Vishkin (1984): Constant Depth Reducibility. SIAM Journal
of Computing 13(2), pp. 423–439, doi:10.1137/0213028.

[12] Merrick L. Furst, James B. Saxe & Michael Sipser (1984): Parity, circuits and the polynomial-time
hierarchy. Theory of Computing Systems (formerly Mathematical Systems Theory) 17(1), pp. 13–27,
doi:10.1007/BF01744431.

[13] Leslie M. Goldschlager (1977): The monotone and planar circuit value problems are log space complete for P.
SIGACT News 9(2), pp. 25–29, doi:10.1145/1008354.1008356.

[14] Raymand Greenlaw, H. James Hoover & Walter L. Ruzzo (1995): Limits to parallel computation: P-
completeness Theory. Oxford University Press, New York, Oxford.

[15] Kristoffer Arnsfelt Hansen & Michal Koucký (2010): A New Characterization of ACC0 and Probabilistic
CC0. Computational Complexity 19(2), pp. 211–234, doi:10.1007/s00037-010-0287-z.

[16] Neil Immerman (1987): Languages that capture complexity classes. SIAM Journal of Computing 16(4), pp.
760–778, doi:10.1137/0216051.

[17] Neil Immerman (1988): Nondeterministic Space is Closed Under Complementation. SIAM Journal of
Computing 17(5), pp. 935–938, doi:10.1137/0217058.

[18] Neil Immerman (1999): Descriptive Complexity. Springer, doi:10.1007/978-1-4612-0539-5.
[19] Ker-I Ko (1989): Distinguishing conjunctive and disjunctive reducibilities by sparse sets. Information and

Computation 81(1), pp. 62–87, doi:10.1016/0890-5401(89)90029-1.
[20] Richard E. Ladner, Nancy A. Lynch & Alan L. Selman (1975): A comparison of polynomial time reducibilities.

Theoretical Computer Science 1(2), pp. 103–123, doi:10.1016/0304-3975(75)90016-X.
[21] Niall Murphy & Damien Woods (2010): Uniformity conditions in natural computing. In: The 16th International

Conference on DNA Computing and Molecular Programming (DNA 16), Preproceedings, pp. 109–120.
HKUST, Hong Kong, China.

[22] Christos H. Papadimitriou (1993): Computational Complexity. Addison Wesley.
[23] Mario J. Pérez-Jiménez, Agustı́n Riscos-Núñez, Alvaro Romero–Jiménez & Damien Woods (2009): Handbook

of Membrane systems, chapter 12: Complexity – Membrane Division, Membrane Creation. Oxford University
Press.

[24] Gheorghe Păun (2005): Further twenty six open problems in membrane computing. In: Proceedings of the
Third Brainstorming Week on Membrane Computing, Sevilla (Spain), Fénix Editoria, pp. 249–262.

[25] Róbert Szelepcsényi (1988): The Method of Forced Enumeration for Nondeterministic Automata. Acta
Informatica 26(3), pp. 279–284, doi:10.1007/BF00299636.

[26] Heribert Vollmer (1999): Introduction to Circuit Complexity: A Uniform Approach. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, doi:10.1007/978-3-662-03927-4.

http://dx.doi.org/10.1137/0213028
http://dx.doi.org/10.1007/BF01744431
http://dx.doi.org/10.1145/1008354.1008356
http://dx.doi.org/10.1007/s00037-010-0287-z
http://dx.doi.org/10.1137/0216051
http://dx.doi.org/10.1137/0217058
http://dx.doi.org/10.1007/978-1-4612-0539-5
http://dx.doi.org/10.1016/0890-5401(89)90029-1
http://dx.doi.org/10.1016/0304-3975(75)90016-X
http://dx.doi.org/10.1007/BF00299636
http://dx.doi.org/10.1007/978-3-662-03927-4

	1 Introduction
	2 Definitions
	2.1 Reductions
	2.2 Some useful FAC0 functions
	2.3 Configuration graphs

	3 Languages reducible to tallyNL
	4 Uniform Or circuits
	5 Uniform And circuits
	6 Semi-uniform circuit families

