
T. Neary and M. Cook (Eds.):
Machines, Computations and Universality (MCU 2013)
EPTCS 128, 2013, pp. 126–136, doi:10.4204/EPTCS.128.18

c© M. Margenstern, K.G. Subramanian
This work is licensed under the
Creative Commons Attribution License.

Hyperbolic tilings and formal language theory

Maurice Margenstern1

Université de Lorraine,
LITA EA3097,

Campus du Saulcy,
57045 Cédex, FRANCE

maurice.margenstern@univ-lorraine.fr

margenstern@gmail.com

K.G. Subramanian2,
2 School of Computer Sciences,

Universiti Sains Malaysia,
11800 Penang, Malaysia,

kgsmani1948@yahoo.com

In this paper, we try to give the appropriate class of languages to which belong various objects
associated with tessellations in the hyperbolic plane.

ACM-class: F.2.2., F.4.1, I.3.5
keywords: pushdown automata, iterated pushdown automata, tilings,hyperbolic plane, tessellations

1 Introduction

In [11], it was shown that a few languages constructed from some figures of hyperbolic tilings cannot
be recognized by pushdown automata but they can be recognized by a 2-iterated pushdown automaton.
Before, it was known that several tessellations of the hyperbolic plane are generated by substitutions,
see [3]. This property is also clear from [7].

These substitutions can be also described by the use of grammars. This is rather straightforward. In
[6], these substitutions appear as rules of a grammar, although the grammar is not formally described.

Iterated pushdown automata were introduced in [4, 12] and werefer the reader to [1] for references
and for the connection of this topic with sequences of rational numbers. By their definition, iterated
pushdown automata are more powerful than standard pushdownautomata but they are far less powerful
than Turing machines. As Turing machines can be simulated bya finite automaton with two independent
stacks, iterated pushdown automata can be viewed as an intermediate device, see also [5] for other
connections of automata with graph algebras.

In this paper, we show an application of this device to the characterization of contour words of
a family of bounded domains in many tilings of the hyperbolicplane. We can do the same kind of
application for a tiling of the hyperbolic 3D space and for another one in the hyperbolic 4D space. These
two latter applications cannot be generalized to any dimension as, starting from dimension 5, there is no
tiling of the hyperbolic space which would be a tessellationgenerated by a regular polytope.

In Section 2, we remember the definition of iterated pushdownautomata with an application to the
computation of the recognition of words of the formafn, where{ fn}n∈IN is the Fibonacci sequence with
f0 = f1 = 1. This sequence will always be denoted by{ fn}n∈IN throughout the paper.

In Section 3, we remind the reader about several features andproperties on tilings of the hyperbolic
plane.

In Section 4, we indicate how several tilings can be defined bya grammar.
In Section 5, we define the contour words which we are interested in and we construct iterated

pushdown automata which recognize them for the case of the pentagrid and the heptagrid,i.e. the tilings
{5,4} and{7,3} of the hyperbolic plane. In the same section, we extend theseresults to infinitely many
tilings of the hyperbolic plane.

http://dx.doi.org/10.4204/EPTCS.128.18
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

M. Margenstern, K.G. Subramanian 127

2 Iterated pushdown automata

In this section, we fix the notations which will be used in the paper. We follow the notations of [1].

2.1 Iterated pushdown stores

This data structure is defined by induction, as follows:
0-pds(Γ) = {ε}
k+1-pds(Γ) = (Γ[k-pds(Γ)])∗

it-pds(Γ) = ∪k k-pds(Γ)
The elements of ak+1-pds(Γ) structure arek-pds(Γ) structures and each element is labelled by a

letter ofΓ. A k-pds(Γ) structure will often be called ak-level store, for short. Whenk is fixed, we speak
of outerstores and ofinner stores in a relative way: ani-level store isouter than a j-one if and only if
i < j. In the same situation, thej-level store isinner than thei-one.

We define functions and operations onk-level stores, by induction onk.
From the above definition, we get that ak+1-level storeω can be uniquely represented in the form:

ω = A[f lag].rest,
whereA ∈ Γ, f lag is a k-level store andrest is k+1-store. Moreover, ifℓ is the number of elements
of rest, the number of elements ofω is ℓ+1.

A first operation consists in defining the generalization of the standard notion oftop symbolin an
ordinary pushdown structure. This is performed by the function topsymdefined by:

topsym(ε) = ε
topsym(A[f lag].rest) = A.topsym(f lag)
It is important to remark thattopsymis the single direct access to all inner stores of ak-level store.

In other words, for any inner store, only its topmost symbol can be accessed and when this inner store is
in the top of the outmost store.

Also note that thetopsymfunction performs areading. There are two families ofwriting operations,
also concerning the elements visible from thetopmostfunction only.

The first one consists of thepopoperations defined by the following induction:
popj (ε) is undefined

popj+1(A[f lag].rest) = A.[popj(f lag)].rest
The second family consists of thepushoperations defined by the following induction:
push1(γ)(ε) = γ , for γ ∈ Γ
pushj (γ)(ε) is undefined forj > 1

pushj+1(w)(A[f lag].rest) = w1[f lag]..wk[f lag].rest, wherew= w1..wk, with wi ∈ Γ for 1≤ i ≤ k

2.2 Iterated pushdown automata

Intuitively, the definition is very close to the traditionalone of standard non-deterministic standard push-
down automata. Ak-iterated pushdown automaton is defined by giving the following data:

- a finite set of states,Q;

- an input finite alphabetΣ;

- a store finite alphabetΓ;

- a transition functionδ from Q×Σ∪{ε}×Γk into a finite set of instructions of the form(q,op),
whereq is a state andop is a pop- or a push-operation as described in the previous sub-section.

128 Hyperbolic tilings and formal language theory

We also assume that there is an initial state denoted byq0 and that the initial state of the store isZ[ε],
whereZ is a fixed in advance symbol ofΓ. Note that we allowε-transition which play a key role.

A configuration is a word of the form(q,w,ω), whereq is the current state of the automaton,w is the
current word andω is the currentk-level store of the automaton. A computational step of the automaton
allows to go from one configuration to another by the application of one transition. In order to apply a
transition, the current state of the automaton must be that of the transition, the first letter ofw must be
the symbol ofΣ in the transition if any, andtopsym(ω) must be the word ofΓk in the transition if any. A
word w is accepted if and only there is a sequence of computational steps starting from(q0,w,Z[ε]) to a
first configuration of the form(q,ε ,ε). The language recognized by ak-iterated pushdown automaton is
the set of words inΣ∗ which are accepted by the automaton.

2.3 An example: the Fibonacci sequence

As an illustrative example of the working of such an automaton, we take the set of words of the form
afn, where{ fn}n∈IN is the Fibonacci sequence. This language is recognized by a 2-iterated pushdown
automaton as proved in [1]. Here, we give the automaton and a proof of its correctness.

Automaton 1 The2-pushdown automaton recognizing the Fibonacci sequence.

three states:q0, q1 andq2; input word in{a}∗; Γ = {Z,X1,X2,F};
initial state:q0; initial stack:Z[ε]; transition functionδ :

δ (q0,ε ,Z) = {(q0, push2(F)),(q0, push1(X2))}

δ (q0,ε ,ZF) = {(q0, push2(FF)),(q0, push1(X2))}

δ (q0,ε ,X1F) = (q1, pop2)

δ (q0,ε ,X2F) = (q2, pop2)

δ (q0,a,X1) = (q0, pop1)

δ (q0,a,X2) = (q0, pop1)

δ (q1,ε ,X1F) = (q0, push1(X1X2))

δ (q2,ε ,X2F) = (q0, push1(X1))

δ (q1,ε ,X1) = (q0, push1(X1X2))

δ (q2,ε ,X2) = (q0, push1(X1))

The proof is based on the following lemma:

Lemma 1 We have the following relations, for any non-negative k:

(q0,afk ,X2[Fk].ω)⇒∗
δ (q0,ε ,ω)

(q0,afk+1,X1[Fk].ω)⇒∗
δ (q0,ε ,ω)

Proof. It is performed by induction whose basic casek= 0 is easy. If we start from(q0,afk+1,X1[Fk].ω),
we have the following derivation:

(q0,afk+2,X1[Fk+1].ω) ⊢ (q1,afk+2,X1[Fk].ω)

⊢ (q0,afk+2,X1[Fk].X2[Fk].ω) ⊢ (q0,afk,X2[Fk].ω)
by induction hypothesis asfk+2 = fk+1+ fk. And, again by induction hypothesis:

(q0,afk,X2[Fk].ω) ⊢ (q0ε ,ω)

M. Margenstern, K.G. Subramanian 129

Similarly,

(q0,afk+1,X2[Fk+1].ω) ⊢ (q2,afk+1,X2[Fk].ω) ⊢ (q0,afk+1,X1[Fk].ω)

⊢ (q0,ε ,ω),

by induction hypothesis.

Let am be the initial word. With the first two transitions, we guess an integerk such thatm= fk if
any. Then we arrive to the configuration(q0,am,Z[Fk]). Next, we have:

(q0,am,Z[Fk]) ⊢ (q0,am,X2[Fk]).

And by the lemma, we proved that(q0,am,X2[Fk]) ⊢ (q0,ε ,ε) and so, the word is accepted.

We can see that ifm= fk and if we guessed a wrongk, then either the word is not empty when the
store vanishes, and we cannot restore it, or the word is emptyas the store is not. This also shows that if
m 6= fk, as there is in this case a uniquek such thatfk < m< fk+1, we always have either an empty word
and a non-empty store or an empty store with a non-empty word,whatever the guess.

Now, the motivation for taking iterated pushdown automata to recognize this language is that the lan-
guage cannot be recognized by ordinary pushdwon automata, whether deterministic or non-deterministic.
This can be proved by a simple application of Ogden’s pumpinglemma. As the length of the words of
the language has an exponential increasing, it cannot contain words with a linear increasing.

3 The tilings of the hyperbolic plane

We assume that the reader is a bit familiar with hyperbolic geometry, at least with its most popular
models, the Poincarés’s half-plane and disc.

We remember the reader that in the hyperbolic plane, thanks to a well known theorem of Poincaré,
there are infinitely many tilings which are generated by

Figure 1 Left-hand side: the pentagrid. Right-hand side: the heptagrid.

tessellation starting from a regular polygon. This means that, starting from the polygon, we recursively
copy it by reflections in its sides and of the images in their sides. This family of tilings is defined by
two parameters:p, the number of sides of the polygon andq, the number of polygons which can be put
around a vertex without overlapping and covering any small enough neighbourhood of the vertex.

In order to represent the tilings which we shall consider andthe regions whose contour word will
be under study, we shall make use of the Poincaré’s disc model. Our illustrations will take place in
thepentagrid and theheptagrid, i.e. the tilings{5,4} and{7,3} respectively of the hyperbolic plane.
Figures 1 and 2 illustrate these tilings.

130 Hyperbolic tilings and formal language theory

Figure 2 Left-hand side: the pentagrid. Right-hand side: the heptagrid. Note that in both cases, the sectors are
spanned by the same tree.

1
0

1
0
0

1
0
1

1
0
0
0

1
0
0

1
0
1
0

1
0
0
0

1
0
0
0

1
0
0
1

1
0
1
0

1
0
1
01

0 1 0 0 1

1
0
0
0
0

1
0
0
0

1
0
0

1
0

0

1
0

0
0
1

0
1
0

0
1

0
0

1
0
1
0

0

0
1

1
0

1
0
1
0
0
1

1
0
1
0
1
0

1
0

0

0

1
0

0

0
0

1
0

0
0

0

1
0

0
0
0

1
0

0
0
0

1
0
0

0

0

1
0
0

0
0

1
0
0

0
0
0

1
0
0
0

0

1
0
0
0

0
0

1
0
0
0
0

0

1
0
0
0
0
0
1

1
0
0
0
0
0
0

1

1

2 3 4

5 6 7 8 9 10 11 12

13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

1
1 1

1

1 1

1

1

1

1 1

0 1

1 1 1

1
1 1

1

Figure 3 The standard Fibonacci tree. The nodes are numbered from theroot, from left to right on each level and
level after level. For each node, the figure displays the representation of the number of the node with respect to the
Fibonacci sequence, the representation avoiding consecutive1’s.

From Figure 1,the pentagrid and the heptagrid seem rather different. However, there is a tight con-
nection between these tilings which can be seen from Figure 2. In both pictures of the latter figure, we
represent the tiling by selecting a central tile and then, bydisplaying as many sectors as the number
of sides of the central tile. In each case, these sectors do not overlap and their union together with the
central cell gives the tiling of the whole hyperbolic plane.Now, there is a deeper common point: in both
cases, each sector is spanned by a tree which we call a Fibonacci tree for a reason which will soon be
explained.

As proved in [6, 9], the corresponding tree can be defined as follows. We distinguish two kinds of
nodes, say black nodes, labelled byB, and white nodes, labelled byW. Now, we get the sons of a node
by the following rules:B→ BW andW → BWW, the root of the tree being a white node, see Figure 3.
It is not difficult to see that if the root is on level 0 of the tree, the number of nodes on the levelk of the
tree is f2k+1, where{ fk}k∈IN is the Fibonacci sequence withf0 = f1 = 1.

The Fibonacci tree has a lot of nice properties which we cannot discuss here. In particular, there is
a way to locate the tiles of the pentagrid or the heptagrid very easily thanks to coordinates devised from
the properties of the Fibonacci tree, see [6, 9, 10].

M. Margenstern, K.G. Subramanian 131

4 Grammars

As mentioned in the introduction, the tilings considered inSection 3 can be generated by a grammar.
Consider the case of the pentagrid. Then its spanning tree can be generated by the following gram-

mar:

(G0)

symbols:X, Y, Z, C, W, B,
with C, W andB being terminals;
initial symbol: Z;
rules:

Z ⇒CYYYYY
Y ⇒WXYY
X ⇒ BXY

Indeed, in the above rules, the symbol⇒ is interpreted as follows: the tile which is on the left-hand
side of the⇒ is replaced by the set of tiles which is indicated in the right-hand side of the⇒. In all
cases, this right-hand side set of tiles is a finite tree whichconsists of a root with its sons. The root is the
leftmost letter and the sons are the following letters givenin the order in the tree from left to right.

Note that this grammar is deterministic. Also note that the generation process may vary: the replace-
ment of the variables can be performed uniformly level by level, it can be also performed following other
rules. Also note that this grammar allows us to reproduce thetree structure of the tessellation. If we wish
to cover the plane only, we can simplify the grammar to:

(G1)

symbols:X, Y, Z, T,
with T being terminal;
initial symbol: Z;
rules:

Z ⇒ TYYYYY
Y ⇒ TXYY
X ⇒ TXY

In [6], we considered other substitutions as, for instance,this one:

(G2)

symbols:X, Y, Z, C, W, B,
with C, W andB being terminals;
initial symbol: Z;
rules:

Z ⇒CYYYYY
Y ⇒WYXY
X ⇒ BXY

keeping the indication of the tree structure. Here, we obtain a different tree than the one attached to
the previous grammar. However, it spans the same tessellation if we erase the difference betweenC, W
andB.

Now, in [6], we proved that in fact, we have six possible set ofrules, considering that forX we have
two possible rules:

X ⇒ BXY andX ⇒ BYX
and that forY, we have three of them:

Y ⇒ BXYY, Y ⇒ BYXYandX ⇒ BYYX
We also proved that while replacing the variable by a symbol by the application of a rule, we could

switch from one set of rules to another at random: we obtain anuncountable set of trees spanning the

132 Hyperbolic tilings and formal language theory

tessellation but we still obtain the same tessellation, once the colours of the tiles are forgotten.
This process can be described by a single grammar:

(G3)

symbols:X, Y, Z, T,
with C, W andB being terminals;
initial symbol: Z;
rules:

Z ⇒CYYYYY
Y⇒WXYY|WYXY|WYYX
X ⇒ BXY | BYX

This time, the grammar is non-deterministic and this relaxation of determinism allows us to handle
in a more synthetic expression a process which would requiremore elaboration using the single notion
of substitution.

Last remark on the generation of the tessellation: using substitution or grammars, the tessellation
itself is obtained after using infinitely many applicationsof the rules. Finitely many applications always
lead to a finite figure whose size increases with the number of applications.

Also note that if we apply only rules withY, we get binary trees. If we apply only rules withX, we
get six lines ofX with, for eachX-line, a kind of shadow consisting ofY’s.

The grammars(G1) up to(G3) can be generalized to the tilings studied in [2] and [8], the tessellations
{5,3,4} and{5,3,3,4}. This can also be generalized more easily with the tilings{p,4} and{p+2,3}
when p≥ 5. For the same value ofp, the tessellations{p,4} and{p+2,3} are generated by the same
tree which generalizes the Fibonacci tree. The generalizations of(G1) are of the form:

(Gp)

symbols:X, Y, Z, C, W, B,
with C, W andB being terminals;
initial symbol: Z;
rules:

Z ⇒CYp

Y ⇒WXYp−3

X ⇒ BXYp−4

Again, we can definep−3 rules forY andp−4 rules forX and, as above, a non-deterministic gram-
mar which can generate uncountably many trees, each one generating the considered tessellation.

5 Contour words and words along a level

In [11], the first author considered the possibility to definewords by looking at a specific object: the set
of tiles which lie at a given distance from another tile, fixedin advance and once for all.

Fix a tileC which will later be called the central one. A path from a tileT toC is a finite sequenceTi,
0≤ i ≤ n of tiles such thatT0 =C, Tn = T and for alli in [0..n−1], Ti ∩Ti+1 consists of one edge exactly.
Then we say thatn is the length of the path. The distance fromT to C is the shortest length for a path
joining T to C. Clearly, the distance is always defined. Now, a ballB aroundC of radiusρ is the set of
tiles T whose distance toC is at mostρ . The border ofB, centered atC and denoted by∂B is the set of
tiles whose distance toC is the radius ofB.

ConsiderΓ a grammar defined in Section 4. Then, we callΓ-contour word the set of words obtained
by taking the restriction of a tiling generated byΓ with Z at the central tileC on the border of a ball of
radiusn aroundC. As proved in [11], the set of these words is generated by a 2-iterated pushdown au-
tomaton. We reproduce the algorithm which proves this property in Automaton 2. It was also mentioned

M. Margenstern, K.G. Subramanian 133

in [11] that a simple application of Ogden’s pumping lemma shows that the set of these words cannot be
generated by a pushdown automaton.

Figure 4 Levels in the heptagrid.

Automaton 2 The 2-pushdown automaton recognizing the contour word of a ball in the pentagrid or in the
heptagrid.

two states:q0 andq1; input word in{b,w}∗; Γ = {Z,B,W,F};
initial state:q0; initial stack:Z[ε]; transition functionδ :

δ (q0,ε ,Z) = {(q0, push2(F)),(q0, push1(Wα))}

δ (q0,ε ,ZF) = {(q0, push2(FF)),(q0, push1(Wα))}

δ (q0,ε ,WF) = (q1, pop2)

δ (q0,ε ,BF) = (q1, pop2)

δ (q0,b,B) = (q0, pop1)

δ (q0,w,W) = (q0, pop1)

δ (q1,ε ,WF) = (q0, push1(BWW))

δ (q1,ε ,BF) = (q0, push1(BW))

δ (q1,ε ,W) = (q0, push1(BWW))

δ (q1,ε ,B) = (q0, push1(BW))

Now, it was proved in [9] that the set of tiles which are on the same level in a Fibonacci tree belong
to a part of the border of a ball around the root of the Fibonacci tree. Consider again a fixed ball aroundC
and fix one of the finite Fibonacci trees generated aroundC, sayF . We can imagineC as the central tile
in Figure 5. LetB the ball aroundC which containsF and whose border contains the leaves ofF . It is
not difficult to find a tileC1 which is a neighbour ofC and such thatC1 is the root of a Fibonacci treeF1

in the ballB1 aroundC1 containingF . We can assume that, in the same way, the border ofB1 contains
the leaves ofF1.

In Figure 5, left-hand side picture, we have a lineδ1 which passes through the mid-points of consec-
utive edges of heptagons. We defineC1 as the yellow neighbour ofC which is cut byδ1 and which is
aboveC. We can remark thatC is the image ofC1 by a shift along the lineδ1. Now, it is not difficult
to see that the restriction of the tiling toF1 contains the restriction of the tiling toF . We can also see

134 Hyperbolic tilings and formal language theory

that the leaves ofF are contained in those ofF1. In the left-and side picture of Figure 5, the sector
generated by a black tile is delimited by the raya and the lineδ1. The two sectors generated by a white
tile are delimited by the lineδ1 and the rayb and then by the rayb and the raye. A similar convention is
followed for the tree rooted atC1: the raysa1, b1 ande1 play the same role forC1 as the raysa, b ande
for C. From the figure, it is not difficult to see that, by induction,we construct a sequence of tilesCn with
C0 a tile crossed byδ1 and which is fixed once and for all,Cn+1, n≥ 0, is the neighbour ofCn which is
crossed byδ1 and which is defined by the fact that its distance fromC0 is n+1 and by the fact thatCn

is in betweenCn+1 andC0. We defineBn as the ball aroundCn whose border containsC0 andFn is the
Fibonacci tree rooted atCn whose leaves are onBn. This allows us to define a sequence of wordswn

which is the trace of the leaves ofFn: wn is in {B,W}⋆ and the j th letter of wn is B, W, depending on
whether thej th leave ofFn is black, white respectively. The construction shows us that wn is a factor
of wn+1 and we may assume that there are nonempty wordsun andvn such thatwn+1 = unwnvn.

A closer look at the construction indicated in Section 4 shows thatvn = wn and thatun+1 = unwn.
Indeed, the separation betweenun and wnvn = wnwn is materialized byδ1. Note that the separation
between the two occurrences ofwn is not fixed: it moves and tends to infinity as the length ofwn itself
tends to infinity. And so,wn is defined at the same time asun by the two equations:

wn+1 = unwnwn

un+1 = unwn

with initial conditionsu0 = B andw0 =W.

As the lengths ofun andwn tend to infinity, and asδ1 is fixed, we can see from the left-hand side
picture of Figure 5 that the sequence of wordswn tend to a bi-infinite word,i.e. a word whose both ends
tend to infinity.

δ1

C

C1

a

b

e

a1

b1

e1

δ2

C

C1

a
e

b

a1

e1

Figure 5 Heptagrid: construction of bi-infinite words.
Left-hand side: the bi-infinite word associated with the grammar(G1). Right-hand side: the bi-infinite word

associated with the grammar(G2)

In the right-hand side picture of Figure 5, we have a similar construction with the grammar(G2).
Presently, definexn andyn as the words defined by the trace of the leaves of the tree constructed according
to the rules of(G2) with x0 = B andy0 =W. Then, the equations satisfied byxn andyn are:

yn+1 = ynxnyn

xn+1 = xnyn

M. Margenstern, K.G. Subramanian 135

Note that these words are very different from thewn’s and theun’s.

We can see that, this time, the sectors are delimited in a different way: the raysa andb are not on the
same side with respect toδ1. On the figure, we can see that the sectors are delimited as follows: a andδ2

delimit a white sector, thenδ2 and the rayb delimit the black sector and, again, we have a white sector
delimited byb ande. These rays are used for the tree rooted atC. Similar rays,a1, b1 ande1 are used
for the tree rooted atC1: as can be seen on the figure, the tree contains the one defined from C. Note
thatb1 is the continuation ofe. As in the case with the left-hand side picture, this picturealso defines a
bi-infinite word as the limit ofwn.

Note that, in both case,un tends to a limit which is infinite on one side only: this can be seen by the
fact that the black sector is always delimited byδ1 or δ2 and these lines are fixed. The infinite limit is
finite to the left in the case of(G1), it is finite to the right in the case of(G2).

δ1

C

C1

a
b

e

b1

e1

C

C1

a

b

e

δ2

b1

e1

Figure 6 Heptagrid: construction of one-sided infinite words.
Left-hand side: an infinite word associated with the grammar(G1), Right-hand side: an infinite word associ-

ated with the grammar(G2)

In both cases, say thatδ1 andδ2 areseparators: δ1 separatesun from wnwn for eachn; δ2 separates
yn from xnyn.

Figure 6 illustrates a similar construction leading to an infinite limit for wn which is infinite on one
side only. The raysa, b ande play similar roles with the linesδ1 or δ2 as in the Figure 5. Note that in
the left-hand side picture,a1 is not mentioned as it contains the rayb. In the right-hand side picture, the
ray a1 coincide with the raye. From the picture, it is clear that this time the limit ofwn and that ofyn

are both infinite to the right. In the case of(G1), the limit of un is also infinite to the right only. In the
right-hand side picture, we can see that the different termsxn are disjoint. However, each one is the same
asiun with the same index in the left-hand side picture: accordingly, the limit is the same.

Other constructions of the same type, with again a fixed separator between both occurrences ofwn in
the case ofG1 and in betweenun andwn in the second case lead to different pictures and to other infinite
words. We leave them as an exercise to the reader.

Acknowledgment

The second author acknowledges support by the project Université de la Grande Région UniGR that
enabled his visit during February 2013, in particular at LORIA, Université de Lorraine, France.

136 Hyperbolic tilings and formal language theory

References

[1] S. Fratani G. Sénizergues (2006):Iterated pushdown automata and sequences of rational numbers. Annals
of pure and applied logic141, pp. 363–411, doi:10.1016/j.apal.2005.12.004.

[2] M. Margenstern G. Skordev (2003):Tools for devising cellular automata in the hyperbolic 3D space. Fun-
damenta Informaticae58(2), pp. 369–398.

[3] C. Goodman-Strauss (2009):Regular production systems and triangle tilings. Theoretical Computer Science
410, pp. 1534–1549, doi:10.1016/j.tcs.2008.12.012.

[4] S. Greibach (1970):Full AFL’s and nested iterated substitution. Information and Control16(1), pp. 7–35,
doi:10.1016/s0019-9958(70)80039-0.

[5] A.V. Kelarev (2003):Graph Algebras and Automata. Marcel Dekker, New York.

[6] M. Margenstern (2000):New Tools for Cellular Automata of the Hyperbolic Plane. Journal of Universal
Computer Science6(12), pp. 1226–1252, doi:10.3217/jucs-006-12-1226.

[7] M. Margenstern (2002):Tiling the hyperbolic plane with a single pentagonal tile. Journal of Universal
Computer Science8(2), pp. 297–316, doi:10.3217/jucs-008-02-0297.

[8] M. Margenstern (2004):The tiling of the hyperbolic4D space by the 120-cell is combinatoric. Journal of
Universal Computer Science10(9), pp. 1212–1238, doi:10.3217/jucs-010-09-1212.

[9] M. Margenstern (2007):Cellular Automata in Hyperbolic Spaces, volume I : Theory, first edition.Advances
in Unconventional Computing and Cellular Automata, Editor: Andrew Adamatzky1, Old City Publishing-
Édition des archives contemporaines, Philadelphia, PA, USA - Paris, France.

[10] M. Margenstern (2008):Cellular Automata in Hyperbolic Spaces, volume II : Implementation and Com-
putations, first edition. Advances in Unconventional Computing and Cellular Automata, Editor: Andrew
Adamatzky2, Old City Publishing-́Edition des archives contemporaines, Philadelphia, PA, USA - Paris,
France.

[11] M. Margenstern (2012):An Application of Iterative Pushdown Automata to Contour Words of Balls and
Truncated Balls in Hyperbolic Tessellations. ISRN Algebra2012, p. 14p, doi:10.5402/2012/742310.

[12] A.N. Maslov (1974):The hierarchy of indexed languages. Soviet Mathematics, Doklady15, pp. 1170–1174.

http://dx.doi.org/10.1016/j.apal.2005.12.004
http://dx.doi.org/10.1016/j.tcs.2008.12.012
http://dx.doi.org/10.1016/s0019-9958(70)80039-0
http://dx.doi.org/10.3217/jucs-006-12-1226
http://dx.doi.org/10.3217/jucs-008-02-0297
http://dx.doi.org/10.3217/jucs-010-09-1212
http://dx.doi.org/10.5402/2012/742310

	1 Introduction
	2 Iterated pushdown automata
	2.1 Iterated pushdown stores
	2.2 Iterated pushdown automata
	2.3 An example: the Fibonacci sequence

	3 The tilings of the hyperbolic plane
	4 Grammars
	5 Contour words and words along a level

