About Strongly Universal Cellular Automata

Maurice Margenstern
(Université de Lorraine)

In this paper, we construct a strongly universal cellular automaton on the line with 11 states and the standard neighbourhood. We embed this construction into several tilings of the hyperbolic plane and of the hyperbolic 3D space giving rise to strongly universal cellular automata with 10 states.

In Turlough Neary and Matthew Cook: Proceedings Machines, Computations and Universality 2013 (MCU 2013), Zürich, Switzerland, 9/09/2013 - 11/09/2013, Electronic Proceedings in Theoretical Computer Science 128, pp. 93–125.
Published: 4th September 2013.

ArXived at: http://dx.doi.org/10.4204/EPTCS.128.17 bibtex PDF
References in reconstructed bibtex, XML and HTML format (approximated).
Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org