
A. Petrenko, H. Schlingloff (Eds.): Eighth Workshop on
Model-Based Testing (MBT 2013)
EPTCS 111, 2013, pp. 35–50, doi:10.4204/EPTCS.111.4

c© Isabel Nunes & Filipe Luı́s
This work is licensed under the
Creative Commons Attribution License.

Testing Java implementations of algebraic specifications

Isabel Nunes
Faculty of Sciences, University of Lisbon

Lisboa, Portugal
in@di.fc.ul.pt

Filipe Luı́s
Faculty of Sciences, University of Lisbon

Lisboa, Portugal
fluis@di.fc.ul.pt

In this paper we focus on exploiting a specification and the structures that satisfy it, to obtain a means
of comparing implemented and expected behaviours and find the origin of faults in implementations.
We present an approach to the creation of tests that are based on those specification-compliant struc-
tures, and to the interpretation of those tests’ results leading to the discovery of the method respon-
sible for an eventual test failure. Results of comparative experiments with a tool implementing this
approach are presented.

1 Introduction

The development and verification of software programs against specifications of desired properties is
growing weight among software engineering methods and tools for promoting software reliability. In par-
ticular, finding the software element containing a given fault is highly desirable and several approaches
exist that tackle this issue, that can be quite different in the way they approach the problem.

ConGu [14, 15] is both an approach and a tool for the runtime verification of Java implementations of
algebraic specifications. It verifies that implementations conform to specifications by monitoring method
executions in order to find any violation of automatically generated pre and post-conditions.

The ConGu tool [7] picks a module of axiomatic specifications, together with a Java implementation
and a refinement that maps specifications to Java types, and responds to an erroneous implementation by
outputing the specification constraint that was violated; this is often insufficient to find the faulty method,
because all methods involved in the violated constraint become equally suspect.

A ConGu companion tool – the GenT tool [3, 4] – generates JUnit test cases from ConGu specifi-
cations. Generating test cases that are known to be comprehensive, i.e. that cover all constraints of the
specification, as GenT does, is a very important activity, because the confidence we may gain on the
correction of the software we use greatly depends on it. But, in order for these tests to be of effective use,
we should be able to use their results to localize the faulty components. Here again, executing the JUnit
tests generated by GenT fails to give the programmer clear hints about the faulty method – all methods
used in failed tests are suspect. The ideal result of a test suite execution would be the exact localization
of the fault.

In this paper we enrich ConGu, by giving it the capability of locating the methods that are responsible
for detected faults. We present a technique that builds upon structures satisfying the specification to
obtain a means to observe the implemented behaviour against the intended one, and to locate faulty
methods in implementations. Unlike several existing approaches, ours does not inspect the executed
code; instead, it exploits the specification and conforming structures in order to be able to interpret some
failures and discover their origin.

A tool was built – the Flasji tool – that implements the presented technique, and a comparative exper-
iment was undertaken to evaluate its results. A summary of these results, which were very encouraging,
is presented in this paper.
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Figure 1: Overview of the Flasji approach.

The unit of fault Flasji is able to detect is the method, leaving to the programmer the task of identi-
fying the exact instruction within it that is faulty. If more than one fault exists, the repeated application
of the process, together with the correction of the identified faulty method, should be adopted. In what
concerns integration testing strategy, Flasji applies an incremental one in the sense that the Java types
implementing the specification are not tested all together; instead, each one is tested conditionally, pre-
suming all others from which it depends are correctly implemented. This incremental integration is
possible since the overall specification is given as a structured collection of individual specifications
(a ConGu module), whose structure is matched by the structure of the Java collection of classes that
implements it.

The remainder of the paper is organized as follows: section 2 introduces the ConGu specification
language through an example that will be used throughout the paper, and gives an overview of the Flasji
approach; section 3 details every Flasji step, from picking a specification module and corresponding
implementation, to the identification of the faulty method, explaining the several items Flasji produces;
an evaluation experiment of the Flasji tool is presented in section 4 where results are compared with the
ones obtained using two other tools; in section 5 we focus our discussion on relevant aspects related to
the work presented in this paper; finally, section 6 concludes.

2 Approach Overview

In this section we give a general overview of the Flasji approach. An example is introduced that will be
used throughout the paper.

2.1 The approach in a nutshell

As illustrated in figure 1, the Flasji approach integrates a series of steps from an initial input comprising
a module of ConGu specifications and corresponding Java implementations (together with a mapping
defining correspondences between the two), to a final output comprising the method identified as the
one containing the fault, whenever possible, and a list of other methods suspect of being faulty. The
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whole process leading from the initial input to the final output is automated, without any further user
intervention.

The main strategy underlying the Flasji process is the comparison between what we call “abstract”
and “concrete” objects; the former are objects that are well-behaved in the sense that they conform
to the specification, while the latter are objects that behave according to the classes implementing the
specification, which we want to investigate for faults.

We capitalize on the Alloy Analyzer [1] tool which is capable of finding structures that satisfy a
collection of constraints – a specification. The specifications this tool works with are written in the
Alloy [11] language.

Flasji begins by translating the ConGu specification module into an Alloy specification, in order
to be able to, in a posterior phase, generate structures satisfying it. It then creates Java classes whose
instances will represent objects satisfying the specification (the “abstract” objects) – these classes are
called “mock” classes; in order for “abstract” objects to represent structures that satisfy the specification,
they are given the ability of storing and retrieving the results of applying each and every operation of the
specification, as will be seen later.

A third step feeds the Alloy Analyzer tool with the specification, asking the tool for a collection of
structures satisfying the specification. This collection will be used in the next step to define the abstract
objects, which will present the expected, correct, behaviours.

In a fourth step, a test class is created that contains instructions to instantiate both the mock classes
and the implementation classes given as input, and to compare the behaviour of the “concrete” objects
against the “abstract” ones, in order to identify the faulty method. Flasji then executes this test class and
interprets its results to obtain the faulty method.

Remember that all these steps are automatically processed, thus transparent to the Flasji user. Sec-
tion 3 describes them in detail.

2.2 A specification and corresponding implementation

Simple sorts, sub-sorts and parameterized sorts can be specified with the ConGu specification language,
and mappings between those sorts and Java types, and between those sorts’ operations and Java methods,
can be defined using the ConGu refinement language.

We present a classical yet rich example, of a ConGu specification of the SortedSet parameterized
data type, representing a set of Orderable elements, together with the specification for its parameter
(figure 2).

In a specification, we define constructors, observers and other operations, where constructors com-
pose the minimal set of operations that allow to build all instances of the sort, observers can be used
to analyse those instances, and the other operations are usually comparison operations or operations de-
rived from the others; depending on whether they have an argument of the sort under specification (self
argument) or not, constructors are classified as transformers or creators (transformers are also referred
to as non-creator constructors).

All operations that are not constructors must have a self argument. Any function can be partial (de-
noted by→?), in which case a domains section specifies the conditions that restrict their domain. Axioms
define every value of the type through the application of observers to constructors – see, e.g., the axiom
isEmpty(empty()); that specifies that the result of applying the observer operation isEmpty to a SortedSet
instance obtained with the creator constructor empty is true, and the axiom not isEmpty(insert(S, E));
saying that the result of applying isEmpty to any SortedSet instance to which the transformer constructor
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specification SortedSet[TotalOrder]
  sorts
    SortedSet[Orderable]
  constructors
    empty: --> SortedSet[Orderable];
    insert: SortedSet[Orderable] Orderable --> SortedSet[Orderable];
  observers
    isEmpty: SortedSet[Orderable];
    isIn: SortedSet[Orderable] Orderable;
    largest: SortedSet[Orderable] -->? Orderable;
    ...
  domains
    S: SortedSet[Orderable];
    largest(S) if not isEmpty(S);
  axioms
    E, F: Orderable;  S: SortedSet[Orderable];
    isEmpty(empty());
    not isEmpty(insert(S, E));
    not isIn(empty(), E);
    isIn(insert(S,E), F) iff E = F or isIn(S, F);
    largest(insert(S, E)) = E if isEmpty(S);
    largest(insert(S, E)) = E if not isEmpty(S) and geq(E, largest(S));
    largest(insert(S, E)) = largest(S) if 
                             not isEmpty(S) and not geq(E, largest(S));
    ...
end specification

specification TotalOrder 
  sorts
    Orderable
  observers
    geq: Orderable Orderable;
  axioms
    E, F, G: Orderable;     
    E = F if geq(E, F) and geq(F ,E); 
    geq(E, F) if E = F;
    ...                                
end specification

Figure 2: Parts of the ConGu specifications for the SortedSet parameterized data type and its parameter.

public interface IOrderable<E> {
boolean greaterEq(E e);

 }

public class TreeSet<E extends IOrderable<E>> {
public TreeSet() {...}
public void insert(E e) {...}
public boolean isEmpty() {...}
public boolean isIn(E e) {...}
public E largest() {...}
...

 }

Figure 3: Excerpt from a Java implementation of the ConGu specification for SortedSet.

insert has been applied is false .
Generic Java class TreeSet in figure 3 represents a Java implementation of the SortedSet param-

eterized data type; in the same figure, interface IOrderable represents a Java type restraining the
TreeSet parameter. We want to investigate the TreeSet class for faults, independent of any specific
implementation of its parameter type.

The correspondence between ConGu and Java types must be defined in order for implementations
to be checked. This correspondence is described in terms of refinement mappings; figure 4 shows a
refinement mapping from the specifications SortedSet and TotalOrder (figure 2) to Java types TreeSet
and IOrderable (figure 3).

These mappings associate ConGu sorts and operations to Java types and corresponding methods.
The insert operation of sort SortedSet is mapped to the TreeSet class method with the same name
with the signature void insert(E e). Notice that the TotalOrder parameter sort is mapped to a Java
type variable that is used as the parameter of the generic TreeSet implementation; this specific mapping
is interpreted as constraining any instantiation of the TreeSet parameter to a Java type Some containing
a method with signature boolean greaterEq(Some e).

Detailed information about the ConGu approach can be found in [14, 15].
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refinement <E>  
  SortedSet[TotalOrder] is TreeSet<E> {
     empty: --> SortedSet[Orderable] is TreeSet();
     insert: SortedSet[Orderable] e:Orderable --> SortedSet[Orderable] is void insert(E e);
     ...
  }
  TotalOrder is E { 
     geq: Orderable e:Orderable is boolean greaterEq(E e);
  }
end refinement

Figure 4: Refinement mapping from ConGu specifications to Java types.

3 Flasji step-by-step

As already said in the previous section, the main goal of the Flasji approach is to verify whether “con-
crete” Java objects behave the same as corresponding “abstract” ones; the deviations to the expected
behaviour are interpreted in order to find the location of the faulty method.

Only one of the implementing classes is under verification – the core type, that is, the one that
implements the core sort –, which is the one at the root of the class association graph (the TreeSet

class in the example). Thus, both “abstract” and “concrete” objects will be created for this type, in order
to compare behaviours. This does not apply for non-core types since they are not under verification.
However, as we shall see, “abstract” parameter objects must be created.

Let us now detail the several steps of the Flasji approach.

3.1 Translating the ConGu specification module

Flasji creates an Alloy specification equivalent to the ConGu specification module, in order to be able,
ahead in the process, to obtain a collection of objects that conform to the specification, thus defining
expected, correct behaviour.

This step capitalizes on already existing work, referred to in the introduction of this paper, namely
the GenT tool [3, 4], of which Flasji uses the ConGuToAlloy module.

3.2 Creating mock classes

Flasji creates mock classes for the Java types implementing the specification core and parameter sorts;
these classes’ instances will represent the “abstract” objects. In the running example, two mock classes
must be created, one corresponding to the TreeSet class – TreeSetMock –, and other corresponding
to the IOrderable interface – OrderableMock.

This mock class will be used to generate parameter objects that will be inserted not only in “ab-
stract” sorted sets (TreeSetMock instances as explained below), but also in “concrete” ones (TreeSet
instances); the idea, as said before, is to test the implementation of the core signature for any parameter
instantiation that correctly implements the Orderable sort.

Each instance of a mock class defines an object conforming to the specification, including its “be-
haviour”, that is, the results of applying to it all the operations of the type (respecting the corresponding
domain conditions). Since we only compare “abstract” and “concrete” objects of the core type, funda-
mental differences exist between the mock class for this core type and the others. Let us see first the
mock class for the Orderable parameter of the running example, which is a non-core type.
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1 public class OrderableMock implements IOrderable〈OrderableMock〉{
2 private HashMap〈OrderableMock, Boolean〉 greaterEqResult = new HashMap〈OrderableMock,

Boolean〉();
3 public boolean greaterEq(OrderableMock e) {
4 return greaterEqResult.get(e);}
5 public void add_greaterEq(OrderableMock e, Boolean result) {
6 greaterEqResult.put(e, result);
7 }
8 }

Listing 1: Mock class corresponding to the Orderable parameter sort.

For each method X corresponding to a specification operation X, an attribute is defined to keep the
information about the results of X, for every combination of the method’s parameters (see line 2 for the
method greaterEq in interface Iorderable, corresponding to operation geq in sort Orderable); the
add_X method “fills” that attribute (lines 5 and 6), and the X method retrieves the result for given values
of the method’s parameters (lines 3 and 4).

The class that represents “abstract” objects of the core type (class TreeSetMock in the example)
is also generated. The idea here is not to use these “abstract” objects on both abstract and concrete
contexts, as we do with parameter ones, but to use them to inform us, for every operation, of the results
we should expect when applying corresponding methods to corresponding “concrete” objects in order to
verify whether the latter behave as they should.

The fundamental difference lies in the information that core type “abstract” objects keep for opera-
tions whose result is of the core type ( insert in the example). Since we want to be able to know whether
the “concrete” TreeSet object that results from applying the insert method of the TreeSet class to
a “concrete” object concObj is the correct one, we give the corresponding “abstract” object absObj
information that allows us to verify it – we “feed” absObj with the “concrete” object that should be
expected when applying that operation. Ahead in this paper we show how this is achieved; for now, we
just present the TreeSetMock mock class in listing 2, where attribute and methods in lines 19 to 24
allow “abstract” objects to keep and inform about “concrete”, expected results of applying insert for
different values of the method’s parameter:

1 public class TreeSetMock 〈T〉{
2

3 // operations whose result is of a non-core type
4 private HashMap〈T,Boolean〉 isInResult = new HashMap〈T,Boolean〉();
5 private boolean isEmptyResult;
6 private T largestResult;
7

8 public boolean isIn (T e){return isInResult.get(e);}
9 public void add_isIn (T e, Boolean result){

10 isinResult.put(e, result);}
11 public boolean isEmpty(){return isEmptyResult;}
12 public void add_isEmpty(boolean result){
13 isEmptyResult = result;}
14 public T largest(){return largestResult;}
15 public void add_largest(T result){
16 largestResult = result;}
17

18 // operation whose result is of the core type
19 private HashMap〈T,TreeSet〈T〉 〉 insertResult = new HashMap〈T,TreeSet〈T〉 〉 ();
20

21 public TreeSet〈T〉 insert (T e){
22 return insertResult.get(e); }
23 public void add_insert (T e, TreeSet〈T〉 concVal){
24 insertResult.put(e, concVal); }
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25 }

Listing 2: Mock class corresponding to the SortedSet sort.

Line 19 declares and initializes the attribute that will store the information about the results of method
insert – for each value of the parameter T e, it will store a “concrete” object. Methods insert and
add_insert, in lines 21 to 24, allow to retrieve and define, respectively, the result of insert for every
value of the operation’s parameter.

Figure 5: A structure satisfying the SortedSet specification module, found by the Alloy Analyzer.

3.3 Obtaining a collection of instances satisfying the specification

In order to obtain a collection of instances of the specification sorts that conform to our specification,
Flasji capitalizes on the Alloy Analyzer tool [11] which, if such a finite collection exists, is capable of
generating it (such a finite collection does not exist e.g. in the case of a specification of an unbounded
stack).

The results presented in this paper assume Flasji asks the Alloy Analyzer to generate a structure
with a fixed number of objects of the core type; work is under way to optimize the determination of the
number of objects that should be considered of each type.

Figure 5 shows an example for the SortedSet specification. This collection consists of 2 Orderable
instances and 4 SortedSet ones. The result of every applicable operation is defined for each of these
instances (e.g. SortedSet2 contains the two Orderables, and it is obtained by inserting Orderable0 into
SortedSet0 or else from inserting Orderable1 into SortedSet1).

These instances define correct, expected behaviour; in the next steps, Flasji will use the non-core
sort ones (Orderable instances in the example) to create mock “abstract” objects that will represent well-
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behaved objects, and uses the core sort ones (SortedSet instances in the example) to create mock “ab-
stract” objects (TreeSetMock and “concrete” corresponding ones (TreeSet instances in the example)
instances in the example) that will be compared. Let us see how.

3.4 Creating the test class

Flasji generates a test class containing instructions to:
1. create “abstract” objects corresponding to the objects composing the Alloy structure that conforms

to the specification;

2. create “concrete” objects of the core type that correspond to the “abstract” ones (by using the
corresponding concrete constructors); and

3. compare the behaviour of these “abstract” and “concrete” objects, by observing them in equal
circumstances, that is, by applying corresponding methods and comparing the results.

By compiling and executing this test class, Flasji will be able to get information that it will interpret
in order to find the faulty method, as explained ahead. First let us see how Flasji acomplishes this test
class creation task.

3.4.1 Creating abstract objects

Listing 3 shows part of the generated test class, namely the creation of the “abstract” objects according
to the Alloy structure defined in figure 5: two OrderableMock instances (lines 4 and 5) and four
TreeSetMock ones (lines 11 to 14).

Lines 6 to 9 show OrderableMock objects being initialized – because the only method of this
type is greaterEq, only the method add_greaterEq is invoked over each “abstract” object, for every
possible value of its parameter, in order to give these objects the information about the expected, correct,
results.

We postpone the initialization of the TreeSetMock objects because it implies previous creation of
the corresponding concrete objects.

1 @Test
2 public void abstractVSconcreteTest () {
3 //IOrderable Mocks
4 OrderableMock orderable0 = new OrderableMock();
5 OrderableMock orderable1 = new OrderableMock();
6 orderable0.add_greaterEq(orderable0, true);
7 orderable0.add_greaterEq(orderable1, true);
8 orderable1.add_greaterEq(orderable0, false);
9 orderable1.add_greaterEq(orderable1, true);

10 //Abstract objects TreeSet
11 TreeSetMock 〈OrderableMock〉 sortedSet3 = new TreeSetMock 〈OrderableMock〉();
12 TreeSetMock 〈OrderableMock〉 sortedSet0 = new ...;
13 TreeSetMock 〈OrderableMock〉 sortedSet1 = new ...;
14 TreeSetMock 〈OrderableMock〉 sortedSet2 = new ...;

Listing 3: (Part of) the test class – building the “abstract” objects (incomplete).

3.4.2 Creating concrete objects

Flasji also builds “concrete” objects for the core sort. For each “abstract” object of the core sort there will
exist a corresponding “concrete” one, which will be built using the corresponding constructor methods
(see listing 4).
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For example, according to the structure in figure 5, the sortedSet0 instance of sort SortedSet can
be obtained by application of the creator constructor empty followed by application of the transformer
constructor insert with parameter orderable1; complying with this (see lines 7 and 8), we build the corre-
sponding “concrete” object concSortedSet0 using the java constructor TreeSet〈OrderableMock〉(),
which corresponds to the creator constructor empty, and apply to it the method insert, which corre-
sponds to the transformer constructor insert , with parameter orderable1. Whenever there are several
ways to build an object, the shortest path is chosen.

1 @Test
2 public void abstractVSconcreteTest () {
3 ...
4 //Create concrete objects TreeSet
5 TreeSet〈OrderableMock〉 concSortedSet0 = new TreeSet 〈OrderableMock〉();
6 concSortedSet0.insert(orderable1);
7 TreeSet〈OrderableMock〉 concSortedSet0_1 = new ...;
8 concSortedSet0_1.insert(orderable1);
9 ...

10 TreeSet〈OrderableMock〉 concSortedSet0_5 = new ...;
11 concSortedSet0_5.insert(orderable1);
12 // three more to go (concSortedSet3, 1 and 2)...

Listing 4: Continuing... building the “concrete” objects (incomplete).

Notice that, since methods will be applied to these “concrete” objects in order to verify their be-
haviour, as many copies of a given “concrete” object are created as methods applied to it, in order to
cope with undesired side effects.

3.4.3 Back to abstract objects

Now that “concrete” objects are already created, we can initialize the TreeSetMock objects:
1 @Test
2 public void abstractVSconcreteTest () {
3 ...
4 //Initializing sortedSet abstract objects
5 sortedSet0.add_isEmpty(false);
6 sortedSet0.add_largest(orderable1);
7 sortedSet0.add_isIn(orderable0, false);
8 sortedSet0.add_isIn(orderable1, true);
9 sortedSet0.add_insert(orderable0, concSortedSet2);

10 sortedSet0.add_insert(orderable1, concSortedSet0);
11 // three more to go (sortedSet3, 1 and 2)...

Listing 5: Continuing... initializing TreeSetMock objects.

Lines 5 to 8 “feed” the sortedSet0 object with the information that it represents a sorted set that
is not empty, whose largest element is the orderable1 object, and that it contains orderable1 but
not orderable0, as would be expected by inspection of the structure in figure 5. In the case of ob-
ject sortedSet3, which is empty as can be seen in figure 5, the instruction invoking the method
add_largest() over it would not be generated, since the operation largest is undefined for that
object.

These informations will be used later on to obtain the values that are expected to be the results of the
corresponding methods when applied to the “concrete” object corresponding to sortedSet0, which, by
construction, is concSortedSet0 (or any of its copies).

Line 9 “feeds” sortedSet0 with the information about which “concrete” object should be expected
after inserting orderable0 in the “concrete” object that corresponds to sortedSet0 (concSortedSet0
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or any of its copies) – the expected result is concSortedSet2. In the same way, in line 10, the expected
result of inserting orderable1 in the “concrete” object that corresponds to sortedSet0 is defined to
be itself.

3.4.4 Comparing abstract and concrete objects

In a next step, Flasji generates instructions in the test class that invoke all possible operations over the
“abstract” and “concrete” objects and compare the results:

1 @Test
2 public void abstractVSconcreteTest () {
3 ...
4 //Compare concrete with corresponding abstract
5 assertTrue(concSortedSet0_1.isEmpty() == sortedSet0.isEmpty());
6 assertTrue(concSortedSet0_2.largest() == sortedSet0.largest());
7 assertTrue(concSortedSet0_3.isIn(orderable1) == sortedSet0.isIn(orderable1));
8 assertTrue(concSortedSet0_4.isIn(orderable0) == sortedSet0.isIn(orderable0));
9 concSortedSet0_5.insert (orderable1);

10 assertTrue(concSortedSet0_5.equals(sortedSet0.insert (orderable1)));
11 //three more to go (concSortedSet3, 1 and 2)...

Listing 6: Continuing... comparing “abstract” and “concrete” objects (incomplete).

The JUnit method assertTrue is used to generate an AssertionError exception whenever the
behaviour of the “concrete” objects is not as expected, that is, whenever the results of methods invoked
over “concrete” objects are different from the ones indicated by their “abstract” counterparts.

Lines 5 to 8 show the comparison between the sortedSet0 “abstract” object and its “concrete”
counterpart concSortedSet0 using each TreeSet method whose result type is not TreeSet nor
void. Since all these results are of primitive types or of the parameter type OrderableMock, Flasji
uses == to compare between sortedSet0 and concSortedSet0 results.

Lines 9 and 10 show the comparison between “abstract” and “concrete” objects using (the only)
operation with a core result type – insert. As already referred, to verify whether a given operation
whose result is of the core type is well implemented, we compare the “concrete” object the method
returns, with the “concrete” object that it should return. Since insert is implemented with a void
result type, we must first invoke the method using the “concrete” object as a target, and then we compare
(using equals) its new state with the “concrete” object that, according to the “abstract” corresponding
object, should be the correct result.

Since the ultimate goal of this test class is to find the method containing the fault, it should be possible
to reason about the results of all these comparisons, so we must be able to test all the assert commands.
Although we do not show it in this paper due to space limitations, enclosing each assertTrue invo-
cation in a try-catch block that catches AssertionError exceptions, allows to collect all results
which will help composing a final test diagnosis.

A final note before continuing: whenever the module of Congu specifications input to Flasji includes
more than one non-parameter type, e.g., the case where the input includes a core sort C and one non-
core, non-parameter sort N, the class implementing C is verified for faults considering that the class
implementing N is correct. No mock class is built for N, hence no “abstract” N objects are created; only
“concrete” N objects are. For methods that return N type results, “abstract” C objects are “fed” with the
information about which N “concrete” object should be the expected result. Thus, comparison between
actual and expected results relating these methods are achieved using equals. The running SortedSet
example does not cover this kind of situation.
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3.5 Running the test and interpreting the results

As soon as the test class is generated, Flasji compiles it and executes it. Then, it interprets the results of
the tests. The interpretation is based upon the following observations:

1. whether several and varied observers (non-constructor operations) fail or only one fails – this is
important to decide whether to blame a constructor or a given, specific, observer;

2. whether varied observers fail when applied to “concrete” objects created only by the constructor-
creator, or when applied to objects that were also the target of non-creator constructors – this is
important to decide which constructor is the faulty one.

The result interpretation algorithm inspects three data structures containing data collected during the
execution of the test (whenever an assertTrue command fails):

• L1 - Set of pairs < obs;ob j > that register that differences occurred between expected and actual
behaviour, for given observer obs and object ob j;

• L2 - Set of pairs < ncc;ob j > that register that differences occurred between expected and actual
behaviour, for given non-creator (transformer) constructor ncc and object ob j;

• L3 - Set of pairs < cc;n > that register for every creator constructor cc the number of failed
observations over objects uniquely built with cc;

If, when applied to concrete objects, more than one observer methods present results that are different
from the ones expected ((L1 ∪ L2) contains pairs for more than one observer), we may infer that the
method(s) used to build those concrete objects are ill-implemented, and that the problem does not come
from some particular way of inspecting the objects. If the implementation of a given observer is wrong,
one would not expect problems when inspecting the objects using the other observers, but only in the
observations involving that particular one.

If a constructor-creator cc (in the running example, TreeSet() is the cc that implements the empty
creator operation) is faulty, it is reasonable to think that the application of the other constructors over an
object created with cc will most probably result in non-conformant objects, because the initial object is
already ill-built. The information in L3 allows us to focus on creator-constructors.

When no problems arise when observing a freshly created object, but they do arise when observ-
ing those objects after being affected by a given non-creator constructor ncc (insert in the running
example), then one may point the finger to ncc.

if (L1∪L2) contains pairs for more than 1 observer, then
if there exists < cc, i > in L3 with i > 0, then

if that pair < cc, i > with i > 0 is unique, then
cc is guilty;

else
inconclusive;

endIf
else

for each non-creator constructor ncc j do
Lncc j← sub-set of L2 containing only pairs from L2 whose first element is ncc j;
Delete from Lncc j the pairs whose ob j was not built using only ncc j and a creator constructor;
if Lncc j is not empty, then
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add ncc j to the final set of suspects (FSS);
endIf

endFor
endIf
if #FSS = 1 then

the guilty is the sole element of FSS;
else

inconclusive;
endIf

else
if (L1∪L2) is empty, then

inconclusive;
else

the guilty is the sole observer in (L1∪L2);
endIf

endIf
If the algorithm elects a guilty method in the end, then the user is given the identified method as the

most probable guilty. In either case, the set FSS of (other) suspects is presented.

4 Evaluation

To evaluate the effectiveness of our approach, we applied it to two case studies – this paper’s SortedSet
running example, and a MapChain specification module and corresponding implementations. The Java
classes implementing the designated sorts of both case studies where seeded with faults covering all the
specification operations.

We put Flasji to run for every defective class, and registered the outputs.
We also tested those defective classes in the context of two existing fault-location tools – GZoltar [2,

17] and EzUnit4 [5, 18] –, that give as output a list of methods suspect of containing the fault, ranked
by probability of being faulty. The tests suites we used were generated by the GenT [3, 4] tool (already
referred to in this paper), from the ConGu specifications and refinement mappings; under given restric-
tions (e.g., the specification has finite models) GenT generates comprehensive test suites, that cover all
specification axioms. GenT generated 20 test cases for the SortedSet case, and 17 for the MapChain one.

Finally we compared the three tools’ results for every defective variation of each case study.
For each of the defective versions of the designated sorts implementations (for example, two different

faults were seeded in SortedSet isEmpty method, three in MapChain get method, etc) table 1 shows:
• the number of tests (among the 20 JUnit tests that were generated by GenT for the SortedSet case,

and 17 for the MapChain one) that failed when both GZoltar and EzUnit4 run them;

• whether the faulty method was ranked, by each tool, as most probable guilty (1st), second most
probable guilty (2nd) or third or less probable (nth). A fourth type of result – “No” – means the
guilty method has not been ranked as suspect at all.

Flasji provided very accurate results in general (see also a summary in figure 6). The bad results in
the three faults for method get of the MapChain case study (there were no suspects found whatsoever)
are due to the fact that equals uses the get method, therefore becoming unreliable whenever method
get is faulty. This case exemplifies the oracle problem (see section 5).
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Faulty method ranked:
Faulty method failed tests Flasji EzUnit4 GZoltar

S
or

te
dS

et

isEmpty 5 1st nth 2nd
isEmpty 1 1st 1st 2nd
isIn 1 1st nth 1st
largest 7 1st 1st 1st
largest 1 1st 1st 2nd
private insert 2 No nth 2nd
public insert 5 1st nth 2nd

M
ap

C
ha

in

get 4 No nth 1st
get 3 No 2nd 1st
get 4 No nth nth
isEmpty 2 1st 2nd 1st
isEmpty 1 1st nth 1st
put 0 1st No No
put 1 1st 1st 2nd
put 2 1st 1st 2nd
remove 1 1st 2nd 2nd
remove 1 1st 2nd 2nd

Table 1: Results of comparative experiments. “1st”, “2nd” and “nth” stand for first, second and third or
worse, respectively. “No” means the faulty method has not been ranked as suspect.

Applying an alternative method of observation (see [16]) – one where the equals method is not used
and, instead, only the outcomes of observers whose result is not of the core sort are used in comparisons
– we obtain the right results for this case, i.e. get is ranked as prime suspect. However, the good results
we had for the 3rd faulty put method and the 1st remove got worse – they are ranked second instead of
first. These particular cases indicated isEmpty as prime suspect because the seeded fault of both those
methods was the absence of change in the number of elements in the map whenever insertion/removal
happens, which made isEmpty fail.

85% 70%

28% 40%

43% 20%

Flasji

GZoltar

EzUnit4

the faulty method was
ranked as first suspect in
SortedSet case study

the faulty method was
ranked as first suspect in
MapChain case study

Figure 6: Summary of the evaluation experiment. The bars measure the success of each approach in
ranking the faulty method as first suspect.

Another critical issue w.r.t. our approach is the one concerned with private methods. The fault in
private method insert of the SortedSet case study, caused Flasji to rank the public insert method,
instead, as the most probable suspect (in the particular implementation used, the public insert method
is composed of one only statement which invokes the private insert method). As expected, private
methods are not identified as suspects by Flasji because they do not directly refine any specification
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operation (as defined in the refinement mapping from specifications to implementations); instead, the
public, specified, methods that invoke them are identified.

A case worth mentioning is the one corresponding to the first seeded fault in the put method of
the MapChain case study, where none of the seventeen GenT tests fail (the particular case that causes
the error was not covered). As a consequence, neither EzUnit4 and GZoltar detected the fault; on the
contrary, Flasji succeeded in detecting the guilty method.

5 Related work

The approach presented in this paper relies on the existence of structures satisfying the specification
to supply the behaviour of objects to be used in tests. The structured nature of specifications, where
functions and axioms are defined sort by sort, and where the latter are independently implemented by
given Java types, is essential to the incremental integration style of Flasji.

Several approaches to testing implementations of algebraic specifications exist, that cover test gen-
eration ([6, 8, 9, 10, 12] to name a few), and many compare the two sides of equations where variables
have been substituted by ground terms – differences exist in the way ground terms are generated, and in
the way comparisons are made. The gap between algebraic specifications and implementations makes
the comparison between concrete objects difficult, giving rise to what is known as the oracle problem,
more specifically, the search for reliable decision procedures to compare results computed by the imple-
mentation. Whenever one cannot rely on the equals method, there should be another way to investi-
gate equality between concrete objects. Several works have been proposed that deal with this problem,
e.g. [9, 13, 19]. In [16] we tackle this issue by presenting an alternative way of comparing concrete
objects, one that relies only in observers whose result is of a non-core sort. In some way this complies
with the notion of observable contexts in [9] – all observers but the ones whose result is of the designated
sort constitute observable contexts.

The unreliability of equals can also affect the effectiveness of the GenT tests [3] since this method
is used whenever concrete objects of the same type are compared. One of the improvements we intend
to make is to give Flasji the ability to test the equals method in order to make its use more reliable.

6 Conclusions

We presented Flasji, a technique whose goal is to test Java implementations of algebraic specifications
and find the method that is responsible for some deviation of the expected behaviour.

Flasji capitalyzes on ConGu, namely using ConGu specification and refinement languages, and en-
riches it with the capability of finding faulty methods. It accomplishes the task through the generation
of tests that are based on structures satisfying the specification. The behaviour of instances of the imple-
mentation is compared with the one expected, as given by those specification-compliant structures. The
results of the comparisons are interpreted in order to find the method responsible for the fault.

An evaluation experiment was presented where Flasji results over two case studies, for which faults
have been seeded in the implementing Java classes, are compared with two other tools’ results when
executed over comprehensive suites of tests. The encouraging results obtained in comparative studies
led us to continue working on it, with the purpose of improving some negative aspects and weaknesses,
some of which already identified and reported in this paper.

The following improvements, among others, are planned: (i) testing the implementation of the
equals method, even if the specification module does not specify it, in order to be able to better rely on
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its results, (ii) optimizing the determination of the number of objects of each type that an Alloy structure
conforming to the specification should contain (the results here presented assumed Flasji asks the Alloy
Analyzer to generate a structure with a fixed number of objects of the core type), and (iii) whenever there
are several non-parameter types, apply the process several times, each considering one of them as the
core type, and integrate the results (special cases as e.g. inter-dependent types, deserve attention).

References

[1] Alloy Analyzer. http://alloy.mit.edu/alloy/.

[2] R. Abreu, P. Zoeteweij & A.J.C. van Gemund (2009): Spectrum-based Multiple Fault Localization. In: Proc.
24th IEEE/ACM ASE, IEEE Computer Society, pp. 88–99, doi:10.1109/ASE.2009.25.

[3] F.R. Andrade, J.P. Faria, A. Lopes & A.C.R. Paiva (2012): Specification-Driven Unit Test Generation for
Java Generic Classes. In: IFM 2012, LNCS 7321, Springer-Verlag, pp. 296–311, doi:10.1007/978-3-642-
30729-4.

[4] F.R. Andrade, J.P. Faria & A. Paiva (2011): Test Generation from Bounded Algebraic Specifications using
Alloy. In: Proc. ICSOFT 2011, 2, SciTePress, pp. 192–200.

[5] P. Bouillon, J. Krinke, N. Meyer & F. Steimann (2007): EzUnit: A Framework for associating failed unit
tests with potential programming errors. In: 8th XP, LNCS 4536, Springer, pp. 101–104, doi:10.1007/978-
3-540-73101-6 14.

[6] K. Claessen & J. Hughes (2000): QuickCheck: A Lightweight Tool for Random Testing of Haskell Programs.
In: Proc. of ICFP, ACM SIGPLAN Notices, pp. 268–279, doi:10.1145/351240.351266.

[7] P. Crispim, A. Lopes & V. Vasconcelos (2011): Runtime verification for generic classes with ConGu2. In:
Proc. SBMF 2010, LNCS 6527, Springer-Verlag, pp. 33–48, doi:10.1007/978-3-642-19829-8 3.

[8] R.K. Doong & P.G. Frankl (1994): The ASTOOT Approach to Testing Object-Oriented Programs. ACM
TOSEM 3(2), pp. 101–130, doi:10.1145/192218.192221.

[9] M.C. Gaudel & P.L. Gall (2008): Testing data types implementations from algebraic specifications. Formal
Methods and Testing, doi:10.1007/978-3-540-78917-8 7.

[10] M. Hughes & D. Stotts (1996): Daistish: systematic algebraic testing for OO programs in the presence of
side-effects. In: Proc. ISSTA96, ACM Press, pp. 53–61, doi:10.1145/229000.226301.

[11] D. Jackson (2012): Software Abstractions - Logic, Language, and Analysis, Revised Edition. MIT Press.

[12] L. Kong, H. Zhu & B. Zhou (2007): Automated Testing EJB Components Based on Algebraic Specifications.
In: COMPSAC 2007, pp. 717–722, doi:10.1109/COMPSAC.2007.82.

[13] P.D.L. Machado & D. Sanella (2002): Unit testing for CASL architectural specifications. In: Proc. 27th
MFCS, LNCS 2420, Springer, pp. 506–518, doi:10.1007/3-540-45687-2 42.

[14] I. Nunes, A. Lopes & V. Vasconcelos (2009): Bridging the Gap between Algebraic Specification and
Object-Oriented Generic Programming. In: Runtime Verification, LNCS 5779, Springer, pp. 115–131,
doi:10.1007/978-3-642-04694-0 9.

[15] I. Nunes, A. Lopes, V. Vasconcelos, J. Abreu & L. Reis (2006): Checking the conformance of Java
classes against algebraic specifications. In: Proc. 8th ICFEM, LNCS 4260, Springer, pp. 494–513,
doi:10.1007/11901433 27.

[16] I. Nunes & F. Luı́s (2012): A fault-location technique for Java implementations of algebraic specifications.
Technical Report 02, Faculty of Sciences of the University of Lisbon.

[17] A. Riboira & R. Abreu (2010): The GZoltar Project: A Graphical Debugger Interface. In L. Bottaci &
G. Fraser, editors: TAIC PART, LNCS 6303, Springer, pp. 215–218. Available at http://dx.doi.org/
10.1007/978-3-642-15585-7_25.

http://alloy.mit.edu/alloy/
http://dx.doi.org/10.1109/ASE.2009.25
http://dx.doi.org/10.1007/978-3-642-30729-4
http://dx.doi.org/10.1007/978-3-642-30729-4
http://dx.doi.org/10.1007/978-3-540-73101-6_14
http://dx.doi.org/10.1007/978-3-540-73101-6_14
http://dx.doi.org/10.1145/351240.351266
http://dx.doi.org/10.1007/978-3-642-19829-8_3
http://dx.doi.org/10.1145/192218.192221
http://dx.doi.org/10.1007/978-3-540-78917-8_7
http://dx.doi.org/10.1145/229000.226301
http://dx.doi.org/10.1109/COMPSAC.2007.82
http://dx.doi.org/10.1007/3-540-45687-2_42
http://dx.doi.org/10.1007/978-3-642-04694-0_9
http://dx.doi.org/10.1007/11901433_27
http://dx.doi.org/10.1007/978-3-642-15585-7_25
http://dx.doi.org/10.1007/978-3-642-15585-7_25


50 Testing Java implementations of algebraic specifications

[18] F. Steimann & M. Bertschler (2009): A simple coverage-based locator for multiple faults. In: IEEE ICST,
LNCS 4536, Springer, pp. 366–375, doi:10.1109/ICST.2009.24.

[19] H. Zhu (2003): A note on test oracles and semantics of algebraic specifications. In: QSIC 2003, IEEE
Computer Society, pp. 91–98, doi:10.1109/QSIC.2003.1319090.

http://dx.doi.org/10.1109/ICST.2009.24
http://dx.doi.org/10.1109/QSIC.2003.1319090

	1 Introduction
	2 Approach Overview
	2.1 The approach in a nutshell
	2.2 A specification and corresponding implementation

	3 Flasji step-by-step
	3.1 Translating the ConGu specification module
	3.2 Creating mock classes
	3.3 Obtaining a collection of instances satisfying the specification
	3.4 Creating the test class
	3.4.1 Creating abstract objects
	3.4.2 Creating concrete objects
	3.4.3 Back to abstract objects
	3.4.4 Comparing abstract and concrete objects

	3.5 Running the test and interpreting the results

	4 Evaluation
	5 Related work
	6 Conclusions

