
A. Petrenko, H. Schlingloff (Eds.): Workshop on
Model-Based Testing 2012 (MBT 2012)
EPTCS 80, 2012, pp. 88–102, doi:10.4204/EPTCS.80.7

c© B.K. Aichernig & E. Jöbstl
This work is licensed under the Creative Commons
Attribution-No Derivative Works License.

Towards Symbolic Model-Based Mutation Testing:
Combining Reachability and Refinement Checking

Bernhard K. Aichernig Elisabeth Jöbstl
Institute for Software Technology

Graz University of Technology
Graz, Austria

aichernig@ist.tugraz.at joebstl@ist.tugraz.at

Model-based mutation testing uses altered test models to derive test cases that are able to reveal
whether a modelled fault has been implemented. This requires conformance checking between the
original and the mutated model. This paper presents an approach for symbolic conformance check-
ing of action systems, which are well-suited to specify reactive systems. We also consider non-
determinism in our models. Hence, we do not check for equivalence, but for refinement. We encode
the transition relation as well as the conformance relation as a constraint satisfaction problem and
use a constraint solver in our reachability and refinement checking algorithms. Explicit conformance
checking techniques often face state space explosion. First experimental evaluations show that our
approach has potential to outperform explicit conformance checkers.

1 Introduction

In most cases, full verification of a piece of software is not feasible. Possible reasons are the increasing
complexity of software systems, the lack of highly-educated staff or monetary restrictions. In order to
ensure quality and validate system requirements, testing is a viable alternative if it is systematic and
automated. Model-based testing fulfills these criteria. The test engineer creates a formal model that
describes the expected behaviour of the system under test (SUT). Test cases are then (automatically)
derived from this test model by applying different algorithms and test specifications.

One big question is where to get the test specifications from. Our approach is fault-centred, i.e.,
mutation-based. Classical mutation testing is a method to assess and increase the quality of an existing
test suite. The source code of the original program is syntactically altered by applying patterns of typical
programming errors, so-called mutation operators [14, 15]. The test cases are then executed on the
generated mutants. If not at least one test case is able to kill a mutant, the test suite has to be improved.
Mutation testing relies on two assumptions that have been empirically confirmed: (1) The competent
programmer hypothesis states that programmers are skilled and do not completely wrong. It assumes
that they only make small mistakes. (2) The coupling effect states that test cases which are able to detect
simple faults (like faults introduced by mutations) are also able to reveal more complex errors.

We employ the mutation concept on the test model instead of the source code and generate test cases
that are able to kill the mutated models (model-based mutation testing). The generated tests are then run
on the SUT and will detect whether a modelled fault has been implemented. So far, much more effort
has been spent on the definition of mutation operators and classical mutation testing and not so much
work has been done on test case generation from mutations [17].

What we have not mentioned so far: It is possible that a mutant does not show any different behaviour
from the original program, although it has been syntactically changed. In this case, the mutant is equiv-
alent to the original and no test case exists that can distinguish the two programs. In general, it is not

http://dx.doi.org/10.4204/EPTCS.80.7
http://creativecommons.org
http://creativecommons.org/licenses/by-nd/3.0/

B.K. Aichernig & E. Jöbstl 89

decidable whether two programs are equivalent. Hence, mutation testing and its wider application are
constrained by the equivalent mutants problem [17]. For test case generation, we also have to tackle this
problem. Only if the original and the mutated model are not equivalent, we can generate a distinguishing
test case. In our case, we do not check for total equivalence, but for refinement. The models we use
are action systems, which were originally introduced by Back [8]. Action systems are well-suited for
modelling reactive systems and allow non-determinism.

Within the European project MOGENTES 1, our group already developed a test case generation
tool named Ulysses. It is basically an ioco checker for action systems and performs an explicit forward
search of the state spaces. ioco is the input-output conformance relation by Tretmans [22]. Ulysses does
not only work for discrete systems, but also supports hybrid action systems via qualitative reasoning
techniques [11]. Experiments have shown that the performance of explicit enumeration of the state space
involves high memory consumption and runtimes when being applied on complex models. In this paper,
we present an alternative approach to determine (non-)refinement between two action systems.

As already shown in [6, 19], constraint satisfaction problems can be used to encode conformance re-
lations and generate test cases. Each of this works dealt with transformational systems, i.e., systems that
are started and take some input, process the input by doing some computations and then return an output
and stop again. As already mentioned, action systems are well-suited to model reactive systems, i.e.,
systems that are continuously interacting with their environment. This kind of systems bring up a new
aspect: reachability. Hence, the main contribution of this paper is a symbolic approach for refinement
checking of reactive systems via constraint solving techniques that avoids state space explosion. We use
the predicative semantics of action systems to encode (1) the transition relation and (2) the conformance
relation as a constraint satisfaction problem. The constraint system representing the transition relation
is used for a reachability analysis like it is known from model checking. For each reached state, we test
whether it fulfills the constraint system that represents the conformance relation, which is refinement.

The rest of this paper is structured as follows. The next section presents our running example,
a car alarm system. Section 3 gives an overview of the syntax and semantics of action systems and
introduces the conformance relation we use. Section 4 explains our approach for finding differences
between two action systems. Afterwards, Section 5 presents some experimental data on the application
of our implementation on the car alarm system. Subsequently, Section 6 deals with restrictions and
mentions some of our plans for future work. Finally, Section 7 discusses related work and concludes the
paper.

2 Running Example

In order to demonstrate the basic concepts of our approach, we use a simplified version of a car alarm
system (CAS). The example is taken from Ford’s automotive demonstrator within the MOGENTES
project. The following requirements were specified and served as the basis for our model:

R1 - Arming. The system is armed 20 seconds after the vehicle is locked and the bonnet, luggage com-
partment, and all doors are closed.

R2 - Alarm. The alarm sounds for 30 seconds if an unauthorized person opens the door, the luggage
compartment, or the bonnet. The hazard flasher lights will flash for five minutes.

R3 - Deactivation. The anti-theft alarm system can be deactivated at any time, even when the alarm is
sounding, by unlocking the vehicle from outside.

1http://www.mogentes.eu

http://www.mogentes.eu

90 Towards Symbolic Model-Based Mutation Testing

AlarmSystem_StateMachine

Alarm
Activate Alarms /entry
Deactivate Alarms /exit

Flash

FlashAndSound

Armed

Show Armed /entry
Show Unarmed /exit

ClosedAndLocked

OpenAndUnlocked

ClosedAndUnlocked OpenAndLocked

SilentAndOpen

Unlock

30 / Deactivate Sound

300

Open

Unlock

20

Close

Unlock OpenLock Close

Close LockOpen Unlock

Figure 1: UML state machine of the car alarm system

Figure 1 shows a UML state machine of our CAS. From the state OpenAndUnlocked one can traverse
to ClosedAndLocked by closing all doors and locking the car. As specified in requirement R1, the alarm
system is armed after 20 seconds in ClosedAndLocked. Upon entry of the Armed state, the model calls
the method AlarmArmed.SetOn. Upon leaving the state, which can be done by either unlocking the car or
opening a door, AlarmArmed.SetOff is called. Similarly, when entering the Alarm state, the optical and
acoustic alarms are enabled. When leaving the alarm state, either via a timeout or via unlocking the car,
both acoustic and optical alarm are turned off. Note that the order of these two events is not specified,
neither for enabling nor for disabling the alarms. Hence the system is not deterministic. When leaving
the alarm state after a timeout (cf. requirement R2) the system returns to an armed state only in case it
receives a close signal. Turning off the acoustic alarm after 30 seconds, as specified in requirement R2,
is reflected in the time-triggered transition leading to the Flash sub-state of the Alarm state.

3 Preliminaries

3.1 Action Systems

Action systems [8] are a kind of guarded-command language for modelling concurrent reactive systems.
They have a formal semantics with refinement laws and are compositional [9]. Many extensions exist,
but the main idea is that a system state is updated by guarded actions that may be enabled or not. If
no action is enabled, the action system terminates. If several actions are enabled, one is chosen non-
deterministically. Hence, concurrency is modelled in an interleaving semantics. The formal method B
has recently adopted the action-system style in the form of Event-B [2].

Example 3.1. Our action systems are written in Prolog syntax. Listing 1 shows code snippets from the
action system model of the CAS as described in Section 2. The first two lines contain user-defined types.
All types are basically integers, but their ranges can be restricted. In Line 1, a type with name enum State
is defined. Its domain begins with 0 and ends with 7. Line 4 declares a variable with name aState which
is of type enum State. Line 6 defines the list of variables that make up the state of the action system.

B.K. Aichernig & E. Jöbstl 91

Listing 1: Code snippet from the action system model for the car alarm system
1 type (enum Sta te , X) :− X i n 0 . . 7 .
2 type (i n t , X) :− X i n 0 . . 2 7 0 .
3 . . .
4 var ([a S t a t e] , e n u m S t a t e) .
5 . . .
6 s t a t e d e f ([a S t a t e , fromAlarm , fromArmed , . . . , f l a shOn , soundOn]) .
7
8 i n i t ([6 , 0 , 0 , 0 , 0 , 0]) .
9

10 as :−
11 a c t i o n s (
12 ’ a f t e r ’ (W a i t t i m e) : : (t rue) =>
13 (
14 ((W a i t t i m e #= 20 #/\ a S t a t e #= 3) =>
15 (a S t a t e := 2 ; f romClosedAndLocked OR fromSilentAndOpen := 1))
16 []
17 ((W a i t t i m e #= 30 #/\ a S t a t e #= 1 #/\ fromArmed #= 4) =>
18 (a S t a t e := 0 ; fromAlarm := 4 ; fromArmed := 0))
19 []
20 ((W a i t t i m e #= 270 #/\ a S t a t e #= 0 #/\ fromAlarm #= 2) =>
21 (a S t a t e := 7 ; fromAlarm := 1 ; fromArmed := 0))
22) ,
23 ’ Lock ’ : : (t rue) =>
24 (
25 ((a S t a t e #= 6 #/\ fromAlarm #= 0) => (a S t a t e := 5))
26 []
27 ((a S t a t e #= 4 #/\ fromArmed #\= 1) => (a S t a t e := 3 ; fromArmed := 0))
28) ,
29 . . .
30) ,
31 dood (
32 ’ Lock ’
33 [] [X: i n t] : ’ a f t e r ’ (X)
34 [] . . .
35) .

The init predicate in Line 8 defines the initial values for the state. At Line 10, the actual action system
begins. It consists of an actions block (Lines 11 to 30) and an do-od block (Lines 31 to 35).

The actions block defines named actions. Each action consists of a name, a guard and a body
(name :: guard => body) (cf. Lines 23 to 28). Actions may also have parameters, like action after
in Line 12. The operator [] denotes non-deterministic choice. We use it in our example together with
guards to distinguish between different cases in which an action may fire. Consider for example Lines
14 and 15. The action after(20) may fire if the action system is in a state where variable aState equals
3, which corresponds to state “ClosedAndLocked” in the CAS state chart (Figure 1). The action system
then assigns variable aState value 2 and variable fromClosedAndLocked OR fromSilentAndOpen value 1,
which corresponds to the state “Armed” in the state chart. The do-od block connects previously defined
actions via non-deterministic choice. Basically, the execution of an action system is a continuous itera-
tion over the do-od block. Here, there is always at least one action enabled. Hence, the car alarm system
never terminates, but continuously waits for stimuli.

92 Towards Symbolic Model-Based Mutation Testing

M ::= D as :– actions(A), dood(P). P ::= E | E [] P
D ::= type(t,X) :– X in n1..n2. var([v], t). state def([v]). init([c]). E ::= l | [X : t]l(X)

A ::= L :: g => B L ::= l | l(X)

B ::= v := e | g => B | B;B | B [] B e ::= v | c | e+ e | ...

Figure 2: Syntax of a subset of action systems

l :: g => B =df g ∧ B ∧ tr′ = tr̂ [l] l(X) :: g => B =df ∃ X : g ∧ B ∧ tr′ = tr̂ [l(X)]

x := e =df x′ = e ∧ y′ = y ∧ ...∧ z′ = z g => B =df g ∧ B
B(v,v′);B(v,v′) =df ∃ v0 : B(v,v0) ∧ B(v0,v′) B [] B =df B ∨ B

Figure 3: Predicative semantics of actions

Syntax. In the literature many versions of Back’s original action-system notation [8] exist. The syntax
used in this work is presented in Figure 2. Our syntax contains some elements of Prolog, because the tool
is implemented in SICStus Prolog. Here, an action system model M comprises the basic definitions D, a
set of action definitions A and the do-od block P. In the basic definitions we define the types t, declare
variables v of type t, define the system state-space as variable vector v and finally provide the initial state
as vector of constants c. An action A is a labelled guarded command with label L, guard g and body B.
Actions may have a list of parameters X . The body of an action may assign an expression e to a variable
v or it may be composed of (nested) guarded commands itself. Composition may be sequential or non-
deterministic choice. The do-od block P provides the event-based view on the action system. Here, the
actions are composed by their action labels l. Currently, we only support non-deterministic choice in the
do-od block, but in future sequential and prioritized composition will be added.

Semantics. The formal semantics of action systems is usually defined in terms of weakest precondi-
tions. However, for our constraint-based approach, we found a relational predicative semantics being
more suitable. We follow the style of He and Hoare’s Unifying Theories of Programming [16]. Figure 3
presents the formal semantics of the actions of our modelling language. The state-changes of actions are
defined via predicates relating the pre-state of variables v and their post-state v′. Furthermore, the labels
form a visible trace of events tr that is updated to tr′ whenever an action runs through. Hence, a guarded
action’s transition relation is defined as the conjunction of its guard g, the body of the action B and the
adding of the action label l to the previously observed trace. In case of parameters X , these are added
as local variables to the predicate. An assignment updates one variable x with the value of an expression
e and leaves the rest unchanged. Sequential composition is standard: there must exist an intermediate
state v0 that can be reached from the first body predicate and from which the second body predicate can
lead to its final state. Finally, non-deterministic choice is defined as disjunction. The semantics of the
do-od block is as follows: while actions are enabled in the current state, one of the enabled actions is
chosen non-deterministically and executed. An action is enabled in a state if it can run through, i.e. if
a post-state exists such that the semantic predicate can be satisfied. The action system terminates if no
action is enabled. The labelling of actions is non-standard and has been added in order to support an
event-view for testing.

B.K. Aichernig & E. Jöbstl 93

3.2 Conformance

Once the modelling language with a precise semantics is fixed, we can define what it means that a SUT
conforms to a given reference model, i.e. if the observations of a SUT confirm the theory induced by a
formal model. This relation between a model and the SUT is called the conformance relation.

In model-based mutation testing, the conformance relation plays an additional role. It defines if a
syntactic change in a mutant represents an observable fault, i.e. if a mutant is equivalent or not. However,
for non-deterministic models an equivalence relation is no suitable conformance relation. An abstract
non-deterministic model may do more than its concrete counterpart. Hence, useful conformance relations
are order-relations rather than equivalence relations, the order going from abstract to more concrete
models. In this work, we have chosen UTP’s refinement relation as a conformance relation. UTP defines
refinement via implication, i.e. more concrete implementations I imply more abstract models M.
Definition 3.1. (Refinement)

M v I =df ∀x,x′y,y′, · · · ∈ α : I ⇒ M for all M, I with alphabet α .

The alphabet α is the set of variables denoting observations.
In [4] we have developed a mutation testing theory based on this notion of refinement. The key

idea is to find test cases whenever a mutated model MM does not refine an original model MO, i.e. if
MO 6v MM. Hence, we are interested in counter-examples to refinement. From Definition 3.1 follows
that such counter-examples exist if and only if implication does not hold:

∃x,x′,y,y′, · · · ∈ α : MM ∧¬MO

This formula expresses that there are observations in the mutant MM that are not allowed by the original
model MO. We call a state, i.e. a valuation of all variables, unsafe if such an observation can be made.
Definition 3.2. (Unsafe State) A pre-state u is called unsafe if it shows wrong (not conforming) be-
haviour in a mutated model MM with respect to an original model MO. Formally, we have:

u ∈ {s | ∃ s′ : MM(s,s′)∧¬MO(s,s′)}

We see that an unsafe state can lead to an incorrect next state. In model-based mutation testing, we
are interested in generating test cases that cover such unsafe states. Hence, our fault-based testing criteria
are based on the notion of unsafe states. How to search for unsafe states in action systems efficiently is
discussed in the next section.

4 Searching Unsafe States

Figure 4 gives an overview of our approach to find an unsafe state. The inputs are the original action
system model ASO and a mutated version ASM. Each action system consists of a set of actions ASO

i and
ASM

j respectively, which are connected via non-deterministic choice. The first step is a preprocessing
activity to check for refinement quickly. It is depicted on the left-hand side of Figure 4 as box find
mutated action. If there does not exist an unsafe state at this point, we cannot find any mutated action
that yields non-conformance. Hence, we already know that the action systems are equivalent. If we
find an unsafe state in this phase, we cannot be sure that it is reachable from the initial state of the
action system. But we know which action has been mutated and are able to construct a non-refinement
constraint, which describes the set of all unsafe states. The next step performs a reachability analysis
and uses the non-refinement constraint to test each reached state whether it is an unsafe state. In the
following, we give more details.

94 Towards Symbolic Model-Based Mutation Testing

find
mutated
action

reachability &
non-refinement

∑
i=1

n

AS i

∑
j=1

m

ASM j

test case
extraction

mutated
action
found

non-refinement
constraint

equivalent
mutant

max.
depth

reached

unsafe state
& trace

refined

yes

no no

yes

no

yes

end

Figure 4: Process for finding an unsafe state

4.1 Non-Refinement of Action Systems

In the previous section, we have introduced non-refinement as a general criterion for identifying unsafe
states. Now, we are going to concentrate on the special case of action systems.

The observations in our action system language are the event-traces and the system states before
(v, tr) and after one execution (v′, tr′) of the do-od block. Then, a mutated action system ASM refines its
original version ASO if and only if all observations possible in the mutant are allowed by the original.
Hence, our notion of refinement is based on both, event traces and states. However, in an action system
not all states are reachable from the initial state. Therefore, reachability has to be taken into account.

We reduce the general refinement problem of action systems to a step-wise simulation problem only
considering the execution of the do-od block from reachable states:

Definition 4.1. (Refinement of Action Systems) Let ASO and ASM be two action systems with corre-
sponding do-od blocks PO and PM. Furthermore, we assume a function “reachable” that returns the set
of reachable states for a given trace in an action system. Then

ASO v ASM =df ∀v,v′, tr, tr′ : ((v ∈ reachable(ASO, tr)∧PM) ⇒ PO) .

This definition is different to Back’s original refinement definition based on state traces[9]. Here,
also the possible event traces are taken into account. Hence, also the action labels have to be refined.

Negating this refinement definition and considering the fact that the do-od block is a non-deterministic
choice of actions Ai leads to the non-refinement condition for two action systems:

∃v,v′, tr, tr′ : (v ∈ reachable(ASO, tr)∧ (AM
1 ∨·· ·∨AM

n)∧¬AO
1 ∧·· ·∧¬AO

m)

By applying the distributive law, we bring the disjunction outwards and obtain a set of constraints for
detecting non-refinement.

B.K. Aichernig & E. Jöbstl 95

Algorithm 1 findMutatedAction(ASO,ASM) : (ASM
i ,CS nonrefine)

1: CS ASO := trans(ASO)
2: for all AM

i ∈ ASM do
3: CS ASM

i := trans(AM
i)

4: CS nonrefine := CS ASM
i ∧¬CS ASO

5: if sat(CS nonrefine) then
6: return (AM

i ,CS nonrefine) // mutated action found
7: end if
8: end for
9: return (nil, false) // equiv

Theorem 4.1. (Non-refinement) A mutated action system ASM does not refine its original ASO, iff any
action AM

i of the mutant shows trace or state-behaviour that is not possible in the original action system:

ASO 6v ASM iff
n∨

i=1

∃v,v′, tr, tr′ : (v ∈ reachable(ASO, tr)∧AM
i ∧¬AO

1 ∧·· ·∧¬AO
m)

In the following, we discuss how this property is applied in our refinement checking process.

4.2 Finding a Mutated Action

The non-refinement condition presented in Theorem 4.1 is a disjunction of constraints of which each
deals with one action AM

i of the mutated action system ASM. Hence, it is sufficient to satisfy one of these
sub-constraints in order to find non-conformance. We use this for our implementation as we perform
the non-refinement check action by action. Here, we first concentrate on finding a possibly unreachable
unsafe state. Reachability is dealt with separately (see Section 4.3).

Algorithm 1 gives details on the action-wise non-refinement check, which is depicted on the left-
hand side of Figure 4 (box find mutated action). We transform the whole do-od block of the original into
a constraint system according to our predicative semantics of action systems (Line 1). We then translate
one action of the mutated action system into a constraint system (Line 3). The non-refinement constraint
CS nonrefine is the conjunction of the constraint system representing the mutated action (CS ASM

i) and
the negated constraint system representing the original action system (¬CS ASO, cf. Line 4). Note that
sequential composition involves existential quantification, which becomes universal quantification due
to negation. Existential quantification is implicit in constraint systems. Universal quantification would
lead to quantified constraint satisfaction problems (QCSPs) that are not supported by common constraint
solvers. Fortunately, we can resolve this problem by a normal form that requires that non-deterministic
choice is always the outermost operator and not allowed in nested expressions. In this way, the left-hand
side of a sequential composition is always deterministic and existential quantification can be eliminated.
Our car alarm system example (cf. Listing 1) already satisfies this normal form. Otherwise, each action
system can be automatically rewritten to this normal form. This has not yet been implemented.

The non-refinement constraint for the just translated action is then given to a constraint solver to
check whether it is satisfiable by any v,v′, tr, tr′(Line 5), i.e., whether there exists an unsafe state v
for ASM and ASO. If yes, we found the mutated action and return it together with the according non-
refinement constraint CS nonrefine. Otherwise, the next action AM

i is investigated (loop in Line 2). If
no action leads to a satisfiable non-refinement constraint, then ASM refines ASO (Line 9). Algorithm 1

96 Towards Symbolic Model-Based Mutation Testing

is sound for first order mutants (one syntactical change per mutant). It aborts after finding the first
action that leads to an unsafe state. Note that we do not know yet whether an unsafe state is actually
reachable. For higher-order mutants (more than one syntactical change per mutant) it could happen that
our algorithm finds a mutated action for which no unsafe state is reachable. In this case, it is necessary
to go back and search for another mutated action until an unsafe state is actually reachable or all actions
are processed.

Identifying the mutated action is important for our performance for two reasons: (1) Solving the
non-refinement constraint CS nonrefine for one action is by far faster than solving a non-refinement
constraint encoding all actions of the mutated action system at once. Experiments showed that the latter
is impractical with the currently used constraint solver. (2) By knowing which action has been mutated,
we know which non-conformance constraint has to be fulfilled by an unsafe state. This saves constraint
solver calls during the reachability analysis, which is presented in the following.

4.3 Reaching an Unsafe State

Now we know whether there exists any unsafe state. If this is the case, we also know which action has
been mutated and we have determined a non-refinement constraint that describes the set of all possible
unsafe states. But we do not know yet, whether an unsafe state is actually reachable from a given initial
state. It is possible that an unsafe state exists theoretically and has been found in the previous step, but
that no unsafe state is reachable from the initial state of the system. In this case, the mutated action
system conforms to the original, i.e., the mutant refines the specification. To find out whether an unsafe
state is actually reachable, we perform a state space exploration of the original action system AS. During
this reachability analysis, each encountered state is examined if it is an unsafe state. This test is realized
via a constraint solver that checks whether the reached state fulfills our non-refinement constraint (see
right-hand side of Figure 4).

The pseudo-code in Algorithm 2 gives more details on our combined reachability and non-refinement
check. The algorithm requires the following inputs: (1) the original action system ASO, (2) the constraint
system CS nonrefine representing the non-refinement constraint obtained from Algorithm 1, (3) an inte-
ger max restricting the search depth, and (4) the initial state init of the action system ASO. The algorithm
returns a pair consisting of the found unsafe state and the trace leading there.

At first (Lines 1 to 3), we check whether the initial state is already an unsafe state. This is, we call the
constraint solver with the non-refinement constraint and set the input state to be the initial state of AS. If
the solver finds an action a leading to a post-state s then we detected non-conformance. We found either
a state that can be reached from init only in the mutant but not in the original or an action that is enabled
at state init only in the mutant but not in the original. In this case, init is returned as unsafe state together
with the empty trace. Otherwise, we perform a breadth-first search (Lines 4 to 19) starting at init. The
queue ToExplore holds the states that have been reached so far and still have to be further explored. It
contains pairs consisting of the state and the shortest trace leading to this state. The set Visited holds all
states that have been reached so far and is maintained to avoid the re-exploration of states. To ensure
termination, the state space is only explored up to a user-defined depth max (Line 9).

The function succStateAndAction(s0) (Line 10) returns the set of all successors of state s0. Each suc-
cessor is a pair consisting of the successor state s1 and the action a1 leading from s0 to s1. The successors
are calculated via the predicative semantics of our action systems (cf. Section 3.1). Thereby, we gain a
constraint system representing the transition relation of our action system. It describes one iteration of
the do-od block. The interesting variables in the constraint system are the input state variables, the action
variable, and the post-state variables. The input state variables are set to be equal to the variables in s0.

B.K. Aichernig & E. Jöbstl 97

Algorithm 2 reachNonRefine(ASO,CS nonrefine,max, init) : (unsafe, trace)
1: if ∃a,s : CS nonrefine(init,a,s) then
2: return (init, [])
3: end if
4: Visited := {init}
5: ToExplore := enqueue((init, []), [])
6: while ToExplore 6= [] do
7: (s0, tr s0) := head(ToExplore)
8: ToExplore := dequeue(ToExplore)
9: if length(tr s0)< max then

10: for all (s1,a1) ∈ succStateAndAction(s0) : s1 6∈ Visited do
11: tr s1 := add(tr s0,a1)
12: if ∃a2,s2 : CS nonrefine(s1,a2,s2) then
13: return (s1, tr s1) // unsafe state
14: end if
15: Visited := add(s1,Visited)
16: ToExplore := enqueue((s1, tr s1),ToExplore)
17: end for
18: end if
19: end while
20: return (nil, []) // equiv

We then use a constraint solver to set the action variable a1 and the variables that make up the post-state
s1. By calling the constraint solver multiple times with an extended constraint system (with the added
restriction that the next solution has to be different fromt the previous ones), we get all transitions that
are possible from s0.

Each state s1 that is reached in this way and has not yet been processed (s1 6∈ Visited) is checked
for being an unsafe state (Line 12). This works analogously to Line 1. If an unsafe state is found it is
returned together with the trace leading there (Line 13). Otherwise, the state is included in the set of
visited states (Line 15) and enqueued for further exploration (Line 16). If no unsafe state is found up
to depth max, the mutant refines the original action system and we return the pair (nil, []) as a result
(Line 20).

4.4 Test Case Extraction

We implemented our technique in SICStus Prolog2 (version 4.1.2). SICStus comes with an integrated
constraint solver clpfd (Constraint Logic Programming over Finite Domains) [13], which we used. Our
implementation results either in the verdict equiv, which means that the mutated action system conforms
to the original, or in an unsafe state and a sequence of actions leading to this state. In the latter case it
is possible to generate a test case. The trace resulting from our approach is not yet a test case, although
it reaches the unsafe state. We still need to add verdicts (pass, fail, and inconclusive) where necessary.
Additionally, the trace has to be at least one step longer in order to check that only correct behaviour
occurs after the unsafe state. A test case generated in this way is able to reveal whether the model mutant
has been implemented. This test case extraction step has not yet been implemented and remains future

2http://www.sics.se/sicstus/

http://www.sics.se/sicstus/

98 Towards Symbolic Model-Based Mutation Testing

work. It is indicated by the dotted parts at the right bottom of Figure 4. For an explicit ioco checking
technique, we have suggested different test case extraction strategies in [3].

5 Empirical Results

For an empirical evaluation of our prototypical implementation, we have modelled the car alarm system
(CAS) described in Section 2 as an action system. Some code snippets of the model have already been
presented in Listing 1. Additionally, we have manually created first order mutants (one mutation per
mutant) for the original CAS model. We applied the following three mutation operators:

• guard true: Setting all possible guards to true resulted in 34 mutants.

• comparison operator inversion: The action system contains two comparison operators: equality
(#=) and inequality (#\=). Inverting all possible equality operators (resulting in inequality) yielded
52 mutants. Substituting inequality by equality operators resulted in 4 mutants.

• increment integer constant: Incrementation of all integer constants by 1 resulted in 116 mutants.
Note that at the upper bound of a domain, we took the smallest possible value in order to avoid
domain violations.

From these mutation operators, we obtained a total of 206 mutated action systems. Additionally, we
also included the original action system as an equivalent mutant. Unfortunately, the currently used
constraint solver was not able to handle 12 of the 207 mutants within a reasonable amount of time during
refinement checking without reachability (see Section 4.2). We will try another constraint solver and see
if the performance increases. For now we had to exclude the 12 mutants from our experiments.

We ran our experiments on a machine with a dual-core processor (2.8 GHz) and 8 GB RAM with a
64-bit operating system. Table 1 gives information about the execution times of our refinement checker
prototype for the remaining 195 mutations. All values are given in seconds unless otherwise noted. We
conducted our experiments for four different versions of the CAS: (1) CAS 1: the CAS as presented in
Section 2 with parameter values 20, 30, and 270 for the action after, (2) CAS 10: the CAS with parameter
values multiplied by 10 (200, 300, and 2700), (3) CAS 100: the CAS with parameters multiplied by
100, and (4) CAS 1000: the CAS with parameters multiplied by 1000. These extended parameter ranges
shall test the capabilities of our symbolic approach. The column find mutated action shows that checking
whether there possibly exists an unsafe state and which action has been mutated (see Section 4.2) is quite
fast. The reachability and non-refinement check (column reach & non-refine, see Section 4.3) needs the
bigger part of the overall execution time (column total). The four versions of the CAS differ only in
the parameter values and the domains for the parameters. Our approach takes almost the same amount
of time for all four versions: approximately 13/4 minutes to process all 195 mutants, on average half a
second per mutant, a minimum time per mutant of 0.03 seconds, and a maximum of about 3 seconds for
one mutant.

To have at least a weak reference point for our performance, we have also utilized our explicit ioco
checker Ulysses [3, 11] to generate tests for the CAS. We have to admit that this comparison is not totally
fair, since Ulysses works quite differently: First of all, Ulysses uses a different conformance relation
named ioco (input-output conformance for labelled transition systems, see [22]). We ran Ulysses in two
settings. First, on the CAS with distinguished input and output actions. The input actions were Close,
Open, Lock, and Unlock. The remaining actions were classified as outputs. Second, we classified all
actions of the CAS as outputs. This setting is closer to our notion of conformance, since in refinement
we do not distinguish between input and output actions. Nevertheless, the conformance relations are still

B.K. Aichernig & E. Jöbstl 99

CAS version refinement checker Ulysses
find mutated action reach & non-refine total in/out out

CAS 1 total 16 90 106 98 65
average 0.08 0.46 0.54 0.50 0.34
min. 0.01 0.02 0.03 0.05 0.05
max. 0.30 2.80 3.10 6.30 5.33

CAS 10 total 15 86 101 8.8 h 7.9 h
average 0.08 0.44 0.52 2.7 min 2.4 min
min. 0.01 0.02 0.03 0.45 0.36
max. 0.27 2.80 3.07 2.6 h 2.6 h

CAS 100 total 16 90 106 - -
average 0.08 0.46 0.54 - -
min. 0.01 0.02 0.03 - -
max. 0.27 2.77 3.04 - -

CAS 1000 total 15 85 100 - -
average 0.08 0.44 0.52 - -
min. 0.01 0.02 0.03 - -
max. 0.27 2.69 2.96 - -

Table 1: Execution times for our refinement checking tool and the ioco checker Ulysses applied on four
versions of the car alarm system. All values are given in seconds unless otherwise noted.

not identical. In refinement, we only check that an implementation does not show unspecified behaviour.
Hence, an implementation can always do less than specified. In ioco, abscence of (output) behaviour
has to be explicitly permitted by the specification model. Another difference between Ulysses and our
approach are the final results. Ulysses generates adaptive test cases, not only a trace leading to an unsafe
state as our tool does (cf. Section 4.4).

Despite these inconsistencies, the comparison with Ulysses still demonstrates one thing very clearly:
the problems with explicit state space exploration. Ulysses explicitly enumerates all symbolic values
(like parameters in the CAS example). Table 1 also gives the execution times for Ulysses on the CAS
with our two settings: (1) distinction between inputs and outputs (column in/out) and (2) every action
is an output (column out). For the original CAS version (CAS 1), Ulysses is faster than our constraint-
based approach, particularly if every action is an output. In this case, test case generation with Ulysses
took only one minute for all 195 mutants. But when it comes to CAS 10 with larger parameter values
(200, 300, and 2700 instead of 20, 30, and 270) Ulysses runs into massive problems. The execution time
drastically increases to almost 9 hours (in/out) and about 8 hours (out). On average, each mutant takes
2.7 to 2.4 minutes. One mutant even caused a runtime of 2.6 hours. We observed a memory usage of up
to 6 GB RAM. We suspect that a significant amount of the execution time is spent on swapping. For the
CAS versions CAS 100 and CAS 1000, we did not run Ulysses as the runtimes would be even higher.

Already for the original CAS (CAS 1), Ulysses needs 5 to 6 seconds for some mutants that altered
the after action that has one parameter: the time to wait with a range from 0 to 270. Our approach took
only 0.1 seconds to find the unsafe state and the corresponding trace. Hence, Ulysses shows very good
performance for systems with small domains. When it comes to larger ranges of integers, Ulysses comes
to its limits quite soon. In this cases, our approach represents a viable alternative.

100 Towards Symbolic Model-Based Mutation Testing

6 Restrictions and Further Optimizations

Although our approach shows great promise for solving the problems with large variable domains, it is
far from being perfect. In the following, we discuss restrictions and possible optimizations of the overall
approach as well as of our current implementation: More elaborate conformance relations are possible.
In [23] we presented a predicative semantics for ioco. Alternating simulation is also an option.

As already discussed in Section 4.4, our approach currently results in an unsafe state and a trace
leading there. The generation of adaptive test cases remains future work. Our action systems are ignorant
of time. In the CAS the waiting time was modelled as a simple parameter. For more elaborate models
with clocks a tick-action modelling the progress of time is needed. For a full timed-automata model, the
actions could be extended with deadlines similar to [10].

One obvious improvement for our implementation is the use of more efficient data structures. Cur-
rently, we use lists in most cases as they are the most common data structure in Prolog. For example,
the set of visited states in Algorithm 2 is currently represented by a list. The use of ordered sets in com-
bination with hash values would be reasonable. As already mentioned, we implemented our approach
in SICStus Prolog. It comes with a built-in constraint solver (clpfd - Constraint Logic Programming
over Finite Domains [13]), which we use so far. Our next steps will include a comparison with other
constraint solvers, e.g., Minion3. Additionally, we already supervise an ongoing diploma thesis on the
use of different SMT solvers like Yices4 or Z35.

7 Conclusion

This paper deals with model-based mutation testing. Like in classical model-based testing, we have a
test model describing the expected behaviour of a system under test. This model is mutated by applying
syntactical changes. We then generate test cases that are able to reveal whether a software system has
implemented the modelled faults. We have chosen action systems as a formalism for system modelling.
In this paper, we presented our syntax and a predicative semantics for action systems. We also explained
refinement in the context of action systems. Most importantly, we have developed and implemented an
approach for refinement checking of action systems as a first step for test case generation from mutated
action systems. Throughout the whole paper, a car alarm system served as a running example, which
was not only used for illustration but also served as a case study for our experiments.

We employ constraint satisfaction techniques that have already been used previously [6, 19] to encode
conformance relations and generate test cases. Nevertheless, prior works dealt with systems that take an
input and deliver some output. This paper deals with refinement checking of reactive systems. The
thereby introduced continuous interaction with the environment brings up a new aspect: reachability.
Hence, the main contribution of this paper is a symbolic approach for refinement checking of reactive
systems via constraint solving techniques that avoids state space explosion, which is often a problem
with explicit techniques.

Our approach to detect non-refinement in action systems is basically a combination of reachability
and refinement checking. We use the predicative semantics of action systems to encode (1) the transition
relation and (2) the conformance relation as a constraint satisfaction problem. During reachability anal-
ysis, the constraint system representing the transition relation is used for finding successor states. The

3http://minion.sourceforge.net
4http://yices.csl.sri.com/
5http://research.microsoft.com/en-us/um/redmond/projects/z3/

http://minion.sourceforge.net
http://yices.csl.sri.com/
http://research.microsoft.com/en-us/um/redmond/projects/z3/

B.K. Aichernig & E. Jöbstl 101

constraint system encoding refinement enables us to test each reached state whether it is an unsafe state,
i.e., whether this state is directly followed by observations in the mutant that must not occur at this state
according to the original model.

Experimental results with an action system modelling a car alarm system have demonstrated the
potential of our approach compared to explicit conformance checking techniques. We conducted exper-
iments with four different versions of the car alarm system that only differ in the integer ranges of the
parameters. The smallest model deals with parameters from 0 to 270, the largest model contains integer
parameters from 0 to 270000. Our implementation provides constant runtime for all four models. For
195 mutated models, we only need about 13/4 minutes regardless of the parameter ranges. The explicit
conformance checker that we also applied on two model versions was faster (1 to 11/2 minutes) for the
smallest model, but already the next larger model caused an execution time of about 8 hours.

There is existing literature on model-based mutation testing. One of the first models to be mutated
were predicate-calculus specifications [12] and formal Z specifications [21]. Later on, model checkers
were available to check temporal formulae expressing equivalence between original and mutated models.
In case of non-equivalence, this leads to counterexamples that serve as test cases [7]. This is very similar
to our approach, but in contrast to this state-based equivalence test, we check for refinement allowing
non-deterministic models. Another conformance relation capable to deal with non-determinism is the
input-output conformance (ioco) of Tretmans [22]. The first use of an ioco checker for mutation testing
was on LOTOS specifications [5]. The tool Ulysses that was already mentioned in Section 5 applies
ioco checking for mutation-based test case generation on qualitative action systems [11]. A further
conformance relation supporting non-determinism is FDR (Failures-Divergence Refinement) for the CSP
process algebra [1]. The corresponding FDR model checker/refinement checker has been used in [20] to
set up a whole testing theory in terms of CSP. This work allows test case generation via test purposes,
but not by model mutation.

Our own past work has shown that typically there is no silver bullet in automatic test case genera-
tion that is able to deal with every system efficiently [18]. As we only used one exemplary model for
evaluating our approach so far, it is too early to say whether the performance of our approach may be
generalized. Future work will include more experiments with different types of systems to find this out.

Acknowledgment. Research herein was funded by the Austrian Research Promotion Agency (FFG),
program line “Trust in IT Systems”, project number 829583, TRUst via Failed FALsification of Complex
Dependable Systems Using Automated Test Case Generation through Model Mutation (TRUFAL).

References
[1] A. W. Roscoe (1994): Model-checking CSP, chapter 21. Prentice-Hall. Available at http://web.comlab.

ox.ac.uk/oucl/work/bill.roscoe/publications/50.ps.
[2] Jean-Raymond Abrial (2010): Modelling in Event-B: System and software design. Cambridge University

Press.
[3] Bernhard K. Aichernig, Harald Brandl, Elisabeth Jöbstl & Willibald Krenn (2011): Efficient Mutation Killers

in Action. In: IEEE 4th Int. Conf. on Software Testing, Verification and Validation, ICST 2011, IEEE
Computer Society, pp. 120–129. Available at http://dx.doi.org/10.1109/ICST.2011.57.

[4] Bernhard K. Aichernig & Jifeng He (2009): Mutation testing in UTP. Formal Aspects of Computing 21(1-2),
pp. 33–64, doi:10.1007/s00165-008-0083-6.

[5] Bernhard K. Aichernig, Bernhard Peischl, Martin Weiglhofer & Franz Wotawa (2007): Protocol Confor-
mance Testing a SIP Registrar: An Industrial Application of Formal Methods. In: 5th IEEE Int. Conf. on

http://web.comlab.ox.ac.uk/oucl/work/bill.roscoe/publications/50.ps
http://web.comlab.ox.ac.uk/oucl/work/bill.roscoe/publications/50.ps
http://dx.doi.org/10.1109/ICST.2011.57
http://dx.doi.org/10.1007/s00165-008-0083-6

102 Towards Symbolic Model-Based Mutation Testing

Software Engineering and Formal Methods, SEFM 2007, IEEE Computer Society, pp. 215–224. Available
at http://doi.ieeecomputersociety.org/10.1109/SEFM.2007.31.

[6] Bernhard K. Aichernig & Percy Antonio Pari Salas (2005): Test Case Generation by OCL Mutation and
Constraint Solving. In: 5th Int. Conf. on Quality Software, QSIC 2005, IEEE Computer Society, pp. 64–71.
Available at http://doi.ieeecomputersociety.org/10.1109/QSIC.2005.63.

[7] Paul Ammann, Paul E. Black & William Majurski (1998): Using Model Checking to Generate Tests from
Specifications. In: 2nd IEEE Int. Conf. on Formal Engineering Methods, ICFEM 1998, IEEE Computer So-
ciety, pp. 46–54. Available at http://computer.org/proceedings/icfem/9198/91980046abs.htm.

[8] Ralph-Johan Back & Reino Kurki-Suonio (1983): Decentralization of Process Nets with Centralized Control.
In: 2nd ACM SIGACT-SIGOPS Symp. on Principles of Distributed Computing, ACM, pp. 131–142.

[9] Ralph-Johan Back & Kaisa Sere (1991): Stepwise Refinement of Action Systems. Structured Programming
12, pp. 17–30.

[10] Sébastien Bornot, Joseph Sifakis & Stavros Tripakis (1998): Modeling Urgency in Timed Systems. In: Com-
positionality: The Significant Difference (COMPOS’97), LNCS 1536, Springer, pp. 103–129.

[11] Harald Brandl, Martin Weiglhofer & Bernhard K. Aichernig (2010): Automated Conformance Verification
of Hybrid Systems. In: 10th Int. Conf. on Quality Software, QSIC 2010, IEEE Computer Society, pp. 3–12.
Available at http://dx.doi.org/10.1109/QSIC.2010.53.

[12] Timothy A. Budd & Ajet S. Gopal (1985): Program testing by specification mutation. Computer languages
10(1), pp. 63–73. Available at http://dx.doi.org/10.1016/0096-0551(85)90011-6.

[13] Mats Carlsson, Greger Ottosson & Björn Carlson (1997): An Open-Ended Finite Domain Constraint Solver.
In: 9th Int. Symp. on Programming Languages: Implementations, Logics, and Programs, PLILP ’97,
Springer, pp. 191–206. Available at http://dl.acm.org/citation.cfm?id=646452.692956.

[14] R. DeMillo, R. Lipton & F. Sayward (1978): Hints on test data selection: Help for the practicing program-
mer. IEEE Computer Society 11(4), pp. 34–41.

[15] Richard G. Hamlet (1977): Testing programs with the aid of a compiler. IEEE Transactions on Software
Engineering 3(4), pp. 279–290.

[16] C.A.R. Hoare & Jifeng He (1998): Unifying Theories of Programming. Prentice-Hall International.
[17] Yue Jia & Mark Harman (2011): An Analysis and Survey of the Development of Mutation Test-

ing. IEEE Transactions on Software Engineering 37(5), pp. 649–678. Available at http://doi.

ieeecomputersociety.org/10.1109/TSE.2010.62.
[18] Elisabeth Jöbstl, Martin Weiglhofer, Bernhard K. Aichernig & Franz Wotawa (2010): When BDDs Fail:

Conformance Testing with Symbolic Execution and SMT Solving. In: 3rd Int. Conf. on Software Testing,
Verification and Validation, ICST 2010, IEEE Computer Society, pp. 479–488. Available at http://doi.
ieeecomputersociety.org/10.1109/ICST.2010.48.

[19] Willibald Krenn & Bernhard K. Aichernig (2009): Test Case Generation by Contract Mutation in Spec#.
Electronic Notes in Theoretical Computer Science 253(2), pp. 71 – 86, doi:10.1016/j.entcs.2009.09.052.

[20] Sidney Nogueira, Augusto Sampaio & Alexandre Mota (2008): Guided Test Generation from CSP Models.
In: 5th Int. Colloquium on Theoretical Aspects of Computing, ICTAC 2008, LNCS 5160, Springer, pp.
258–273. Available at http://dx.doi.org/10.1007/978-3-540-85762-4_18.

[21] Philip Alan Stocks (1993): Applying formal methods to software testing. Ph.D. thesis, Department of com-
puter science, University of Queensland.

[22] Jan Tretmans (1996): Test Generation with Inputs, Outputs and Repetitive Quiescence. Software - Concepts
and Tools 17(3), pp. 103–120.

[23] Martin Weiglhofer & Bernhard Aichernig (2010): Unifying Input Output Conformance. In: Unifying The-
ories of Programming, LNCS 5713, Springer, pp. 181–201. Available at http://dx.doi.org/10.1007/
978-3-642-14521-6_11.

http://doi.ieeecomputersociety.org/10.1109/SEFM.2007.31
http://doi.ieeecomputersociety.org/10.1109/QSIC.2005.63
http://computer.org/proceedings/icfem/9198/91980046abs.htm
http://dx.doi.org/10.1109/QSIC.2010.53
http://dx.doi.org/10.1016/0096-0551(85)90011-6
http://dl.acm.org/citation.cfm?id=646452.692956
http://doi.ieeecomputersociety.org/10.1109/TSE.2010.62
http://doi.ieeecomputersociety.org/10.1109/TSE.2010.62
http://doi.ieeecomputersociety.org/10.1109/ICST.2010.48
http://doi.ieeecomputersociety.org/10.1109/ICST.2010.48
http://dx.doi.org/10.1016/j.entcs.2009.09.052
http://dx.doi.org/10.1007/978-3-540-85762-4_18
http://dx.doi.org/10.1007/978-3-642-14521-6_11
http://dx.doi.org/10.1007/978-3-642-14521-6_11

	1 Introduction
	2 Running Example
	3 Preliminaries
	3.1 Action Systems
	3.2 Conformance

	4 Searching Unsafe States
	4.1 Non-Refinement of Action Systems
	4.2 Finding a Mutated Action
	4.3 Reaching an Unsafe State
	4.4 Test Case Extraction

	5 Empirical Results
	6 Restrictions and Further Optimizations
	7 Conclusion

