
Clemens Dubslaff and Bas Luttik (Eds.):
Models for Formal Analysis of Real Systems (MARS 2022)
EPTCS 355, 2022, pp. 118–144, doi:10.4204/EPTCS.355.6

© F. Mazzanti & D. Belli
This work is licensed under the
Creative Commons Attribution License.

Formal Modeling and Initial Analysis
of the 4SECURail Case Study

Franco Mazzanti
ISTI-CNR
Pisa, Italy

franco.mazzanti@isti.cnr.it

Dimitri Belli
ISTI-CNR
Pisa, Italy

dimitri.belli@isti.cnr.it

We present the case study developed in the context of the 4SECURail project and the approach used
for its formal modeling and analysis. Starting from a simple SysML/UML behavioral model of the
system requirements, three formal models have been developed using three different frameworks,
namely UMC, ProB, and CADP/LNT. The paper shows how the different ways to represent and
analyze the system from the three different points of view allow us to take advantage of the resulting
diversity.

1 Introduction

One of the goals of the 4SECURail project1 is to observe the possible approaches, benefits, limits, and
costs of introducing formal methods inside the requirements definition process in the context of railway-
signaling systems. This has been done with the set up of a “demonstrator” with the purpose to exemplify
the application of state-of-the-art tools and methodologies to a selected railway case study with the col-
lection of meaningful information on the costs and benefits of the process. The overall context and
objectives of this project and experimentation are described in [16, 20]; in this paper, we describe specif-
ically the approach that has been followed for the formal modeling and initial analysis of the case study,
which has seen the exploitation of three different formal verification frameworks. The rest of the paper
is structured as follows: In Section 2, we provide details about the case study that has been the object of
the experimentation; in Section 3, we present the formal modeling approach that has been adopted in the
demonstrator process; in Section 4, we describe the various kinds of analysis performed. In Sections 5
and 6, we respectively hint at some related works and draw our conclusions.

2 The reference case study

The transit of a train from an area supervised by a Radio Block Centre (RBC) to an adjacent area super-
vised by another RBC occurs during the so-called RBC-RBC handover phase and requires the exchange
of information between the two RBCs according to a specific protocol. This exchange of informa-
tion is supported by the communication layer specified within the UNISIG SUBSET-039 [30], UNISIG
SUBSET-098 [28], and UNISIG SUBSET-037 [29], and the whole stack is implemented by both sides
of the communication channel. Figure 1 summarizes the overall structure of the UNISIG standards,
supporting the handover of a train. The 4SECURail case study is based on two main sub-components
of the communication layers constituting the RBC-RBC handover. The considered components are the
Communication Supervision Layer (CSL) of the SUBSET-039 and the Safe Application Intermediate

1https://4SECURail.eu November 2019 – November 2021.

http://dx.doi.org/10.4204/EPTCS.355.6
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

F. Mazzanti & D. Belli 119

SubLayer (SAI) of the SUBSET-098. These two components are the main actors that support the cre-
ation/deletion of safe communication lines and protect the transmission of messages exchanged on such
lines. In particular, the CSL is responsible for requesting the activation – and in case of failure, the
re-establishment – of the communication line, for continuously controlling its liveliness, and for the for-
warding of the handover transaction messages. The SAI is responsible for ensuring the absence of exces-
sive delays, repetitions, losses, or re-ordering of messages during their transmissions. This is achieved by
adding sequence numbers and time-related information to the RBC messages. The RBC/RBC communi-
cation line consists of two sides that are properly configured as “initiator” and “called”. With respect to

 ETCS/ERTMS
Class 1 System Requirements Specification

FIS for RBC/RBC Handover

RBC-RBC
Safe Communication Interface

EuroRadio FIS

Safe Functional Module

SAI Sublayer

ER Safety Layer

Communication Functional Module

RBC Handover Transaction

RBC/RBC Communication Supervision * Handling of Creation/Deletion of
 Safe Communication lines
* Exchange of NRBC messages

* Support of concurrent RBC/RBC
Handover Transactions

* Protection against Delay,
Re-sequencing,

Deletion, Repetition
* Protection against Corruption,

Masquerade, Insertion

* Interface towards the EuroRadio OSI levels

UNISIG Subset 026

UNISIG Subset 039

UNISIG Subset 098

UNISIG Subset 037

4SECURail
Case Study

CSL

SAI

ER

RBC
User

Figure 1: Overall structure of the 4SECURail case study

the SUBSET-098, the 4SECURail case study neither includes the EuroRadio Safety Layer (ER), which
is responsible for preventing corruption, masquerading and insertion issues during the communications,
nor the lower Communication Functional Module (CFM) interface. With respect to the SUBSET-039,
the 4SECURail case study does not include the description of the activation of multiple, concurrent
RBC-RBC handover transactions when trains move from a zone supervised by an RBC to an adjacent
zone supervised by another RBC. From the point of view of the CSL, the RBC messages are forwarded
to/from the other RBC side without the knowledge of their specific contents or session to which they
belong. The case study of the project, as derived from the above-mentioned standards, is described in
natural language in Deliverable D2.3 [23], along with the rationale for its choice. Of course, the level of
abstraction of these requirement documents is not that one of an executable system specification, but a
higher level.

3 The formal modeling

3.1 From natural language to executable UML specifications

As shown in Figure 2, the first step towards the generation of formal models of the system is the descrip-
tion – in terms of extremely simple SysML/UML features – of the system components described by the

120 Formal Modelling and Analysis of the 4SECURail Case Study

natural language requirements. It is well known that requirements described in free-style natural lan-
guage suffer the risk of being unclear (e.g., redundant), potentially ambiguous, in part contradictory, and
possibly not describing essential aspects. Moreover, since the railway infrastructure is essentially a sys-
tem of systems, specifying and guaranteeing the desired interoperability among the various components
is a more challanging task than specifying and guaranteeing the independent safety of each singularly
specified component.

Natural Language Requirements
Potentially

ambiguous, inconsistent, incomplete,
with interoperability issues.

Simple, Executable
SysML Designs

Potentially inconsistent, incomplete,
with implementation errors
and interoperability issues.

But at least in a widely known,
standard, tool-independent notation.

Formal, Verifiable,
Scenario Models

Hopefully
consistent,complete,

without implementation errors,
without interoperability issues

UMC ProBLNT

Figure 2: From natural language to formal models

Constructing a possible implementation using a potentially executable notation with clear seman-
tics allows (at least) to remove the underlying ambiguities but, until the system is thoroughly tested or
verified, the risk of logical deficiencies persists. However, beyond the beneficial “natural language inter-
pretation” step, the “executable implementation” step risks being a critical source of mistakes. Therefore,
the subsequent formal modeling and analysis step of the “executable implementation” becomes essential.
The association of the term “clear semantics” with the term “UML” can be, in general, quite problematic.
In our case, we have used the very minimal set of UML features needed for our executable modeling,
avoiding all the complexities related, for example, to composite states, transition priorities, deferred
events, and making the explicit assumption of FIFO event queues. The extreme simplicity of the result-
ing subset aims not only to the association of a “precise semantics” and a simple intituive meaning to the
designs but also to an “easy translation” of the designs into several formal notations. Appendix A shows
our reference UML state-machine diagrams for the CSL and SAI system components of the case study,
in both their initiator-side and called-side version.

3.2 From executable UML specifications to verifiable scenarios

The system requirements in the Deliverable D2.3 [23] have been the base for the design of the executable
models of the CSL and SAI components. However, in order to have an actually verifiable system, we
need a closed system that contains the specified components plus all the needed environment components
that stimulate, receive data, and forward messages from the initiator to called side of the system. In order
to deal with the time-related aspects of the specification, we also introduce a timer component that allows

F. Mazzanti & D. Belli 121

all the other components to proceed in parallel in an asynchronous way but relatively at the same speed2.
Figure 3 shows the resulting structure of the whole system. Also all the added environment and timer
components can be designed in UML to facilitate the system encoding into the selected formal notations.
An example of these environment components is contained in Appendix A.

RBC_User_1 RBC_User_2

I_SAI C_SAI

initiator side called side

C_CSLI_CSL

EuroRadio/CFM levels

envenv

env

T
i

m
e
r

Figure 3: The complete executable system structure

It is infeasible/impractical to define these environment components in their full possible generality
because the system components are heavily dependent on several configuration parameters. It makes
more sense to define them according to the properties we intend to verify on the complete closed system.
As first step of formal modeling, the executable UML system diagrams corresponding to a given scenario
are translated into the notation accepted by the UMC3 tool. At the beginning of the project, the possibil-
ity of designing the SysML system using a commercial MBSE framework – namely SPARX-EA4 – has
been evaluated. This approach has been abandoned because of time and effort constraints of the project.
Implementing a translator from the SPARX-generated XMI towards UMC would have been a significant
effort. Moreover, it would have tied the whole analysis approach to a specific commercial tool, a fact
which was not considered desirable. Therefore our initial SysML models have the structure of simple
graphical designs; their role is just that one of constituting an intermediate, easy-to-understand docu-
mentation halfway between the natural language requirements and the formal models5. Starting from
the UMC notation, further formal models have been automatically generated in the notations accepted
by the ProB6 and CADP/LNT7 tools. UMC [3, 4, 12] has been chosen as the target of the initial formal
encoding because it is a tool natively oriented to fast-prototyping of SysML systems. It supports a tex-
tual notation of UML state-machine diagrams that directly reflects the graphical counterpart, allows fast
state-space exploration, state- and event-based (on-the-fly) model checking, and detailed debugging of
the system. Last but not least, it is part of a framework developed locally at ISTI. We have a deep insider
knowledge that allowed us to easily implement translators towards the other formal notations within the
time and effort constraint of the project. However, UMC is essentially a teaching/research-oriented aca-

2Since all the system components are modeled as executing a cyclic activity, the timer component just constrains the fre-
quency of the cycles to be the same while allowing the overlapping of their behavior.

3https://fmt.isti.cnr.it/umc
4https://sparxsystems.com/products/ea/index.html
5more details can be found in [20]
6https://prob.hhu.de/
7https://cadp.inria.fr/

122 Formal Modelling and Analysis of the 4SECURail Case Study

demic tool and lacks the maturity, stability, and support level required by an industry-usable framework.
Also for this reason we have planned inside the project the exploitation of further, more industry-ready
formal frameworks. ProB [15] has been selected as the second target of the formal encoding because
of its recognized role (see e.g. [6, 7]) in the field of formal railway-related modeling. Is it supported
by (more than one) very user-friendly GUI. It allows LTL/CTL model checking, state-space exploration,
state-space projections, and trace descriptions in the form of sequence diagrams. Last but not least, it
is a framework with which we have already had some previous modeling experience [8], and that did
not require a learning-from-scratch step. CADP/LNT [10, 11] has been selected as the third target of
the formal encoding because of its theoretical roots on LTS-related theories. These allow to reason in
terms of minimizations, bisimulations, and compositional verifications. CADP is a rich toolbox that sup-
ports a wide set of µ-calculus-based branching-time logic and a powerful scripting language (SVL [9])
to support verification. Also in this case its choice has been influenced by the previous experiences we
have had with this framework [13, 14]. There are several ways in which SysML/UML designs might be
encoded into the ProB and LNT formal notations. In our case, we made the choice to generate both ProB
and LNT models automatically from the UMC model. The translation implemented in our demonstrator
is still a preliminary version and does not exploit at best all the features potentially offered by the target
framework 8. Nevertheless, the availability of the automatic translation proved to be an essential aspect
of the demonstrated approach. Our models and scenarios have been developed incrementally, with a
long sequence of refinements and extensions. At every single step, we have been able to quickly perform
the lightweight formal verification of interest with almost no effort. This would not have been possible
without an automatic generation of the ProB and LNT models. In the following, we will give some de-
tails on the overall structure of the generated models, referring to D2.5 [17] for a broader presentation.
All the UMC/ProB/LNT models, specifying the scenarios of interest, are available from an open access
repository [18], as well as the source code of the applied translators [19].

3.2.1 UMC encoding

In UMC, a system definition is specified as a set of active objects that are instances of class definitions.
A class declaration specifies a template of state-machine, defining the set of events accepted by the
machine, its local variables, and the state-machine behavior when state transitions are triggered. State
machine transitions are encoded in a simple textual form and specify, as shown in Figure 4:

• an optional transition label (R9 ICSL userdataind),
• the source and target states of the transition (COMMS, COMMS),
• a block {...} containing: the triggering event of the transition (ISAI DATA indication), possibly

with parameters and guards, and the sequence of actions to be performed as an effect of the tran-
sition (the sending of the IRBC User Data indication signal to the RBC User component and the
assignment to the receiveTimer variable).

Appendix B shows the UMC encoding of the component I CSL whose UML state-machine diagram
is shown in Appendix A. The mapping of the UML diagrams to the UMC encoding is almost direct.
There are only a few aspects that deserve some attention. One point is that UMC transitions are “atomic”
also at the system level, while the UML transitions are “atomic” only with respect to the state-machine
to which they belong. Therefore, if we have a UML transition that sends several signals to other objects,
a correct modeling of the behavior requires splitting the UML transition into several atomic steps. An

8E.g. all message parameters are mapped into integer values without considering the specific subrange to which that might
belong.

F. Mazzanti & D. Belli 123

example of this is shown in Figure 5, where a UML transition sending three signals is split into a sequence
of three UMC transitions. The second point is that in UML, when a dispatched event does not trigger
any transition it is simply removed from the event queue and discarded. This behavior is implicit in
the state-machine diagram, but it is reasonable to make it explicit in the UMC designs to simplify the
translation of the models into the other notations. This also allows distinguishing more clearly the case
in which an event is intentionally (correctly) discarded from the cases in which the arrival of the event is
simply a not relevant situation or the case in which it is a really unintended behavior highlighting a case
of system malfunctioning.

COMMS
Connected

R9
SAI_DATA_indication(msgtype,userdata)
 [msgtype != Lifesign] /
 RBC.RBC_User_Data_indication(userdata) ;
 receiveTimer := 0;

--
-- R9:
-- When in Connected state is received a SAI_DATA.indication
-- with RBC_data from the SAI component, the CSL sends a
-- RBC_User_Data.indication with such RBC_data to the RBC
-- component and restarts the recTimer
--

R9_ICSL_userdataind:
COMMS -> COMMS
 {ISAI_DATA_indication(arg1, arg2)
 arg1 /= LifeSign] /
 RBC_User.IRBC_User_Data_indication(arg2);
 receiveTimer := 0}

Figure 4: Textual encoding of a state-machine transition

-- R6: When in Connected state the recTimer expires, the CSL
-- sends a SAI_DISCONNECT.request to the SAI component,
-- a RBC_User_Disconnect.indication to the RBC and moves to
-- Waiting state

R6_ICSL_okicsl:
COMMS -> tbcr6
 { csl_tick [receiveTimer = max_receiveTimer] /
 Timer.ok_icsl}

R6_ICSL_saidisconnreq:
tbcr6 -> tbcr6a
 { - /
 SAI.ISAI_DISCONNECT_request;
 receiveTimer := 0;
 sendTimer := 0}

R6_ICSL_userdisconnind:
tbcr6a -> NOCOMMSwait
 { - /
 RBC_User.IRBC_User_Disconnect_indication}

icsl_tick [receiveTimer = max_receiveTimer] /
 Timer.ok_icsl;
 SAI.SAI_DISCONNECT.request;
 receiveTimer := 0;
 sendTimer := 0;
 RBC.RBC_User_Disconnect_indication

COMMS
Connected

NOCOMMS
 WaitingR6

Figure 5: Splitting a UML transition into a sequence of UMC atomic transitions

3.2.2 ProB encoding

A system specification is structured in ProB as a “B machine”. In our case, since the system under
analysis is composed of several mutually interacting state-machines (and the B language is not able to
deal with this concept), we need to “merge” all these components into a unique, global state-machine.
This has several implications:

• The class attributes of UML state-machines must be merged into a single B state-machine defi-
nition. This may require the prefixing of the variable names with the component names to avoid

124 Formal Modelling and Analysis of the 4SECURail Case Study

name clashes. The same manipulation has to be done for the operation names (transition labels in
UMC) and the other entities that may require duplication.

• The currently active state of a UML state-machine is represented in B by the current value of an
ad-hoc variable statemachine STATE. There is one such variable for each UML state-machine.

• Within the B machine structure, all types, constants, and variable definitions and initializations
must appear at the beginning of the machine definition. This disrupts the original structure of the
system, forcing us to spread the UML state-machine definition into several places in the B machine
specification.

• In UML state-machines, the event pool (a buffer implementing asynchronous communications
that contains at each moment the set of signals arrived in a state-machine but not yet dispatched
or discarded) is part of the engine support and thus is not explicitly modelled. In B these event-
pool components must be explicitly modelled. This is because, contrary to UMC, B is not a tool
natively designed for handling UML state-machines. Therefore “buffer” variables representing the
state-machine event pool are added to the B model. Consequently, the action of sending a signal to
another state-machine will be modelled with the insertion of a value to the corresponding variable
buffer, and the dispatching of a signal to trigger a transition will be modelled with the extraction
of the first element of such a buffer.

• Each transition rule definition of the UMC state-machine design is mapped onto an equivalent
operation of the B machine.

Figure 6 shows, as an example, the ProB encoding of the UML transition R4 of the initiator CSL
component, while the full code of the state-machine is shown in Appendix C.

MACHINE SYS
 ...
 …
OPERATIONS
 ...
 …
R4_ICSL_userconnind =
PRE
 ICSL_buff /= [] &
 first(ICSL_buff) = ISAI_CONNECT_confirm &
 ICSL_STATE = ICSL_NOCOMMSconnecting
THEN
 IRBC_buff := IRBC_buff <- RBC_User_Connect_indication;
 ICSL_connect_timer := ICSL_max_connect_timer;
 ICSL_receive_timer := 0;
 ICSL_send_timer := 0;
 ICSL_buff := tail(ICSL_buff);
 ICSL_STATE = ICSL_COMMS
END;
 ...
 …
END;

Class I_CSL
 ...
 …
Behaviour
 ...
 …
R4_ICSL_userconnind :
NOCOMMSconnecting -> COMMS
 { ISAI_CONNECT_confirm /
 RBC_User.RBC_User_Connect_indication;
 connectTimer := max_connectTimer;
 receiveTimer := 0;
 sendTimer := max_sendTimer;
 }
 ...
 …
end I_CSL;

Figure 6: Textual encoding of a UMC (left) and ProB (right) state-machine transition

3.2.3 CADP/LNT encoding

LNT is one of the formal notations accepted by the CADP verification framework. The notation is a
simplified variant of E-LOTOS [27], of which it preserves the expressiveness but adopts a more user-
friendly and regular notations borrowed from imperative and functional programming languages. A
system is described in LNT as a parallel composition of (parametric) processes, which synchronize upon
a statically defined set of events. A process can have private variables that can be manipulated with

F. Mazzanti & D. Belli 125

classical imperative statements. The global environment is constituted by the data types and functions
used by the processes. An LNT specification is internally translated into the LOTOS [26] algebraic
notation and can be analyzed using the CADP toolbox.

In this case, each UMC state-machine is associated with an independent LNT process. All the pro-
cesses do not share any memory and interact through synchronous actions in the typical style of process
algebras. Each process handles a local event pool modelled as a FIFO buffer and is always enabled to
accept synchronizations from other processes willing to push a new event in the queue. Beyond accept-
ing incoming messages, the LNT process can internally evolve, performing internal steps that transform
the local status or synchronizing with other processes by sending messages towards other state-machines.
The final system is obtained by composing in parallel all the processes which synchronize the correspond-
ing actions of sending and receiving a message. Figure 7 shows the overall structure of a state-machine
process corresponding to the initiator CSL, while the full code of the process is shown in Appendix D.

process ICSL [..] is
 ...
 var mybuff: ICSL_BUFF,
 ...
 …
 in
 loop
 select
 --
 --- buffering incoming signals
 --
 var arg1: Int in
 IRBC_User_Data_request(?arg1);
 mybuff := append(IRBC_User_Data_request, mybuff);
 mynatbuff := append(arg1, mynatbuff)
 end var
 []
 ISAI_CONNECT_confirm;
 mybuff := append(ISAI_CONNECT_confirm, mybuff)
 []
 …
 …
 --
 --- triggering statemachine transitions from events pool
 --
 []
 -- R4_ICSL_userconnind
 only if
 mybuff /= nil and
 head(mybuff) = ISAI_CONNECT_confirm and
 STATE = NOCOMMSconnecting
 then
 RBC_User_Connect_indication;
 connect_timer := ICSL_max_connect_timer;
 receive_timer := 0;
 send_timer := 0;
 mybuff := tail(mybuff);
 STATE = COMMS
 end if
 []
 ...
 …
 end select
 end loop
 end var
end process

Class I_CSL
 ...
 …
Behaviour
 ...
 …
R4_ICSL_userconnind :
NOCOMMSconnecting -> COMMS
 { ISAI_CONNECT_confirm /
 RBC_User.RBC_User_Connect_indication;
 connectTimer := max_connectTimer;
 receiveTimer := 0;
 sendTimer := max_sendTimer;
 }
 ...
 …
end I_CSL;

Figure 7: The LNT structure corresponding to the initiator CSL state-machine

126 Formal Modelling and Analysis of the 4SECURail Case Study

4 The formal analysis

The first goal of our analysis has been the proof that all the three generated models are equivalent. This
has been done by saving the possible behavior of the models in the form of Labelled Transition System 9,
and by applying comparison tools 10 to verify that the three ProB and LNT models are strongly equiv-
alent to the UMC models 11. The main goal of the demonstrator, however, is not the complete formal
verification of a (fragment of a) standard, but the exemplification of the categories of costs and benefits
that may come to play with the choice of exploiting formal methods for the improvement of system re-
quirements documents.The focus of our formal analysis is, therefore, to show with some evidence how
formal methods may be of help in detecting the design errors potentially introduced while producing
the UML executable model, in verifying the high-level properties expected by the full system and by its
specific components, and in generating clear and rigorous (graphical) feedback on the specified system
to the requirements designers. The detailed analysis of the costs and benefits, not only qualitative but
also as far as possible quantitative, is the object of a separate 4SECURail deliverable [31]).

From our experience, it has become evident that formal methods can be used in a lightweight (i.e.,
almost “push button”) way or in an “advanced” way. These two degrees of exploitation of formal methods
require a very different level of effort and background. A rigorous static analysis of the formal models is
probably the simplest example of lightweight use of formal methods. Just loading a system specification
in the verification tool may immediately reveal mistakes and anomalies in the code (type violation, non-
relevant updates, missing initializations, mismatch of parameters in messages, etc.).

Other behavioral properties like the absence of deadlocks or examples of reachability of certain states
or events can still be verified with just a button-pushing or by writing extremely simple logical properties.
Trace examples or counter-examples can be visualised in the form of a UML message sequence diagram
12. Further information can be gathered by monitoring the generation and the statistics on the system
state-space (if not too large). The visualization of state-space projections (i.e., graphical views of the
system state-space once reduced after making observable only some specific detail of the system) can be
of great help in understanding and confirming the system behavior without resorting to the encoding of
complex temporal logic formulas.

The analysis of more complex behavioral properties, however, may require the writing of more com-
plex temporal logics formulas. This activity may require a greater background and more advanced knowl-
edge of the verification tools. Figure 8 shows a table of some of the features provided by our three frame-
works. In the table, the features that can be easily exploited without any particularly advanced formal
methods and tool knowledge, in an almost “push button” way, are those appearing in black. As it can
be seen by observing the mentioned table of features, an advantage of our “formal methods diversity”
approach is the possibility of exploiting the power offered by the whole set of frameworks, like state- or
event-based model checking, linear- or branching-time model checking, state-space projections, custom
system observations, and various state-space minimizations or reductions. In our experimentation, the
following features have been the most used (more details can be found in Deliverable D2.5 [17]:

• static analysis in UMC/ProB/LNT

9While in the case of CADP and UMC saving a model in the .aut textual LTS is available as a builtin feature of the
framework, in the case of ProB this LTS generation has been obtained through a automated transformation of the model state-
space originally saved in the ProB “.statespace” textual format.

10e.g. mCRL2 ltscompare or CADP bcg cmp.
11UMC can be configured to associate the LTS transition labels with the UMC transition labels, or with the occurring

communications actions, or with other observable events.
12This is natively possible in the UMC framework and very recently also in the Tck/Tk version of ProB.

F. Mazzanti & D. Belli 127

• explanations and animations in UMC/ProB

• weak-complete-divergence-sensitive-trace generation in UMC

• fast state-space generation in UMC

• divbranching minimizations in CADP

• Static Analysis
• Reachability Properties
• Statespace Projections
• Statespace Stats
• State Invariants
• Deadlocks
• Trace Explanations as
 Message Sequence Diagrams
• CTLe / LTLe Model Checking
 (state/event based)
• ...

• Static Analysis
• Reachability Properties
• System Traces Minimization
• Statespace Stats
• Deadlocks
• Runtime Errors
• Custom system observations
• Trace Explanations as
 Message Sequence Diagrams
• UCTL Model Checking
 (state/event based)
• ...

• Static Analysis
• Reachability Properties
• Statespace Stats
• Deadlocks
• MCL Model Checking
 (event based)
• Compositional Verification
• Strong/ Divbranching/ Sharp
 Minimizations
• Powerful scripting language
• ...

ProB UMC LNT

Figure 8: Table of verification features

When the same feature is available on multiple platforms, also usability aspects play an important role in
selecting which one to exploit. E.g. CADP does not allow to observe the evolution of the values of the
process variables during the animation of the behavior or the observation of a counter-example, ProB and
UMC have richer visualization system, allowing among the other things to observe a trace in the form
of a Sequence Message chart, SVL scripting in CADP makes easier the structuring and documentation
of the ongoing verification process. The downside of this formal methods diversity approach is that
becoming expert in the use of all these frameworks is likely to require a steep learning curve, with the
needed single effort to be multiplied by the number of frameworks and with the risk of not becoming
expert in any of them.

4.1 Properties and scenarios

The formal analysis of the system that has been performed during the the project activity is surely not
complete, but sufficient to become reasonably confident in the absence of implementation or logical er-
rors. Further tests and verification are still in progress, e.g., from the point of view of compositional
verification in the context of the CADP/LNT framework. Several kinds of architectures can be gener-
ated to observe the system properties or the properties of single components. Figure 3 shows the case
of a “complete” architecture, where all the system components are composed together with the needed
environment components. Several flavors of this architecture can be designed, depending on the prop-
erties we want to observe, on the limit to the complexity we want to set, and on the kind of behavior
of the environment we want to consider. Once the desired behavior of the environment components is
established, they need to be instantiated into an executable scenario with the setting of a list of internal
parameters fixing the parametric aspects of the specification. The simplest architecture we have built is
when the two RBC remain “silent” (not sending any message) and just receive connection/disconnection
indications from the CSL layer. In this architecture, the Euroradio level is imagined to be “nice”, i.e.,
introducing at most small delays in the communications, not losing nor reordering messages, and not
autonomously aborting the existing active communication channel. The set of UML state-machine dia-
grams describing the components of this architecture is shown in Appendix A. In this case, the system is

128 Formal Modelling and Analysis of the 4SECURail Case Study

simply expected to set up a communication line, keep it alive by exchanging life-signs, and re-establish
it in case of failures. Failures can still occur depending on the specific values of the parameters used to
instantiate the scenario. In particular, the most important parameters affecting the system behavior in
this scenario are:

• The timeout (max connectTimer) representing the maximum delay that initiator CSL is allowed to
wait before receiving a reply to a connection request (after which a new connection request can be
retried).

• The timeout (max initTimer) representing the maximum delay that each SAI is allowed to wait for
the successful initialization of a new communication line before aborting the creation process.

• The timeout (max sendTimer) triggering the periodic sending by the CSL of a new life-sign to
keep the communication line alive.

• The timeout (max receiveTimer) representing the maximum delay a CSL is allowed to wait before
receiving a life-sign or a rbc message from the other side (whose expiration causes the abort of the
re-establishment of the communication line).

Other important system parameters, like

• The limit (N) of consecutive loss of messages (detected by the observation of sequence numbers)
acceptable by the SAI components, before aborting the safe connection line.

• The maximum traveling delay (K) acceptable for incoming messages whose violation forces the
discarding of the message.

do not play a relevant role in this scenario.
In this case, we can observe that if the connection, initialization, and receive timer are sufficiently

large13 (e.g., max connectTimer = max initTimer = 20, max receiveTimer = 15, max sendTimer = 5) the
system successfully establishes an initial communication line without ever losing it. If we instead reduce
the max receiveTimer parameter to 8, communication failures and communications line restarts begin to
appear (and the system state-space grows from 19,788,895 to 74,713,472 states).

An extension of the previous architecture is where the RBCs are allowed to send slots of “nmax”
messages. In this case, we can observe how messages, if they arrive, are delivered to the target RBC
without reordering, duplications, and within a maximum delay. In this case, the system state-space
grows to 65,386,049 and to 84,883,327 states when slots of 1 or 2 messages are sent by just the RBC
on the initiator side. Beyond the complete architectures described above, other kinds of architectures
have been set up. For example, an “ICSL testing” architecture, where the Initiator CSL component is
stimulated with an abstract model of the SAI and RBC components, and an “Initiator-side testing” archi-
tecture, where the whole ER layer and CSL/SAI/RBC on the “called side” of the system are abstracted
by environment components. In this latter case, we can observe how the messages received from the
RBC environment, in the absence of disconnections, are always delivered to the EuroRadio level without
losses, duplications, reordering, and within a limited delay.

Further examples of the verifications that have been done on the models can be found on [17].

5 Related works

The experimentation of formal methods diversity for the analysis of the same specification has already
been described by one of the authors in [22, 21]. In that case, the focus was on a much simpler case

13time unit are measured as multiples of the basic system execution cycle.

F. Mazzanti & D. Belli 129

study that did not have the complexity of a parametric signaling standard. As a collateral activity of the
project, the same fragment of UNISIG SUBSET 98 has been modelled and verified with UPPAAL by
Basile et al. in [2]. The current translation of UML state-machine diagrams into ProB has been initially
experimented in [8], but other approaches are possible; the UML-like UML-B notation [25, 24] has been
proposed as a bridge between an Eclipse-based model framework (Rodin) and the Event-B modeling
notation; the suggested approach seems, however, to be tailored to the verification and refinement of
single state-machines and not to the analysis of the overall behavior of a set of interacting state-machines.
Many other formal notations have been the target of translations from SysML design. Another work very
similar to our from the point of view of the goal is the one described by Bouwman et al. [5]. Also in
that case the goal was aimed at the analysis of a signaling standard under development rather than the
verification of a specific system. The target notation and framework is, in that case, mCRL2.

6 Conclusions

Formal analysis of a still fluid, parametric, and environment-depending requirements specification (i.e.,
requirements elicitation and validation) is a very different kind of activity than verifying that a given
implementation is correct with respect to a specific, stable, and rigorous specification. The possibility
to exploit the analysis features offered by more than one verification framework can be of help in ap-
proaching this activity. Moreover, the design of several different scenarios can be necessary to observe
the system behavior under various assumptions. From this point of view, the possibility to automati-
cally generate the formal models to be analyzed from some executable, widely known, standard, tool-
independent notation is a crucial point to make the analysis process accessible also from to people with
the relevant railway-signaling knowledge. The formal methods diversity approach experienced in the
project has shown how a lightweight use of formal verification frameworks can already, with a small ef-
fort, produce important feedback on the quality of the design. A deeper and more advanced exploitation
of all the available features, however, remains a difficult and daunting task, especially when the system
complexity and size grow to a level requiring ad hoc mitigation approaches. The activity shown with our
experimentation can be continued and improved in several directions. The executable UML subset used
in the project can be greatly extended, still preserving its clear and rigorous semantics and its possibility
of automatic translation into several formal notations. Also, the set of target formal notations (currently
limited to UMC, ProB, and LNT) can be extended with a likely small effort to further frameworks like
mCRL2, Spin, nuXmv, just to mention some. The detailed description of the project results, the ini-
tial executable UML designs, their formal encoding, the source code of the translators, are all publicly
available [1, 18, 19].

Acknowledgements

This work has been partially funded by the 4SECURail project. The 4SECURail project received funding from
the Shift2Rail Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme
under grant agreement No 881775 in the context of the open call S2R-OC-IP2-01-2019, part of the “Annual
Work Plan and Budget 2019”, of the programme H2020-S2RJU-2019. The content of this paper reflects only the
authors’ view and the Shift2Rail Joint Undertaking is not responsible for any use that may be made of the included
information. We are grateful to the colleagues of the Work Stream 1 of project 4SECURail, and in particular to
Alessandro Fantechi, Stefania Gnesi, Davide Basile, Alessio Ferrari, Maurice ter Beek, Andrea Piattino, Laura
Masullo and Daniele Trentini for the comments and suggestions during the project.

130 Formal Modelling and Analysis of the 4SECURail Case Study

References

[1] F. Mazzanti et al. (2020): Work Stream 1 Deliverables. 4SECURail, doi:10.5281/zenodo.5807738.

[2] D. Basile, A. Fantechi & I. Rosadi (2021): Formal Analysis of the UNISIG Safety Application Intermediate
Sub-layer - Applying Formal Methods to Railway Standard Interfaces. In Alberto Lluch-Lafuente & Anas-
tasia Mavridou, editors: Formal Methods for Industrial Critical Systems - 26th International Conference,
FMICS 2021, LNCS 12863, Springer, pp. 174–190, doi:10.1007/978-3-030-85248-1 11.

[3] M. ter Beek, S. Gnesi & F. Mazzanti (2015): From EU Projects to a Family of Model Checkers - From
Kandinsky to KandISTI. In Rocco De Nicola & Rolf Hennicker, editors: Software, Services, and Systems,
LNCS 8950, Springer, pp. 312–328, doi:10.1007/978-3-319-15545-6 20.

[4] M.H. ter Beek, A. Fantechi, S. Gnesi & F. Mazzanti (2011): A state/event-based model-checking approach
for the analysis of abstract system properties. Science of Computer Programming 76(2), pp. 119–135,
doi:10.1016/j.scico.2010.07.002.

[5] M. Bouwman, D van der Wal, Luttik, M. Stoelinga & A. Rensink (2020): What is the Point: Formal Analysis
and Test Generation for a Railway Standard. In Piero Baraldi, Francesco Di Maio & Enrico Zio, editors:
Proceedings of the 30th European Safety and Reliability Conference and the 15th Probabilistic Safety As-
sessment and Management Conference, pp. 921–928, doi:10.3850/978-981-14-8593-0 4410-cd.

[6] A. Ferrari, F. Mazzanti, D. Basile, M. H. ter Beek & A. Fantechi (2020): Comparing Formal Tools for System
Design: a Judgment Study. In: Proceedings of the 42nd ACM/IEEE International Conference on Software
Engineering (ICSE’20), ACM, pp. 62–74, doi:10.1145/3377811.3380373.

[7] A. Ferrari, F. Mazzanti, D. Basile & M. Ter Beek (2021): Systematic Evaluation and Usability Analysis of
Formal Methods Tools for Railway Signaling System Design. IEEE Transactions on Software Engineering,
pp. 1–1, doi:10.1109/TSE.2021.3124677.

[8] A. Ferrari, F. Mazzanti, D. Basile, A. Fantechi, S. Gnesi, D. Trentini, A. Piattino & B. Sturani (2012):
ASTRAIL Deliverable D4.3 - Validation Report. Available at http://www.astrail.eu/download.aspx?
id=d7ae1ebf-52b4-4bde-b25e-ae251fd906df.

[9] H. Garavel & F. Lang (2001): SVL: A Scripting Language for Compositional Verification. In: Formal Tech-
niques for Networked and Distributed Systems, FORTE 2001, IFIP TC6/WG6.1 - 21st International Con-
ference on Formal Techniques for Networked and Distributed Systems, August 28-31, 2001, Cheju Island,
Korea, IFIP Conference Proceedings 197, Kluwer, pp. 377–394, doi:10.1007/0-306-47003-9 24.

[10] H. Garavel, F. Lang, R. Mateescu & W. Serwe (2013): CADP 2011: a toolbox for the construction and
analysis of distributed processes. Int. J. Softw. Tools Technol. Transf. 15(2), pp. 89–107, doi:10.1007/s10009-
012-0244-z.

[11] H. Garavel, F. Lang & W. Serwe (2017): From LOTOS to LNT. In: ModelEd, TestEd, TrustEd - Essays
Dedicated to Ed Brinksma on the Occasion of His 60th Birthday, Lecture Notes in Computer Science 10500,
Springer, pp. 3–26, doi:10.1007/978-3-319-68270-9 1.

[12] S. Gnesi & F. Mazzanti (2011): An Abstract, on the Fly Framework for the Verification of Service-Oriented
Systems, pp. 390–407. Lecture Notes in Computer Science 6582, Springer, doi:10.1007/978-3-642-20401-
2 18.

[13] F. Lang, R. Mateescu & F. Mazzanti (2020): Sharp Congruences Adequate with Temporal Logics Combin-
ing Weak and Strong Modalities. In Armin Biere & David Parker, editors: Tools and Algorithms for the
Construction and Analysis of Systems - 26th International Conference, TACAS 2020, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30,
2020, Proceedings, Part II, Lecture Notes in Computer Science 12079, Springer, pp. 57–76, doi:10.1007/978-
3-030-45237-7 4.

[14] F. Lang, R. Mateescu & F. Mazzanti (2021): Compositional verification of concurrent systems by combining
bisimulations. Formal Methods in System Design, doi:10.1007/s10703-021-00360-w.

http://dx.doi.org/10.5281/zenodo.5807738
http://dx.doi.org/10.1007/978-3-030-85248-1_11
http://dx.doi.org/10.1007/978-3-319-15545-6_20
http://dx.doi.org/10.1016/j.scico.2010.07.002
http://dx.doi.org/10.3850/978-981-14-8593-0_4410-cd
http://dx.doi.org/10.1145/3377811.3380373
http://dx.doi.org/10.1109/TSE.2021.3124677
http://www.astrail.eu/download.aspx?id=d7ae1ebf-52b4-4bde-b25e-ae251fd906df
http://www.astrail.eu/download.aspx?id=d7ae1ebf-52b4-4bde-b25e-ae251fd906df
http://dx.doi.org/10.1007/0-306-47003-9_24
http://dx.doi.org/10.1007/s10009-012-0244-z
http://dx.doi.org/10.1007/s10009-012-0244-z
http://dx.doi.org/10.1007/978-3-319-68270-9_1
http://dx.doi.org/10.1007/978-3-642-20401-2_18
http://dx.doi.org/10.1007/978-3-642-20401-2_18
http://dx.doi.org/10.1007/978-3-030-45237-7_4
http://dx.doi.org/10.1007/978-3-030-45237-7_4
http://dx.doi.org/10.1007/s10703-021-00360-w

F. Mazzanti & D. Belli 131

[15] M Leuschel & M.J. Butler (2008): ProB: an automated analysis toolset for the B method. Int. J. Softw. Tools
Technol. Transf. 10(2), pp. 185–203, doi:10.1007/s10009-007-0063-9.

[16] F. Mazzanti, D. Basile, A. Fantechi, S. Gnesi & A. Ferrari (2020): D2.1: Specification of formal development
demonstrator. In: Work Stream 1 Deliverables, 4SECURail, doi:10.5281/zenodo.5807738.

[17] F. Mazzanti & D. Belli (2020): D2.1: Formal development demonstrator prototype, final release. In: Work
Stream 1 Deliverables, 4SECURail, doi:10.5281/zenodo.5807738.

[18] F. Mazzanti & D. Belli (2020): Formal models of the SAI /CSL systems of the 4SECURail case study,
doi:10.5281/zenodo.5541307.

[19] F. Mazzanti & D. Belli (2020): The UMC2LNT and UMC2PROB model transformation tools,
doi:10.5281/zenodo.5541350.

[20] F. Mazzanti & D.Belli (2022): The 4SECURail Formal Methods Demonstrator. In: The 4th International
Conference on Reliability, Safety and Security of Railway Systems (RSSRAIL), Lecture Notes in Computer
Science 13294, Springer, doi:10.5281/zenodo.6245955.

[21] F. Mazzanti & A. Ferrari (2018): Ten Diverse Formal Models for a CBTC Automatic Train Supervision Sys-
tem. In John P. Gallagher, Rob van Glabbeek & Wendelin Serwe, editors: Proceedings of the 3rd Workshop
on Models for Formal Analysis of Real Systems and the 6th International Workshop on Verification and
Program Transformation (MARS/VPT’18), EPTCS 268, pp. 104–149, doi:10.4204/EPTCS.268.4.

[22] F. Mazzanti, A. Ferrari & G. O. Spagnolo (2018): Towards formal methods diversity in railways: an
experience report with seven frameworks. Int. J. Softw. Tools Technol. Transf. 20(3), pp. 263–288,
doi:10.1007/s10009- 018-0488-3.

[23] A. Piattino (2020): D2.1: Case study requirements and specification. In: Work Stream 1 Deliverables,
4SECURail, doi:10.5281/zenodo.5807738.

[24] S. Salunkhe, R. Berglehner & A. Rasheeq (2021): Automatic Transformation of SysML Model to Event-B
Model for Railway CCS Application. In Alexander Raschke & Dominique Méry, editors: Rigorous State-
Based Methods - 8th International Conference, ABZ 2021, Ulm, Germany, June 9-11, 2021, Proceedings,
Lecture Notes in Computer Science 12709, Springer, pp. 143–149, doi:10.1007/978-3-030-77543-8 14.

[25] C. F. Snook & M. J. Butler (2006): UML-B: Formal modeling and design aided by UML. ACM Trans. Softw.
Eng. Methodol. 15(1), pp. 92–122, doi:10.1145/1125808.1125811.

[26] Geneva. ISO/IEC International Organization for Standardization Information Technology (1989): Interna-
tional Standard 8807 - LOTOS – A Formal Description Technique Based on the Temporal Ordering of Ob-
servational Behaviour.

[27] Geneva. ISO/IEC International Organization for Standardization Information Technology (2001): Interna-
tional Standard 15437:2001 - Enhancements to LOTOS (E-LOTOS).

[28] UNISIG (2012): SUBSET-098, RBC/RBC Safe Communication Interface, v3.0.3. Available at
https://www.era.europa.eu/sites/default/files/filesystem/ertms/ccs_tsi_annex_a_

-_mandatory_specifications/set_of_specifications_1_etcs_b2_gsm-r_b1/index063_-_

subset-098_v100.pdf.

[29] UNISIG (2015): SUBSET-037, EuroRadio FIS v3.2.0. Available at https://www.era.europa.eu/

sites/default/files/filesystem/ertms/ccs_tsi_annex_a_-_mandatory_specifications/

set_of_specifications_3_etcs_b3_r2_gsm-r_b1/index010_-_subset-037_v320.pdf.

[30] UNISIG (2015): SUBSET-039, FIS for the RBC/RBC Handover v3.2.0. Available at https:

//www.era.europa.eu/sites/default/files/filesystem/ertms/ccs_tsi_annex_a_-_

mandatory_specifications/set_of_specifications_3_etcs_b3_r2_gsm-r_b1/index012_

-_subset-039_v320.pdf.

[31] C. Vaghi (2021): Specification of Cost-Benefit Analysis and learning curves, final release. In: Work Stream
1 Deliverables, 4SECURail, doi:10.5281/zenodo.5807738.

http://dx.doi.org/10.1007/s10009-007-0063-9
http://dx.doi.org/10.5281/zenodo.5807738
http://dx.doi.org/10.5281/zenodo.5807738
http://dx.doi.org/10.5281/zenodo.5541307
http://dx.doi.org/10.5281/zenodo.5541350
http://dx.doi.org/10.5281/zenodo.6245955
http://dx.doi.org/10.4204/EPTCS.268.4
http://dx.doi.org/10.1007/s10009- 018-0488-3
http://dx.doi.org/10.5281/zenodo.5807738
http://dx.doi.org/10.1007/978-3-030-77543-8_14
http://dx.doi.org/10.1145/1125808.1125811
https://www.era.europa.eu/sites/default/files/filesystem/ertms/ccs_tsi_annex_a_-_mandatory_specifications/set_of_specifications_1_etcs_b2_gsm-r_b1/index063_-_subset-098_v100.pdf
https://www.era.europa.eu/sites/default/files/filesystem/ertms/ccs_tsi_annex_a_-_mandatory_specifications/set_of_specifications_1_etcs_b2_gsm-r_b1/index063_-_subset-098_v100.pdf
https://www.era.europa.eu/sites/default/files/filesystem/ertms/ccs_tsi_annex_a_-_mandatory_specifications/set_of_specifications_1_etcs_b2_gsm-r_b1/index063_-_subset-098_v100.pdf
https://www.era.europa.eu/sites/default/files/filesystem/ertms/ccs_tsi_annex_a_-_mandatory_specifications/set_of_specifications_3_etcs_b3_r2_gsm-r_b1/index010_-_subset-037_v320.pdf
https://www.era.europa.eu/sites/default/files/filesystem/ertms/ccs_tsi_annex_a_-_mandatory_specifications/set_of_specifications_3_etcs_b3_r2_gsm-r_b1/index010_-_subset-037_v320.pdf
https://www.era.europa.eu/sites/default/files/filesystem/ertms/ccs_tsi_annex_a_-_mandatory_specifications/set_of_specifications_3_etcs_b3_r2_gsm-r_b1/index010_-_subset-037_v320.pdf
https://www.era.europa.eu/sites/default/files/filesystem/ertms/ccs_tsi_annex_a_-_mandatory_specifications/set_of_specifications_3_etcs_b3_r2_gsm-r_b1/index012_-_subset-039_v320.pdf
https://www.era.europa.eu/sites/default/files/filesystem/ertms/ccs_tsi_annex_a_-_mandatory_specifications/set_of_specifications_3_etcs_b3_r2_gsm-r_b1/index012_-_subset-039_v320.pdf
https://www.era.europa.eu/sites/default/files/filesystem/ertms/ccs_tsi_annex_a_-_mandatory_specifications/set_of_specifications_3_etcs_b3_r2_gsm-r_b1/index012_-_subset-039_v320.pdf
https://www.era.europa.eu/sites/default/files/filesystem/ertms/ccs_tsi_annex_a_-_mandatory_specifications/set_of_specifications_3_etcs_b3_r2_gsm-r_b1/index012_-_subset-039_v320.pdf
http://dx.doi.org/10.5281/zenodo.5807738

132 Formal Modelling and Analysis of the 4SECURail Case Study

Appendix A: UML diagrams for all the CSL and SAI components

SAI_DISCONNECT.indication /

icsl_tick [receiveTimer = max_receiveTimer] /
 Timer.ok_icsl;
 SAI.SAI_DISCONNECT.request;
 receiveTimer := 0;
 sendTimer := 0;
 RBC.RBC_User_Disconnect_indication

- /
 SAI.SAI_CONNECT.request;
 connectTimer := 0;

SAI_CONNECT_confirm /
 RBC.RBC_User_Connect_indication;
 connectTimer := max_connectTimer;
 receiveTimer := 0;
 sendTimer := max_sendTimer

NOCOMMS
Disconnected

icsl_tick [connectTimer =
 max_connectTimer] /
Timer.ok_icsl

NOCOMMS
Connecting

NOCOMMS
 Waiting

SAI_DISCONNECT.indication /
 RBC.
 RBC_User_disconnect_indication;
 receiveTimer := 0;
 sendTimer := 0;

R1

R2

R3

R4R6

R5

R7
icsl_tick [(receiveTimer < max_receiveTimer)

 and (sendTimer = max_sendTimer)] /
 Timer.ok_icsl;
 sendTimer := 0;
 receiveTimer := receiveTimer+1
 SAI.SAI_DATA.request(Lifesign,nodata)

RBC_User_Data.request(userdata) /
 SAI.SAI_DATA_request (RBCdata,userdata) ;
 sendTimer := 0

R8

R9
SAI_DATA_indication(msgtype,userdata)
 [msgtype != Lifesign] /
 RBC.RBC_User_Data_indication(userdata) ;
 receiveTimer := 0;

R10
SAI_DATA_indication(msgtype,userdata)
 [msgtype = Lifesign] /
 receiveTimer := 0;

R11

Initiator CSL

COMMS
Connected

 receiveTimer := 0;
 sendTimer := 0;
 connectTimer := 0;

icsl_tick [connectTimer <
 max_connectTimer] /
 Timer.ok_icsl;
 connectTimer := connectTimer +1;

RTa
RTb

icsl_tick /
 Timer.ok_icsl

icsl_tick [(receiveTimer < max_receiveTimer)
and (sendTimer < max_sendTimer)] /

 Timer.ok_icsl;
 sendTimer := sendTimer +1;
 receiveTimer := receiveTimer+1

RTc

max_receiveTimer: int;
max_sendTimer: int;
max_connectTimer: int;

Figure 9: The Initiator CSL state-machine

s0

eur_tick /
 Timer.eur_ok

R1

ISAI_SA_Connect_request /
 Cside.CSAI_SA_Connect_indication;

ISAI_SA_Disconnect_request /
 Cside.CSAI_SA_Disconnect_indication;

ISAI_SA_Data_request
 (arg1,arg2,arg3,arg4,arg5,arg6) /
Cside.CSAI_SA_Data_indication
 (arg1,arg2,arg3,arg4,arg5,arg6);

CSAI_SA_Connect_response /
 Iside.ISAI_SA_Connect_confirm;

CSAI_SA_Disconnect_request /
Iside.ISAI_SA_Disconnect_indication;

CSAI_SA_Data_request
 (arg1,arg2,arg3,arg4,arg5,arg6) /
Iside.CSAI_SA_Data_indication
 (arg1,arg2,arg3,arg4,arg5,arg6);

ISAI_SA_Execution_Cycle(arg1,arg2) /
 Cside.CSAI_SA_Execution_Cycle_Start(arg1,arg2)

CSAI_SA_Execution_Cycle(arg1,arg2) /
 Iside.ISAI_SA_Execution_Cycle_Start(arg1,arg2

R2i

R3i

R4i

R2c

R3c

R4c

R6a R6b

EUR

Figure 10: The nice Euroradio component of the Full scenario

F. Mazzanti & D. Belli 133

Initiator SAI

NOCONN
Connecting

NOCONN
Disconnected

SAI_CONNECT.request /
 ER.Sa_CONNECT.request

R2

Sa_CONNECT.confirm /
 ER.Sa_ExecutionCycle
 (next_out,currentEC);
 next_out := (next_out +1) mod M;
 initTimer := 0;

R6

SAI_DATA.request(msgtype,userdata)
 [waitnextcycle = True] /
 outdatabuff :=
 outdatabuff + [msgtype,userdata];

[initTimer = max_initTimer] /
 CSL.SAI_ERROR.report ;
 ER.Sa_DISCONNECT.request;
 initTimer := 0;
 currentEC := 0;

R7

NOCONN
Initializing

R4
Sa_DISCONNECT.indication /

R9
Sa_DISCONNECT.indication /
 initTimer := 0;
 currentEC := 0;

CONN
 Connected

Sa_ExecutionCycleStart
 (seqnum,ecnum) /
 CSL.SAI_CONNECT.confirm;
 OFFSET := currentEC - ecnum;
 initTimer := 0;
 ack_requestTimer := 0;
 ack_responseTimer :=
 max_ack_responseTimer + 1;
 ack_reply := 0;
 last_in := seqnum

R11

R12

SAI_DISCONNECT.request /
 CSL.SAI_DISCONNECT.indication;
 ER.Sa_DISCONNECT.request;
 ack_requestTimer :=
 max_ack_requestTimer;
 ack_responseTimer := 0;
 ack_reply := 0;
 currentEC := 0;
 outdatabuff := [];
 ack_request := 0;
 waitnextcycle := False

if (ack_responseTimer =
 max_ack_responseTimer) {
 CSL.SAI_ERROR.report;
 ack_responseTimer :=
 max_ack_responseTimer + 1; }

R14

Sa_DISCONNECT.indication /
 CSL.SAI_DISCONNECT.indication;
 ack_requestTimer :=
 max_ack_requestTimer;
 ack_responseTimer := 0;
 ack_reply := 0;
 outdatabuff := [];
 ack_request := 0;
 waitnextcycle := False;

R15

R16d
[dist > N] /
 ER.Sa_DISCONNECT.request
 CSL.SAI_DISCONNECT.indication;
 ack_responseTimer := 0;
 next_out :=0;
 dist := 0;
 DELTA := 0;
 outdatabuff := [];
 ack_request := 0;
 waitnextcycle := False

R13b

SAI_DATA.request(msgtype,userdata)
 [waitnextcycle = False] /
 ER.Sa_DATA.request(msgtype,userdata,
 ack_request,ack_reply,
 next_out,currentEC);
 next_out := (next_out + 1) mod M;
 if (ack_request = 1) {
 ack_request := 0;
 ack_requestTimer := 0;
 ack_responseTimer := 0 };
 ack_reply := 0;
 waitnextcycle := True;

R1 /
initTimer := 0;
OFFSET := 0;
EC_expected := 0;
DELTA := 0;
currentEC := 0;
last_in := 0;
next_out := 0;
dist := 0;
ack_requestTimer := 0;
ack_responseTimer := 0;
ack_reply := 0;
ack:request := 0;
outdatabuff := [];
waitnextcycle := False;

SAI_DISCONNECT.request /
 CSL.SAI_DISCONNECT.indication

R3

isai_tick /
 Timer.ok_isai;
 initTimer := initTimer + 1;
 currentEC :=
 (currentEC + 1) mod Mec;

[initTimer < max_initTimer] /

R13a

Sa_DATA_indication
 (msgtype,userdata,
 ackreq,ackresp,
 seqnum,ecnum) /
 dist := seqnum - last_in;
 if (dist < -M/2) then {dist := dist + M };
 if (dist > M/2) then {dist := dist - M };
 if ((dist > 0) and (dist <= N)) then
 {last_in := seqnum};
 ack_reply :=
 ack_reply + ackreq - ack_reply*ackreq;
 EC_expected :=
 (currentEC + Mec - OFFSET) mod Mec;
 DELTA := EC_expected -ecnum;
 if (DELTA < -Mec/2) {DELTA := DELTA + Mec };
 if (DELTA > Mec/2) {DELTA := DELTA - Mec };
 EC_expected := 0

R16

[dist = 1 and DELTA < K] /
 CSL.SAI_DATA.indication(msgtype,userdata);
 if (ackresp = 1 and
 ack_responseTimer <
 max_ack_responseTimer)
 { ack_responseTimer :=
 max_ack_responseTimer + 1 };
 dist := 0;
 DELTA := 0

R16a

[dist > 1 and dist <= N and DELTA < K]] /
 CSL.SAI_DATA.indication(msgtype,userdata);
 if (ackresp = 1 and
 ack_responseTimer <max_ack_responseTimer)
 { ack_responseTimer :=
 max_ack_responseTimer + 1 };
 CSL.SAI_ERROR.report;
 dist := 0;
 DELTA := 0

R16b

[dist < 1 or (dist <= N and DELTA >= K)] /
 CSL.SAI_ERROR.report;
 dist := 0;
 DELTA := 0

R16c

isai_tick /
 Timer.ok_isai;
 if (ack_responseTimer < max_ack_responseTimer)
 {ack_responseTimer := ack_responseTimer + 1};
 if (ack_requestTimer < max_ack_requestTimer)
 {ack_requestTimer := ack_requestTimer + 1};
 if (ack_requestTimer = max_ack_requestTimer and
 ack_responseTimer >= max_ack_responseTimer)
 {ack_request := 1};
 currentEC := (currentEC + 1) mod Mec;
 waitnextcycle := False

if (outdatabuff /= []]) {
 ER.Sa_DATA.request(
 outdatabuff.head, outdatabuff.tail.head,
 ack_request, ack_reply,
 next_out,currentEC);
 outdatabuff := outdatabuff.tail.tail;
 waitnextcycle := True;
 next_out := (next_out + 1) mod M;
 if (ack_request = 1)
 {ack_request := 0;
 ack_requestTimer := 0;
 ack_responseTimer := 0};
 ack_reply := 0; }

K: int;
max_initTimer: int;
N: int;-- msg loss limit
M: int;
max_ack_requestTimer: int;
max_ack_responseTimer: int;
Mec: int;

Figure 11: The Initiator SAI state-machine

 IRBC_User_Connect_indication /

 IRBC_CONNECTED

connected

sending

wait irbc_tick /
 Timer.ok_irbc

R1a

irbc_tick /
 Timer.ok_irbc

R2a

IRBC_User_Data_indication(arg1) /
R2b

- [n <= nmax] /
 CSL.RBC_User_Data_request(n);
 n := n+1;

- /
SKIP_SENDING

R2c

R3
 IRBC_User_Disconnect_indication /

Initiator RBC
nmax: int;

Figure 12: The Initiator-side RBC state-machine

134 Formal Modelling and Analysis of the 4SECURail Case Study

isai_tick /
 Timer.ok_isai;
 initTimer := initTimer + 1;
 currentEC :=
 (currentEC + 1) mod Mec;

NOCONN
Connecting

NOCONN
Disconnected

Sa_CONNECT.indication /
ER.Sa_CONNECT.response

R2

SAI_DATA.request(msgtype,userdata)
 [waitnextcycle = True] /
 outdatabuff :=
 outdatabuff + [msgtype,userdata];

[initTimer = max_initTimer] /
 ER.Sa_DISCONNECT.request;
 CSL.SAI_ERROR.report ;
ack_requestTimer :=
max_ack_requestTimer;
ack_responseTimer := 0;
ack_reply := 0;
ack_request := 0;
currentEC := 0;
initTimer := 0;
OFFSET := 0;
DELTA := 0;
dist := 0;
last_in := 0;
next_out := 0;
utdatabuff := [];
waitnextcycle := False

R6

NOCONN
Initializing

R3Sa_DISCONNECT.indication /

R8Sa_DISCONNECT.indication /
 ack_requestTimer :=
 max_ack_requestTimer;
 ack_responseTimer := 0;
 ack_reply := 0;
 ack_request := 0;
 currentEC := 0;
 initTimer := 0;
 OFFSET := 0;
 DELTA := 0;
 dist := 0;
 last_in := 0;
 next_out := 0;
 outdatabuff := [];
 waitnextcycle := False

CONN
 Connected

R10
SAI_DISCONNECT.request /
 CSL.SAI_DISCONNECT.indication;
 ER.Sa_DISCONNECT.request;
 ack_requestTimer :=
 max_ack_requestTimer;
 ack_responseTimer := 0;
 ack_reply := 0;
 currentEC := 0;
i nitTimer := 0;
 OFFSET := 0;
 DELTA := 0;
 dist := 0;
 last_in := 0;
 next_out := 0;
 outdatabuff := [];
 ack_request := 0;
 outdatabuff := [];
 waitnextcycle := False

if (ack_responseTimer =
 max_ack_responseTimer) {
 CSL.SAI_ERROR.report;
 ack_responseTimer :=
 max_ack_responseTimer + 1; }

ACK2

R14d
[dist > N] /
 ER.Sa_DISCONNECT.request
 CSL.SAI_DISCONNECT.indication;
 ack_requestTimer :=
 max_ack_requestTimer;
 ack_responseTimer := 0;
 ack_reply := 0;
 ack_request := 0;
 currentEC := 0;
 initTimer := 0;
 OFFSET := 0;
 next_out :=0;
 dist := 0;
 DELTA := 0;
 last_in := 0;
 next_out := 0;
 outdatabuff := [];
 waitnextcycle := False

R13b

SAI_DATA.request(msgtype,userdata)
 [waitnextcycle = False] /
 ER.Sa_DATA.request(msgtype,userdata,
 ack_request,ack_reply,
 next_out,currentEC);
 next_out := (next_out + 1) mod M;
 if (ack_request = 1) {
 ack_request := 0;
 ack_requestTimer := 0;
 ack_responseTimer := 0 };
 ack_reply := 0;
 waitnextcycle := True;

R1
 /
initTimer := 0;
OFFSET := 0;
EC_expected := 0;
DELTA := 0;
currentEC := 0;
last_in := 0;
next_out := 0;
dist := 0;
ack_requestTimer := 0;
ack_responseTimer := 0;
ack_reply := 0;
ack:request := 0;
outdatabuff := [];
waitnextcycle := False;

SAI_DISCONNECT.request /
 CSL.SAI_DISCONNECT.indication

R3

[initTimer < max_initTimer] /

R13a

Sa_DATA_indication
 (msgtype,userdata,
 ackreq,ackresp,
 seqnum,ecnum) /
 dist := seqnum - last_in;
 if (dist < -M/2) then {dist := dist + M };
 if (dist > M/2) then {dist := dist - M };
 if ((dist > 0) and (dist <= N)) then
 {last_in := seqnum};
 ack_reply :=
 ack_reply + ackreq - ack_reply*ackreq;
 EC_expected :=
 (currentEC + Mec - OFFSET) mod Mec;
 DELTA := EC_expected -ecnum;
 if (DELTA < -Mec/2) {DELTA := DELTA + Mec };
 if (DELTA > Mec/2) {DELTA := DELTA - Mec };
 EC_expected := 0

R14
[dist = 1 and DELTA < K] /
 CSL.SAI_DATA.indication(msgtype,userdata);
 if (ackresp = 1 and
 ack_responseTimer <
 max_ack_responseTimer)
 { ack_responseTimer :=
 max_ack_responseTimer + 1 };
 dist := 0;
 DELTA := 0

R14a

[dist > 1 and dist <= N and DELTA < K]] /
 CSL.SAI_DATA.indication(msgtype,userdata);
 if (ackresp = 1 and
 ack_responseTimer <max_ack_responseTimer)
 { ack_responseTimer :=
 max_ack_responseTimer + 1 };
 CSL.SAI_ERROR.report;
 dist := 0;
 DELTA := 0

R14b

[dist < 1 or (dist <= N and DELTA >= K)] /
 CSL.SAI_ERROR.report;
 dist := 0;
 DELTA := 0

R16c

isai_tick /
 Timer.ok_isai;
 if (ack_responseTimer < max_ack_responseTimer)
 {ack_responseTimer := ack_responseTimer + 1};
 if (ack_requestTimer < max_ack_requestTimer)
 {ack_requestTimer := ack_requestTimer + 1};
 if (ack_requestTimer = max_ack_requestTimer and
 ack_responseTimer >= max_ack_responseTimer)
 {ack_request := 1};
 currentEC := (currentEC + 1) mod Mec;
 waitnextcycle := False

if (outdatabuff /= []]) {
 ER.Sa_DATA.request(
 outdatabuff.head, outdatabuff.tail.head,
 ack_request, ack_reply,
 next_out,currentEC);
 outdatabuff := outdatabuff.tail.tail;
 waitnextcycle := True;
 next_out := (next_out + 1) mod M;
 if (ack_request = 1)
 {ack_request := 0;
 ack_requestTimer := 0;
 ack_responseTimer := 0};
 ack_reply := 0; }

Called SAI
K: int;
max_initTimer: int;
N: int;-- msg loss limit
M: int;
max_ack_requestTimer: int;
max_ack_responseTimer: int;
Mec: int;

Sa_CONNECT.indication /
ER.Sa_CONNECT.response

R2b

Sa_ExecutionCycleStart
 (seqnum,ecnum) /
 ER.Sa_ExecutionCycle
 (next_out,currentEC) ;
 OFFSET := currentEC - arg2;
 initTimer := 0;
 last_in := arg1;
 next_out := (next_out +1) mod M

R5

Sa_CONNECT.indication /
 ER.Sa_CONNECT.response;
 ack_requestTimer :=
 max_ack_requestTimer;
 ack_responseTimer := 0;
 ack_reply := 0;
 ack_request := 0;
 currentEC := 0;
 initTimer := 0;
 OFFSET := 0;
 DELTA := 0;
 dist := 0;
 last_in := 0;
 next_out := 0

R2b

[dist > N] /
 ER.Sa_DISCONNECT.request
 CSL.SAI_DISCONNECT.indication;
 ack_responseTimer := 0;
 next_out :=0;
 dist := 0;
 DELTA := 0;
 outdatabuff := [];
 ack_request := 0;
 waitnextcycle := False

Sa_DATA_indication
 (msgtype,userdata,
 ackreq,ackresp,
 seqnum,ecnum) /
 dist := seqnum - last_in;
 if (dist < -M/2) then {dist := dist + M };
 if (dist > M/2) then {dist := dist - M };
 if ((dist > 0) and (dist <= N)) then
 {last_in := seqnum};
 ack_reply :=
 ack_reply + ackreq - ack_reply*ackreq;
 EC_expected :=
 (currentEC + Mec - OFFSET) mod Mec;
 DELTA := EC_expected -ecnum;
 if (DELTA < -Mec/2) {DELTA := DELTA + Mec };
 if (DELTA > Mec/2) {DELTA := DELTA - Mec };
 EC_expected := 0

R9

[dist > 1 and dist <= N and DELTA < K]] /
 CSL.SAI_CONNECT.indication;
 ack_reply := ackreq;
 initTimer := 0;
 dist := 0;
 DELTA := 0;
 CSL.SAI_DATA.indication(msgtype,userdata);
 CSL.SAI_Error_report;
 ack_requestTimer := 0;
 ack_responseTimer :=
 max_ack_responseTimer + 1;

R9b

[dist < 1 or (dist <= N and DELTA >= K)] /
 CSL.SAI_ERROR.report;
 dist := 0;
 DELTA := 0

R9c

[dist = 1 and DELTA < K] /
 CSL.SAI_CONNECT.indication;
 ack_reply := ackreq;
 initTimer := 0;
 dist := 0;
 DELTA := 0;
 CSL.SAI_DATA.indication(msgtype,userdata);
 ack_requestTimer := 0;
 ack_responseTimer :=
 max_ack_responseTimer + 1;

R9a

Sa_DISCONNECT.indication /
 CSL.SAI_DISCONNECT.indication;
 ack_requestTimer :=
 max_ack_requestTimer;
 ack_responseTimer := 0;
 ack_reply := 0;
 ack_request := 0;
 currentEC := 0;
 OFFSET := 0;
 DELTA := 0;
 dist := 0;
 last_in := 0;
 next_out :=0;
 initTimer := 0;
 outdatabuff := [];
 waitnextcycle := False;

R11

R12
Sa_CONNECT.indication /
 ER.Sa_CONNECT.response;
 CSL.CSAI_DISCONNECT_indication;
 ack_requestTimer :=
 max_ack_requestTimer;
 ack_responseTimer := 0;
 ack_reply := 0;
 ack_request := 0;
 currentEC := 0;
 initTimer := 0;
 OFFSET := 0;
 DELTA := 0;
 dist := 0;
 last_in := 0;
 next_out := 0;
 outdatabuff := [];
 waitnextcycle := False;

R9d

Figure 13: The Called SAI state-machine

F. Mazzanti & D. Belli 135

NOCOMMS
Disconnected

SAI_CONNECT.indication /
 RBC.RBC_User_Connect_indication;
 receiveTimer := 0;
 sendTimer := max_sendTimer;

R2

R5
icsl_tick [(receiveTimer < max_receiveTimer)

 and (sendTimer = max_sendTimer)] /
 Timer.ok_ccsl;
 sendTimer := 0;
 receiveTimer := receiveTimer+1
 SAI.SAI_DATA.request(Lifesign,nodata)

RBC_User_Data.request(userdata) /
 SAI.SAI_DATA_request (RBCdata,userdata) ;
 sendTimer := 0

R4

SAI_DATA_indication(msgtype,userdata)
 [msgtype != Lifesign] /
 RBC.RBC_User_Data_indication(userdata) ;
 receiveTimer := 0;

R7
R6

SAI_DATA_indication(msgtype,userdata)
 [msgtype = Lifesign] /
 receiveTimer := 0;

SAI_DISCONNECT.indication /
 RBC.RBC_User_disconnect_indication;
 receiveTimer := 0;
 sendTimer := 0;

R8

COMMS
Connected

R1
 /
 receiveTimer := 0;
 sendTimer := 0;

ccsl_tick /
 Timer.ok_icsl;

RTa

icsl_tick [(receiveTimer < max_receiveTimer)
and (sendTimer < max_sendTimer)] /

 Timer.ok_icsl;
 sendTimer := sendTimer +1;
 receiveTimer := receiveTimer+1

RTc

ccsl_tick [receiveTimer = max_receiveTimer] /
 Timer.ok_ccsl;
 SAI.SAI_DISCONNECT.request;
 receiveTimer := 0;
 sendTimer := 0;
 RBC.RBC_User_Disconnect_indication

R9

Called CSL
max_receiveTimer: int;
max_sendTimer: int;

Figure 14: The Called CSL state-machine

 RBC_User_Connect_indication /
R4

wait

crbc_tick /
 Timer.ok_crbc

R1

R6a

R5
RBC_User_Disconnect_indication /

Called RBC

RBC_User_Data_indication(arg1) /
 CSL.CRBC_User_Data_request(arg1);

Figure 15: The Called-side RBC state-machine

-/
IRBC.irbc_tick

R0 s0

s1

s2

s3

s4

s5

s6

s7
ok_irbc /
 ICSL.icsl_tick

R1

ok_icsl /
 ISAI.icsl_tick

R2

ok_isai /
 EUR.eur_tick

R3
ok_eur/
 CSAI.csai_tick

R4

ok_csai /
 CCSL.ccsl_tick

R5

ok_ccsl /
 CRBC.crbc_tick

R6

ok_crbc/
 IRBC.irbc_tick

R7Timer

Figure 16: The Timer component of the Full scenario

136 Formal Modelling and Analysis of the 4SECURail Case Study

Appendix B: UMC encoding of the initiator CSL class

--
Class I_CSL is
--
Signals
-- from RBC
IRBC_User_Data_request(arg1: int);
-- from I_SAI
ISAI_CONNECT_confirm;
ISAI_DISCONNECT_indication;
ISAI_Error_report;
ISAI_DATA_indication(arg1: Token, arg2: int);
-- from Timer
icsl_tick;
-- outgoing to RBC
-- IRBC_User_Connect_indication;
-- IRBC_User_Disconnect_indication;
-- IRBC_User_Data_indication(arg1:int);
-- outgoig to SAI
-- ISAI_CONNECT_request;
-- ISAI_DISCONNECT_request;
-- ISAI_DATA_request(arg1:Token,arg2:int);
-- outgoig to Timer
-- ok_icsl

Vars
------------- PORTS
RBC_User: I_RBC;
SAI: I_SAI;
--
------------- CONFIGURATION PARAMS
max_receiveTimer: int; -- CONFIGURATION PARAM
max_sendTimer: int; -- CONFIGURATION PARAM
max_connectTimer: int; -- CONFIGURATION PARAM
--
------------- LOCAL VARS
receiveTimer: int := 0;
sendTimer: int := 0;
connectTimer: int := 0;

Behaviour
--
-- R1: At startup, the CSL is in Disconnected
-- state

R1_ICSL:
initial -> NOCOMMSready

-- R2: When in Disconnected state, the CSL
-- immediately sends a SAI_CONNECT.request to
-- the SAI component,starts a connTimer, and
-- moves to Connecting state

R2_ICSL_connecting:
NOCOMMSready -> NOCOMMSconnecting
{- /
 SAI.ISAI_CONNECT_request;
 connectTimer := 0;}

--
-- R3: When in Connecting state the connTimer
-- expires, the CSL moves to Disconnected
-- state. While connecting in case of timeout
-- become ready to retry.
--
R3_ICSL_okicsl_connect:
NOCOMMSconnecting -> NOCOMMSready
{icsl_tick [connectTimer = max_connectTimer] /
 Timer.ok_icsl}

-- R4: When in Connecting state is received a
-- SAI_CONNECT.confirm from the SAI component,
-- the CSL sends a RBC_User_Connect.indication
-- to the RBC component, starts both the
-- sendTimer and the recTimer,and moves to
-- Connected state

R4_ICSL_userconnind:
NOCOMMSconnecting -> COMMS
{ISAI_CONNECT_confirm /
 RBC_User.IRBC_User_Connect_indication;
 connectTimer := max_connectTimer;
 receiveTimer := 0;
 sendTimer := max_sendTimer}

--
-- R5: When in Waiting state is received a
-- SAI_DISCONNECT.indication from the SAI
-- component, the CSL moves to Disconnected
-- state
--
R5_ICSL_becomeready:
NOCOMMSwait -> NOCOMMSready
{ISAI_DISCONNECT_indication}

--
-- R6: When in Connected state the recTimer
-- expires, the CSL sends a
-- SAI_DISCONNECT.request to the SAI
-- component, a RBC_User_Disconnect.indication
-- to the RBC and moves to Waiting state
--
R6_ICSL_okicsl:
COMMS -> tbcr6
{icsl_tick [receiveTimer = max_receiveTimer] /
 Timer.ok_icsl}

R6_ICSL_saidisconnreq:
tbcr6 -> tbcr6a
{ - /
 SAI.ISAI_DISCONNECT_request;
 receiveTimer := 0;
 sendTimer := 0}

R6_ICSL_userdisconnind:
tbcr6a -> NOCOMMSwait
{ - /
 RBC_User.IRBC_User_Disconnect_indication}

--
-- R7: Each time that in Connected state the
-- sendTimer expires, the CSL sends a
-- SAI_DATA.request with a life_sign to the
-- SAI component
--
R7_ICSL_okicsl:
COMMS -> tbcr7
{icsl_tick [(receiveTimer < max_receiveTimer)
 and (sendTimer = max_sendTimer)] /
 Timer.ok_icsl;
 sendTimer := 0;
 receiveTimer := receiveTimer+1}

R7_ICSL_saidatareq:
tbcr7 -> COMMS
{ - /
 SAI.ISAI_DATA_request(LifeSign,0)}

F. Mazzanti & D. Belli 137

RD2b_ICSL_discdisconnind:
NOCOMMSconnecting -> NOCOMMSconnecting
{ISAI_DISCONNECT_indication}

RD2c_ICSL_discerrorreport:
NOCOMMSconnecting -> NOCOMMSconnecting
{ISAI_Error_report}

RD2d_ICSL_discdataind:
NOCOMMSconnecting -> NOCOMMSconnecting
{ISAI_DATA_indication(arg1, arg2)}

RD3a_ICSL_discuserdata:
NOCOMMSwait -> NOCOMMSwait
{IRBC_User_Data_request(arg1)}

RD3b_ICSL_discerrorreport:
NOCOMMSwait -> NOCOMMSwait
{ISAI_Error_report}

RD3c_ICSL_discdataind:
NOCOMMSwait -> NOCOMMSwait
{ISAI_DATA_indication(arg1, arg2)}

RD3d_ICSL_discconfirm:
NOCOMMSwait -> NOCOMMSwait
{ISAI_CONNECT_confirm}

RD4a_ICSL_disccommconfirm:
COMMS -> COMMS
{ISAI_CONNECT_confirm}

RD4b_ICSL_usererror:
COMMS -> COMMS
{ISAI_Error_report}

-- clock cycles handling

RTa_ICSL_okicsl_incr:
NOCOMMSconnecting -> NOCOMMSconnecting
{icsl_tick [connectTimer < max_connectTimer] /
 Timer.ok_icsl;
 connectTimer := connectTimer +1}

RTb_ICSL_okicsl_incr:
NOCOMMSwait -> NOCOMMSwait
{icsl_tick /
 Timer.ok_icsl}

RTc_ICSL_okicsl:
 COMMS -> COMMS
{icsl_tick [(receiveTimer < max_receiveTimer)
 and (sendTimer < max_sendTimer)] /
 Timer.ok_icsl;
 sendTimer := sendTimer +1;
 receiveTimer := receiveTimer+1}

 end I_CSL;

-- R8: When in Connected state is received a
-- RBC_User_Data.request with RBC_data from
-- the RBC component, the CSL sends a
-- SAI_DATA.request with such RBC_data to the
-- AI component

R8_ICSL_saidatareq:
COMMS -> COMMS
{IRBC_User_Data_request(arg1) /
 SAI.ISAI_DATA_request(RBCdata, arg1);
 sendTimer := 0}

-- R9: When in Connected state is received a
-- SAI_DATA.indication with SAI_data
-- from the SAI component, the CSL sends a
-- RBC_User_Data.indication with
-- such SAI_data to the RBC component and
-- restarts the recTimer

R9_ICSL_userdataind:
COMMS -> COMMS
{ISAI_DATA_indication(arg1, arg2)
 [arg1 /= LifeSign] /
 RBC_User.IRBC_User_Data_indication(arg2);
 receiveTimer := 0}

-- R10: When in Connected state is received a
-- SAI_DATA.indication with a life_sign from
-- the SAI component, the CSL restarts the
-- recTimer

R10_ICSL_handlelifesign:
COMMS -> COMMS
{ISAI_DATA_indication(arg1, arg2)
 [arg1 = LifeSign] /
 receiveTimer := 0}

-- R11: When in Connected state is received a
-- SAI_DISCONNECT.indication from the
-- SAI component, the CSL sends a
-- RBC_User_Disconnect.indication to the RBC
-- component and moves to Disconnected state

R11_ICSL_userdisconnind:
COMMS -> NOCOMMSready
{ISAI_DISCONNECT_indication /
 RBC_User.IRBC_User_Disconnect_indication;
 receiveTimer := 0;
 sendTimer := 0}

-- RD1: When in Disconnected state the CSL
-- does not accept any kind of message
-- RD2: When in Connecting state, the CSL
-- discards any message except for
-- SAI_CONNECT.confirm from the SAI component
-- RD3: When in Waiting state, the CSL
-- discards any message except for
-- SAI_DISCONNECT.indication from the SAI
-- component
-- RD4: When in Connected state, the CSL
-- component discards only SAI_CONNECT.confirm
-- and SAI_ERROR.report messages from
-- the SAI component

RD2a_ICSL_discuserdata:
NOCOMMSconnecting -> NOCOMMSconnecting
{IRBC_User_Data_request(arg1)}

138 Formal Modelling and Analysis of the 4SECURail Case Study

Appendix C: ProB encoding of the initiator CSL class

MACHINE SYS
SETS
 ICSL_STATES = {
 ICSL_NOCOMMSready,
 ICSL_NOCOMMSconnecting,
 ICSL_COMMS,
 ICSL_NOCOMMSwait,
 ICSL_tbcr6,
 ICSL_tbcr6a,
 ICSL_tbcr7};
 ...

 ICSL_SIGNALS = {
 IRBC_User_Data_request,
 ISAI_CONNECT_confirm,
 ISAI_DISCONNECT_indication,
 ISAI_Error_report,
 ISAI_DATA_indication,
 icsl_tick};

DEFINITIONS
 SET_PREF_MAXINT == 30;
 SET_PREF_MININT == -30;

CONSTANTS
 LifeSign,
 RBCdata

PROPERTIES
 LifeSign = 2 &
 RBCdata = 3

VARIABLES
 // ICSL
 ICSL_max_receiveTimer,
 ICSL_max_sendTimer,
 ICSL_max_connectTimer,
 ICSL_receiveTimer,
 ICSL_sendTimer,
 ICSL_connectTimer,
 ICSL_eventsfifobuff,
 ICSL_eventsdatabuff,
 ICSL_STATE,
 ...

INVARIANT
 // ICSL
 ICSL_max_receiveTimer: MININT..MAXINT &
 ICSL_max_sendTimer: MININT..MAXINT &
 ICSL_max_connectTimer: MININT..MAXINT &
 ICSL_receiveTimer: MININT..MAXINT &
 ICSL_sendTimer: MININT..MAXINT &
 ICSL_connectTimer: MININT..MAXINT &
 ICSL_eventsfifobuff: seq(ICSL_SIGNALS) &
 ICSL_eventsdatabuff: seq(MININT..MAXINT) &
 ICSL_STATE: ICSL_STATES &
 ...

INITIALISATION
 // ICSL
 ICSL_max_receiveTimer := 15;
 ICSL_max_sendTimer := 05;
 ICSL_max_connectTimer := 20;
 ICSL_receiveTimer := 0;
 ICSL_sendTimer := 0;
 ICSL_connectTimer := 0;
 ICSL_eventsfifobuff := [];
 ICSL_eventsdatabuff := [];
 ICSL_STATE := ICSL_NOCOMMSready;
 ...

OPERATIONS
 //
 // State Machine ICSL
 //

 // --
 // R2: When in Disconnected state, the CSL
 // immediately sends a SAI_CONNECT.request to
 // the SAI component, starts a connTimer, and
 // moves to Connecting state
 // ---
R2_ICSL_connecting =
PRE
 ICSL_STATE = ICSL_NOCOMMSready
THEN
 ISAI_eventsfifobuff :=
 ISAI_eventsfifobuff <- ISAI_CONNECT_request;
 ICSL_connectTimer := 0;
 ICSL_STATE := ICSL_NOCOMMSconnecting
END;

// --
// R3: When in Connecting state the connTimer
// expires, the CSL moves to Disconnected state
// while connecting in case of timeout become
// ready to retry
// --
R3_ICSL_okicsl_connect =
PRE
 ICSL_eventsfifobuff /= [] &
 first(ICSL_eventsfifobuff) = icsl_tick &
 (ICSL_connectTimer = ICSL_max_connectTimer) &
 ICSL_STATE = ICSL_NOCOMMSconnecting
THEN
 Timer_eventsfifobuff :=
 Timer_eventsfifobuff <- ok_icsl;
 ICSL_eventsfifobuff := tail(ICSL_eventsfifobuff);
 ICSL_STATE := ICSL_NOCOMMSready
END;

// --
// R4: When in Connecting state is received a
// SAI_CONNECT.confirm from the SAI component,
// the CSL sends a RBC_User_Connect.indication
// to the RBC component, starts both the
// sendTimer and the recTimer,and moves to
// Connected state
// --
R4_ICSL_userconnind =
PRE
 ICSL_eventsfifobuff /= [] &
 first(ICSL_eventsfifobuff)=ISAI_CONNECT_confirm &
 ICSL_STATE = ICSL_NOCOMMSconnecting
THEN
 IRBC_eventsfifobuff :=
 IRBC_eventsfifobuff <-
 IRBC_User_Connect_indication;
 ICSL_connectTimer := ICSL_max_connectTimer;
 ICSL_receiveTimer := 0;
 ICSL_sendTimer := ICSL_max_sendTimer;
 //
 ICSL_eventsfifobuff := tail(ICSL_eventsfifobuff);
 ICSL_STATE := ICSL_COMMS
END;

// ---
// R5: When in Waiting state is received a
// SAI_DISCONNECT.indication from the SAI
// component, the CSL moves to Disconnected state
// ---
R5_ICSL_becomeready =
PRE
 ICSL_eventsfifobuff /= [] &
 first(ICSL_eventsfifobuff) =
 ISAI_DISCONNECT_indication &
 ICSL_STATE = ICSL_NOCOMMSwait
THEN
 skip;
 ICSL_eventsfifobuff := tail(ICSL_eventsfifobuff);
 ICSL_STATE := ICSL_NOCOMMSready
END;

F. Mazzanti & D. Belli 139

// --
// R6: When in Connected state the recTimer
// expires, the CSL sends a SAI_DISCONNECT.request
// to the SAI component, a
// RBC_User_Disconnect.indication to the RBC and
// moves to Waiting state
// ---
R6_ICSL_okicsl =
PRE
 ICSL_eventsfifobuff /= [] &
 first(ICSL_eventsfifobuff) = icsl_tick &
 ICSL_receiveTimer = ICSL_max_receiveTimer &
 ICSL_STATE = ICSL_COMMS
THEN
 Timer_eventsfifobuff :=
 Timer_eventsfifobuff <- ok_icsl;
 ICSL_eventsfifobuff := tail(ICSL_eventsfifobuff);
 ICSL_STATE := ICSL_tbcr6
END;

R6_ICSL_saidisconnreq =
PRE
 ICSL_STATE = ICSL_tbcr6
THEN
 ISAI_eventsfifobuff :=
 ISAI_eventsfifobuff <- ISAI_DISCONNECT_request;
 ICSL_receiveTimer := 0;
 ICSL_sendTimer := 0;
 ICSL_STATE := ICSL_tbcr6a
END;

R6_ICSL_userdisconnind =
PRE
 ICSL_STATE = ICSL_tbcr6a
THEN
 IRBC_eventsfifobuff :=
 IRBC_eventsfifobuff <-
 IRBC_User_Disconnect_indication;
 ICSL_STATE := ICSL_NOCOMMSwait
END;

// ---
// R7: Each time that in Connected state the
// sendTimer expires, the CSL sends a
// SAI_DATA.request with a life_sign to the
// SAI component
// ---
R7_ICSL_okicsl =
PRE
 ICSL_eventsfifobuff /= [] &
 first(ICSL_eventsfifobuff) = icsl_tick &
 (ICSL_receiveTimer < ICSL_max_receiveTimer) &
 (ICSL_sendTimer = ICSL_max_sendTimer) &
 ICSL_STATE = ICSL_COMMS
THEN
 Timer_eventsfifobuff :=
 Timer_eventsfifobuff <- ok_icsl;
 ICSL_sendTimer := 0;
 ICSL_receiveTimer := ICSL_receiveTimer + 1;
 ICSL_eventsfifobuff := tail(ICSL_eventsfifobuff);
 ICSL_STATE := ICSL_tbcr7
END;

R7_ICSL_saidatareq =
PRE
 ICSL_STATE = ICSL_tbcr7
THEN
 ISAI_eventsfifobuff :=
 ISAI_eventsfifobuff <- ISAI_DATA_request;
 ISAI_eventsdatabuff :=
 ISAI_eventsdatabuff <- LifeSign;
 ISAI_eventsdatabuff := ISAI_eventsdatabuff <- 0;
 ICSL_STATE := ICSL_COMMS
END;

// --
// R8: When in Connected state is received a
// RBC_User_Data.request with RBC_data from the RBC
// component, the CSL sends a SAI_DATA.request with
// such RBC_data to the SAI component
// --
R8_ICSL_saidatareq(arg1) =
PRE
 ICSL_eventsfifobuff /= [] &
 first(ICSL_eventsfifobuff) =
 IRBC_User_Data_request &
 arg1 = first(ICSL_eventsdatabuff) &
 ICSL_STATE = ICSL_COMMS
THEN
 ISAI_eventsfifobuff :=
 ISAI_eventsfifobuff <- ISAI_DATA_request;
 ISAI_eventsdatabuff :=
 ISAI_eventsdatabuff <- RBCdata;
 ISAI_eventsdatabuff :=
 ISAI_eventsdatabuff <- arg1;
 ICSL_sendTimer := 0;
 ICSL_eventsfifobuff := tail(ICSL_eventsfifobuff);
 ICSL_eventsdatabuff := tail(ICSL_eventsdatabuff);
 ICSL_STATE := ICSL_COMMS
END;

// --
// R9: When in Connected state is received a
// SAI_DATA.indication with SAI_data from the SAI
// component, the CSL sends a
// RBC_User_Data.indication with such SAI_data to
// the RBC component and restarts the recTimer
// --
R9_ICSL_userdataind(arg1,arg2) =
PRE
 ICSL_eventsfifobuff /= [] &
 first(ICSL_eventsfifobuff)=ISAI_DATA_indication &
 arg1 = first(ICSL_eventsdatabuff) &
 arg2 = first(tail(ICSL_eventsdatabuff)) &
 arg1 /= LifeSign &
 ICSL_STATE = ICSL_COMMS
THEN
 IRBC_eventsfifobuff :=
 IRBC_eventsfifobuff <-
 IRBC_User_Data_indication;
 IRBC_eventsdatabuff :=
 IRBC_eventsdatabuff <- arg2;
 ICSL_receiveTimer := 0;
 ICSL_eventsfifobuff := tail(ICSL_eventsfifobuff);
 ICSL_eventsdatabuff :=
 tail(tail(ICSL_eventsdatabuff));
 ICSL_STATE := ICSL_COMMS
END;

// --
// R10: When in Connected state is received a
// SAI_DATA.indication with a life_sign from the
// SAI component, the CSL restarts the recTimer
// --
R10_ICSL_handlelifesign(arg1,arg2) =
PRE
 ICSL_eventsfifobuff /= [] &
 first(ICSL_eventsfifobuff)=ISAI_DATA_indication &
 arg1 = first(ICSL_eventsdatabuff) &
 arg2 = first(tail(ICSL_eventsdatabuff)) &
 arg1 = LifeSign &
 ICSL_STATE = ICSL_COMMS
THEN
 ICSL_receiveTimer := 0;
 ICSL_eventsfifobuff := tail(ICSL_eventsfifobuff);
 ICSL_eventsdatabuff :=
 tail(tail(ICSL_eventsdatabuff));
 ICSL_STATE := ICSL_COMMS
END;

140 Formal Modelling and Analysis of the 4SECURail Case Study

RD4b_ICSL_usererror =
PRE
 ICSL_eventsfifobuff /= [] &
 first(ICSL_eventsfifobuff) = ISAI_Error_report &
 ICSL_STATE = ICSL_COMMS
THEN
 skip;
 ICSL_eventsfifobuff := tail(ICSL_eventsfifobuff);
 ICSL_STATE := ICSL_COMMS
END;

// ------------------------
// -- clock cycles handling
// ------------------------
RTa_ICSL_okicsl_incr =
PRE
 ICSL_eventsfifobuff /= [] &
 first(ICSL_eventsfifobuff) = icsl_tick &
 (ICSL_connectTimer < ICSL_max_connectTimer) &
 ICSL_STATE = ICSL_NOCOMMSconnecting
THEN
 Timer_eventsfifobuff :=
 Timer_eventsfifobuff <- ok_icsl;
 ICSL_connectTimer := ICSL_connectTimer + 1;
 ICSL_eventsfifobuff := tail(ICSL_eventsfifobuff);
 ICSL_STATE := ICSL_NOCOMMSconnecting
END;

RTb_ICSL_okicsl_incr =
PRE
 ICSL_eventsfifobuff /= [] &
 first(ICSL_eventsfifobuff) = icsl_tick &
 ICSL_STATE = ICSL_NOCOMMSwait
THEN
 Timer_eventsfifobuff :=
 Timer_eventsfifobuff <- ok_icsl;
 ICSL_eventsfifobuff := tail(ICSL_eventsfifobuff);
 ICSL_STATE := ICSL_NOCOMMSwait
END;

RTc_ICSL_okicsl =
PRE
 ICSL_eventsfifobuff /= [] &
 first(ICSL_eventsfifobuff) = icsl_tick &
 ((ICSL_receiveTimer < ICSL_max_receiveTimer) &
 (ICSL_sendTimer < ICSL_max_sendTimer)) &
 ICSL_STATE = ICSL_COMMS
THEN
 Timer_eventsfifobuff :=
 Timer_eventsfifobuff <- ok_icsl;
 ICSL_sendTimer := ICSL_sendTimer + 1;
 ICSL_receiveTimer := ICSL_receiveTimer + 1;
 ICSL_eventsfifobuff := tail(ICSL_eventsfifobuff);
 ICSL_STATE := ICSL_COMMS
END;
 ...
END

F. Mazzanti & D. Belli 141

Appendix D: LNT encoding of the initiator CSL class

-- System wide definitions

function one: int is
 return 1
end function

function zero: int is
 return 0
end function

function LifeSign: int is
 return 2 -- value from UMC encoding
end function

function RBCdata: int is
 return 3
end function

channel Msg1 is
 (arg1: Int)
end channel

channel Msg2 is
 (arg1: Int,
 arg2: Int)
end channel
...

type Intlist is
 list of Int
with append, head, empty, length, tail, union, !=, ==
end type

channel DataMsg is
 (arglist: Intlist)
end channel

type Databuff is
 list of Intlist
with append, head, empty, length, tail, union, !=, ==
end type
...

-- ICSL types

-- enumeration type for class signals used for
-- signals buff
type ICSL_signals is
 IRBC_User_Data_request,
 ISAI_CONNECT_confirm,
 ISAI_DISCONNECT_indication,
 ISAI_Error_report,
 ISAI_DATA_indication,
 icsl_tick
with ==, !=
end type

type ICSL_BUFF is
 list of ICSL_signals
with append, head, empty, length, tail, !=, ==
end type

type ICSL_states is
 NOCOMMSready, NOCOMMSconnecting, COMMS,
 NOCOMMSwait, tbcr6, tbcr6a, tbcr7
with ==, !=
end type

-- ICSL State machine process

process ICSL [
 -- ICSL signals
 IRBC_User_Data_request: Msg1,
 ISAI_CONNECT_confirm: none,
 ISAI_DISCONNECT_indication: none,
 ISAI_Error_report: none,
 ISAI_DATA_indication: Msg2,
 icsl_tick: none,
 ISAI_CONNECT_request: none,
 ok_icsl: none,
 IRBC_User_Connect_indication: none,
 R5_ICSL_becomeready:none,
 ISAI_DISCONNECT_request: none,
 IRBC_User_Disconnect_indication: none,
 ISAI_DATA_request: Msg2,
 IRBC_User_Data_indication: Msg1,
 R10_ICSL_handlelifesign:none,
 RD2a_ICSL_discuserdata:none,
 RD2b_ICSL_discdisconnind:none,
 RD2c_ICSL_discerrorreport:none,
 RD2d_ICSL_discdataind:none,
 RD3a_ICSL_discuserdata:none,
 RD3b_ICSL_discerrorreport:none,
 RD3c_ICSL_discdataind:none,
 RD3d_ICSL_discconfirm:none,
 RD4a_ICSL_disccommconfirm:none,
 RD4b_ICSL_usererror:none] is
var
 max_receiveTimer: Int,
 max_sendTimer: Int,
 max_connectTimer: Int,
 receiveTimer: Int,
 sendTimer: Int,
 connectTimer: Int,
 mybuff: ICSL_BUFF,
 mynatbuff: Intlist,
 STATE: ICSL_STATES
in
 max_receiveTimer := 20;
 max_sendTimer := 1;
 max_connectTimer := 15;
 receiveTimer := 0;
 sendTimer := 0;
 connectTimer := 0;
 mybuff := nil;
 mynatbuff := nil;
 STATE := NOCOMMSready;
 loop
 select
 --
 --- buffering incoming signals
 --
 var arg1: Int in
 IRBC_User_Data_request(?arg1);
 mybuff :=
 append(IRBC_User_Data_request, mybuff);
 mynatbuff := append(arg1, mynatbuff)
 end var []
 ISAI_CONNECT_confirm;
 mybuff := append(ISAI_CONNECT_confirm, mybuff)
 []
 ISAI_DISCONNECT_indication;
 mybuff :=
 append(ISAI_DISCONNECT_indication, mybuff)
 []
 ISAI_Error_report;
 mybuff := append(ISAI_Error_report, mybuff)
 []
 var arg1, arg2: Int in
 ISAI_DATA_indication(?arg1, ?arg2);
 mybuff := append(ISAI_DATA_indication, mybuff);
 mynatbuff := append(arg1, mynatbuff);
 mynatbuff := append(arg2, mynatbuff)
 end var []
 icsl_tick;
 mybuff := append(icsl_tick, mybuff)
 []

142 Formal Modelling and Analysis of the 4SECURail Case Study

 --
 -- triggering statemachine transitions from
 -- events pool
 --

 --
 -- R2_ICSL_connecting
 --
 -- R2: When in Disconnected state, the CSL
 -- immediately sends a SAI_CONNECT.request to
 -- the SAI component,starts a connTimer, and
 -- moves to Connecting state
 --
 only if
 STATE == NOCOMMSready
 then
 ISAI_CONNECT_request;
 connectTimer := 0 of int;
 STATE := NOCOMMSconnecting
 end if
 []
 -- R3_ICSL_okicsl_connect
 --
 -- R3: When in Connecting state the connTimer
 -- expires, the CSL moves to Disconnected state
 -- While connecting in case of timeout become
 -- ready to retry
 --
 only if
 mybuff /= nil and
 head(mybuff) == icsl_tick and
 connectTimer == max_connectTimer and
 STATE == NOCOMMSconnecting
 then
 ok_icsl;
 null;
 mybuff := tail(mybuff);
 STATE := NOCOMMSready
 end if
 []
 -- R4_ICSL_userconnind

 -- R4: When in Connecting state is received a
 -- SAI_CONNECT.confirm from the SAI component,
 -- the CSL sends a RBC_User_Connect.indication
 -- to the RBC component, starts both the
 -- sendTimer and the recTimer, and moves to
 -- Connected state
 --
 only if
 mybuff /= nil and
 head(mybuff) == ISAI_CONNECT_confirm and
 STATE == NOCOMMSconnecting
 then
 IRBC_User_Connect_indication;
 connectTimer := max_connectTimer;
 receiveTimer := 0 of int;
 sendTimer := max_sendTimer;
 mybuff := tail(mybuff);
 STATE := COMMS
 end if
 []
 -- R5_ICSL_becomeready
 --
 -- R5: When in Waiting state is received a
 -- SAI_DISCONNECT.indication from the SAI
 -- component, the CSL moves to Disconnected
 -- state
 --
 only if
 mybuff /= nil and
 head(mybuff)==ISAI_DISCONNECT_indication and
 STATE == NOCOMMSwait
 then
 R5_ICSL_becomeready;
 null;
 mybuff := tail(mybuff);
 STATE := NOCOMMSready
 end if
 []

 -- R6_ICSL_okicsl

 -- R6:When in Connected state the recTimer
 -- expires the CSL sends SAI_DISCONNECT.request
 -- to the SAI component, a
 -- RBC_User_Disconnect.indication to the RBC and
 -- moves to Waiting state

 only if
 mybuff /= nil and
 head(mybuff) == icsl_tick and
 receiveTimer) == max_receiveTimer and
 STATE == COMMS
 then
 ok_icsl;
 null;
 mybuff := tail(mybuff);
 STATE := tbcr6
 end if
 []
 -- R6_ICSL_saidisconnreq
 only if
 (STATE == tbcr6)
 then
 ISAI_DISCONNECT_request;
 receiveTimer := 0 of int;
 sendTimer := 0 of int;
 STATE := tbcr6a
 end if
 []
 -- R6_ICSL_userdisconnind
 only if
 STATE == tbcr6a
 then
 IRBC_User_Disconnect_indication;
 null;
 STATE := NOCOMMSwait
 end if []
 -- R7_ICSL_okicsl

 -- R7: Each time that in Connected state the
 -- sendTimer expires, the CSL sends a
 -- SAI_DATA.request with a life_sign to the
 -- SAI component
 --
 only if
 mybuff /= nil and
 head(mybuff) == icsl_tick and
 receiveTimer < max_receiveTimer and
 sendTimer == max_sendTimer and
 STATE == COMMS
 then
 ok_icsl;
 sendTimer := 0 of int;
 receiveTimer := receiveTimer + 1 of int;
 mybuff := tail(mybuff);
 STATE := tbcr7
 end if
 []
 -- R7_ICSL_saidatareq
 only if
 STATE == tbcr7
 then
 ISAI_DATA_request(LifeSign,0 of int);
 null;
 STATE := COMMS
 end if
 []
 -- R8_ICSL_saidatareq

 -- R8: When in Connected state is received a
 -- RBC_User_Data.request with RBC_data from the
 -- RBC component, the CSL sends a
 -- SAI_DATA.request with such RBC_data to the
 -- SAI component
 --
 only if
 mybuff /= nil and
 head(mybuff) == IRBC_User_Data_request and
 STATE == COMMS
 then
 ISAI_DATA_request(RBCdata,head(mynatbuff));
 sendTimer := 0 of int;
 mybuff := tail(mybuff);
 mynatbuff := tail(mynatbuff);
 STATE := COMMS
 end if
 []

F. Mazzanti & D. Belli 143

 -- R9_ICSL_userdataind
 --
 -- R9: When in Connected state is received a
 -- SAI_DATA.indication with SAI_data
 -- from the SAI component, the CSL sends a
 -- RBC_User_Data.indication with such SAI_data
 -- to the RBC component and restarts the
 -- recTimer
 --
 only if
 mybuff /= nil and
 head(mybuff) == ISAI_DATA_indication and
 (head(mynatbuff)) /= (LifeSign) and
 STATE == COMMS
 then
 IRBC_User_Data_indication(
 head(tail(mynatbuff)));
 receiveTimer := 0 of int;
 mybuff := tail(mybuff);
 mynatbuff := tail(mynatbuff);
 mynatbuff := tail(mynatbuff);
 STATE := COMMS
 end if
 []
 -- R10_ICSL_handlelifesign
 --
 -- R10: When in Connected state is received a
 -- SAI_DATA.indication with a life_sign from the
 -- SAI component, the CSL restarts the recTimer
 --
 only if
 mybuff /= nil and
 head(mybuff) == ISAI_DATA_indication and
 (head(mynatbuff)) == (LifeSign) and
 STATE == COMMS
 then
 R10_ICSL_handlelifesign;
 receiveTimer := 0 of int;
 mybuff := tail(mybuff);
 mynatbuff := tail(mynatbuff);
 mynatbuff := tail(mynatbuff);
 STATE := COMMS
 end if
 []
 -- R11_ICSL_userdisconnind

 -- R11: When in Connected state is received a
 -- SAI_DISCONNECT.indication from the SAI
 -- component, the CSL sends a
 -- RBC_User_Disconnect.indication to the RBC
 -- component and moves to Disconnected state

 only if
 mybuff /= nil and
 head(mybuff)==ISAI_DISCONNECT_indication and
 STATE == COMMS
 then
 IRBC_User_Disconnect_indication;
 receiveTimer := 0 of int;
 sendTimer := 0 of int;
 mybuff := tail(mybuff);
 STATE := NOCOMMSready
 end if
 []
 -- RD2a_ICSL_discuserdata

 -- RD1: When in Disconnected state the CSL does
 -- not accept any kind of message
 -- RD2: When in Connecting state, the CSL
 -- discards any message except for
 -- SAI_CONNECT.confirm from the SAI component
 -- RD3: When in Waiting state, the CSL discards
 -- any message except for
 -- SAI_DISCONNECT.indication from the SAI
 -- component
 -- RD4: When in Connected state, the CSL
 -- component discards only
 -- SAI_CONNECT.confirm and SAI_ERROR.report
 -- messages from the SAI component
 --

 only if
 mybuff /= nil and
 head(mybuff) == IRBC_User_Data_request and
 STATE == NOCOMMSconnecting
 then
 RD2a_ICSL_discuserdata;
 null;
 mybuff := tail(mybuff);
 mynatbuff := tail(mynatbuff);
 STATE := NOCOMMSconnecting
 end if
 []
 -- RD2b_ICSL_discdisconnind
 only if
 mybuff /= nil and
 head(mybuff)==ISAI_DISCONNECT_indication and
 STATE == NOCOMMSconnecting
 then
 RD2b_ICSL_discdisconnind;
 null;
 mybuff := tail(mybuff);
 STATE := NOCOMMSconnecting
 end if
 []
 -- RD2c_ICSL_discerrorreport
 only if
 mybuff /= nil and
 head(mybuff) == ISAI_Error_report and
 STATE == NOCOMMSconnecting
 then
 RD2c_ICSL_discerrorreport;
 null;
 mybuff := tail(mybuff);
 STATE := NOCOMMSconnecting
 end if
 []
 -- RD2d_ICSL_discdataind
 only if
 mybuff /= nil and
 head(mybuff) == ISAI_DATA_indication and
 STATE == NOCOMMSconnecting
 then
 RD2d_ICSL_discdataind;
 null;
 mybuff := tail(mybuff);
 mynatbuff := tail(mynatbuff);
 mynatbuff := tail(mynatbuff);
 STATE := NOCOMMSconnecting
 end if
 []
 -- RD3a_ICSL_discuserdata
 only if
 mybuff /= nil and
 head(mybuff) == IRBC_User_Data_request and
 STATE == NOCOMMSwait
 then
 RD3a_ICSL_discuserdata;
 null;
 mybuff := tail(mybuff);
 mynatbuff := tail(mynatbuff);
 STATE := NOCOMMSwait
 end if
 []
 -- RD3b_ICSL_discerrorreport
 only if
 mybuff /= nil and
 head(mybuff) == ISAI_Error_report and
 STATE == NOCOMMSwait
 then
 RD3b_ICSL_discerrorreport;
 null;
 mybuff := tail(mybuff);
 STATE := NOCOMMSwait
 end if
 []

144 Formal Modelling and Analysis of the 4SECURail Case Study

 -- RD3c_ICSL_discdataind
 only if
 mybuff /= nil and
 head(mybuff) == ISAI_DATA_indication and
 STATE == NOCOMMSwait
 then
 RD3c_ICSL_discdataind;
 null;
 mybuff := tail(mybuff);
 mynatbuff := tail(mynatbuff);
 mynatbuff := tail(mynatbuff);
 STATE := NOCOMMSwait
 end if
 []
 -- RD3d_ICSL_discconfirm
 only if
 mybuff /= nil and
 head(mybuff) == ISAI_CONNECT_confirm and
 STATE == NOCOMMSwait
 then
 RD3d_ICSL_discconfirm;
 null;
 mybuff := tail(mybuff);
 STATE := NOCOMMSwait
 end if
 []
 -- RD4a_ICSL_disccommconfirm
 only if
 mybuff /= nil and
 head(mybuff) == ISAI_CONNECT_confirm and
 STATE == COMMS
 then
 RD4a_ICSL_disccommconfirm;
 null;
 mybuff := tail(mybuff);
 STATE := COMMS
 end if
 []
 -- RD4b_ICSL_usererror
 only if
 (mybuff /= nil) and
 (head(mybuff) == ISAI_Error_report) and
 (STATE == COMMS)
 then
 RD4b_ICSL_usererror;
 null;
 mybuff := tail(mybuff);
 STATE := COMMS
 end if
 []

 -- clock cycles handling

 -- RTa_ICSL_okicsl_incr
 only if
 mybuff /= nil and
 head(mybuff) == icsl_tick and
 connectTimer < max_connectTimer and
 STATE == NOCOMMSconnecting
 then
 ok_icsl;
 connectTimer := connectTimer + 1 of int;
 mybuff := tail(mybuff);
 STATE := NOCOMMSconnecting
 end if
 []
 -- RTb_ICSL_okicsl_incr
 only if
 mybuff /= nil and
 head(mybuff) == icsl_tick and
 STATE == NOCOMMSwait
 then
 ok_icsl;
 null;
 mybuff := tail(mybuff);
 STATE := NOCOMMSwait
 end if
 [] -- RTc_ICSL_okicsl
 only if
 mybuff /= nil and
 head(mybuff) == icsl_tick and
 receiveTimer < max_receiveTimer and
 sendTimer < max_sendTimer and
 STATE == COMMS
 then
 ok_icsl;
 sendTimer := sendTimer + 1 of int;
 receiveTimer := receiveTimer + 1 of int;
 mybuff := tail(mybuff);
 STATE := COMMS
 end if
 end select
 end loop
end var
end process -- ICSL
...
end module

	1 Introduction
	2 The reference case study
	3 The formal modeling
	3.1 From natural language to executable UML specifications
	3.2 From executable UML specifications to verifiable scenarios
	3.2.1 UMC encoding
	3.2.2 ProB encoding
	3.2.3 CADP/LNT encoding

	4 The formal analysis
	4.1 Properties and scenarios

	5 Related works
	6 Conclusions

