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We depend on the safe, reliable, and timely operation of cyber-physical systems ranging from smart
grids to avionics components. Many of them involve time-dependent behaviours and are subject to
randomness. Modelling languages and verification tools thus need to support these quantitative as-
pects. In my invited presentation at MARS 2022, I gave an introduction to quantitative verification
using the Modest modelling language and the Modest Toolset, and highlighted three recent case stud-
ies with increasing demands on model expressiveness and tool capabilities: A case of power supply
noise in a network-on-chip modelled as a Markov chain; a case of message routing in satellite con-
stellations that uses Markov decision processes with distributed information; and a case of optimising
an attack on Bitcoin via Markov automata model checking. This paper summarises the presentation.

1 Introduction

Cyber-physical systems consist of discrete (usually digital, often implemented in software) controllers
interacting with a continuous physical environment. Control is often networked, sometimes wirelessly.
Many cyber-physical systems are safety- or performance-critical, or economically vital. We thus need to
ensure that they operate as desired, which includes dependability requirements such as reliability assur-
ances, availability levels, or response time guarantees. Reliability and availability are stochastic timed
properties: the probability of avoiding unsafe behaviour within a certain time horizon, and the expected
fraction of time that the system is ready to provide service, respectively. The critical systems them-
selves are also typically subject to randomisation, for example due to random message loss in wireless
communication or due to employing randomised algorithms, and they are timed systems dealing with
e.g. transmission delays and timeouts or faults occurring unpredictably over time. Thus, to assure their
dependability by way of modelling and verification (ideally at design-time), we need stochastic timed
formalisms and modelling languages supported by tools able to check stochastic timed properties.

In this overview paper accompanying my invited presentation at the 5th Workshop on Models for For-
mal Analysis of Real Systems (MARS 2022), I outline two such modelling languages, Modest and JANI,
and one such set of tools, the Modest Toolset (in Section 2). I then briefly summarise how Modest and the
Modest Toolset have been used to study power supply noise in a two-by-two network-on-chip system by
way of a discrete-time Markov chain (DTMC) model and probabilistic model checking with the mcsta
tool (in Section 3); to find routes through sparse constellations of nanosatellites using an abstract Markov
decision process (MDP) [7, 35] model analysed with a statistical model checking approach that employs
scheduler sampling under distributed information as implemented in the modes tool (in Section 4); and
to optimise an attack on the Bitcoin cryptocurrency system via a Markov automata (MA) [22] model that
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Key: SHA stochastic hybrid automata [24]
PHA probabilistic hybrid automata [46]
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TA timed automata [3]
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Figure 1: The family tree of automata-based quantitative formalisms

permits mcsta to synthesise the strategy that minimises the expected time to success or maximises the
probability of success within a certain time bound (in Section 5).

2 Modest Languages and Tools

A well-defined semantics in terms of some mathematically well-understood object is a cornerstone of
formal models. For quantitative models, we use automata-based formalisms—that represent the evolu-
tion of a system from state to state via (randomised) transitions—building on labelled transition systems
(LTS, or Kripke structures) and discrete- and continuous-time Markov chains (DTMC and CTMC, re-
spectively) [6]. By combining these basic mathematical formalisms in various ways, and extending them
with features such as real-time clocks and continuous variables evolving according to differential equa-
tions, we obtain further formalisms as depicted in Figure 1. Since writing real-life models as, say, large
Markov chains would be cumbersome, we specify them using a higher-level modelling language that
offers at least discrete variables with standard arithmetic and Boolean operators plus a notion of parallel
composition for the natural specification of distributed and component- or actor-based systems.

The Modest Language. One such language is Modest, originally the modelling and description lan-
guage for stochastic timed systems [8]. Its formal semantics was first defined in terms of STA and later
extended to SHA [29]. Modest is a textual modelling language; its syntax is designed to be similar to
widely used programming languages like C or Java to lower the barrier of entry for domain experts. At
the same time, it is a process algebra in spirit, based on standard operators such as sequential and parallel
composition, allowing the definition of and recursive calls to processes, and emphasising compositional-
ity. In fact, Modest consists of two largely orthogonal languages: one to define behaviour, which is the
one based on process-algebraic ideas, and one to manipulate data such as the values of discrete variables.
The latter provides arrays, recursive datatypes (e.g. allowing the definition of a linked list type via pairs
of a head containing a data item and a linked list option tail), and mutually recursive functions. These
features allow for concise and natural models of complex real-life systems.

The JANI model interchange format. While Modest is a convenient modelling language for end-
users, the work required to implement code that parses Modest models and transforms the parsed syntax
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into its symbolic semantics (a parallel composition of SHA with discrete variables) is nontrivial. The
same problem affects many other modelling languages, e.g. Prism’s [38], too. To ease tool development
and facilitate the exchange of models between different tools, in 2016, the developers of several quantita-
tive verification tools defined the JSON-based JANI [13] format. It is not designed to be human-writable,
but rather serve as a model interchange format that is generated by tools from other modelling languages,
such as Modest. Today, JANI is supported by the Modest Toolset (see below), Storm [21], Momba [37],
and several other tools. All models in the quantitative verification benchmark set (QVBS) [33] are avail-
able in both their original formats as well as in JANI. The QVBS served as the foundation for the QComp
2019 [28] and QComp 2020 [14] tool competitions.

The Modest Toolset. To support the creation of Modest models, and to compute the values of prop-
erties or check requirements specified as part of models, the Modest Toolset [30] provides a collection
of visualisation, model transformation, model checking, and simulation tools. The Modest Toolset has
been in development since 2008; it is written in C#, and is available as precompiled binaries for common
Linux distributions, macOS, and Windows at modestchecker.net. As input languages, it supports Mod-
est and JANI; its moconv tool can convert between the two and apply various transformations, such as
converting a suitable PTA model into its digital clocks [39] MDP. The mosta tool visualises a model’s
symbolic semantics, helping in learning Modest and in debugging models. The mopy tool converts a
model into Python code implementing a first-state-next-state interface [9] that can be used to quickly
prototype explicit-state verification algorithms and that is used by the author as part of the programming
project of a Master’s-level course on quantitative verification at the University of Twente.

The main implementation of probabilistic model checking (PMC) [4, 5] in the Modest Toolset is in
mcsta [31]: an explicit-state model checker that provides a unique disk-based approach to mitigate the
state space explosion problem [31]. It includes efficient model reductions such as the essential states
abstraction [19], and provides state-of-the-art algorithms for model checking MA [15]. The Modest
Toolset’s statistical model checker modes [12]complements mcsta’s capabilities for cases where model
checking cannot be applied, such as when facing state space explosion or models with non-Markovian
probability distributions like STA. Statistical model checking (SMC) [1] is, in essence, Monte Carlo
simulation applied to formal models and properties. A constant-memory technique, it however incurs an
explosion in runtime when faced with rare events, and does not directly support nondeterministic models
such as MDP. The modes tool addresses these shortcomings by providing rare event simulation [45] via a
highly automated implementation of importance splitting [11], and by offering the lightweight scheduler
sampling technique [41] for MDP, PTA [17, 34], and (with limitations) stochastic-time models like MA
and STA [18]. Other members of the Modest Toolset provide specialised analysis algorithms such as
variants of the probabilistic planning algorithm LRTDP [10] for MDP in modysh [36] or an abstraction-
based approach to safety verification of SHA in prohver [29].

3 Power Supply Noise in a Network-On-Chip System

As the complexity of distributed many-core systems advances, the network-on-chip (NoC) architecture
has become the de-facto standard for on-chip communication. A NoC is typically composed of topo-
logically homogeneous routers operating synchronously in a decentralized manner using a predefined
routing protocol. Changes in the supply voltage—power supply noise (PSN)—can influence the perfor-
mance of the transistor devices in a NoC. PSN is created by the simultaneous switching of logic devices,
which causes a drop in the effective power supply voltage. PSN is composed of two major components:

http://www.modestchecker.net/
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resistive noise (related to the current drawn and the resistance of the circuit) and inductive noise (which
is proportional to the rate of change of current through the inductance of the power grid).

Figure 2: Architecture of the 2×2 NoC [44]

To study PSN in NoC architectures, we modelled in
Modest and analysed with mcsta first a single central
router of a NoC [42] and later a two-by-two NoC con-
sisting of four symmetric routers [44] as shown in Fig-
ure 2. We focus on the latter in this section. Our goal is
to compute the probability for behavioural patterns that
are likely to result in resistive resp. inductive noise to oc-
cur at least n times within t clock cycles, starting from
an initial state where all buffers are empty. We consider
two different data packet (flit) generation patterns: one
where each router receives a flit into its local buffer (e.g. from the one core it is connected to) every other
cycle, and one where flits are generated in bursts. We assume the destination of a flit to be one of the
other router’s local outputs, with the actual router selected uniformly at random for each flit. The routers
use a specific round-robin style routing protocol. Thus, with all decisions fixed to be either determinis-
tic (flit generation times and routing choices) or random (flit destinations), and the whole NoC running
on a discrete clock, this system can naturally be modelled as a DTMC. The main challenge for model
checking with mcsta is to avoid the state space explosion problem.

For a first concrete model, which exploited the availability of complex user-defined datatypes in
Modest to represent the state of the network’s routers and buffers in full detail, we were unable to perform
model checking for more than t = 4 clock cycles. We then manually applied a series of abstractions to
achieve tractability: predicate abstraction to replace the details in the complex datatype’s values by only
the relevant predicates; a probabilistic choice abstraction that delays random assignments to discrete
variables to the point where the assigned value is first tested; and an abstraction of the buffers that
includes replacing them by bounded integer variables counting the number of waiting flits only.

Figure 3: CDF for inductive noise events [44]

The resulting model could be model-checked for up
to 30 clock cycles with every-other-cycle flit genera-
tion by unfolding the clock cycle counter into the state
space, and up to any number of clock cycles by using
the unfolding-free modified iteration technique of [27],
in essence computing the entire cumulative distribution
function (CDF) as shown in Figure 3. This is due to an
interesting effect of the different flit generation patterns:
With every-other-cycle generation, the buffers slowly fill
up with flits to various destinations; the full state space
that includes all combinations of buffer occupancies with
different flits is too large to handle today. Restricting the
state space exploration to a bounded number of clock cy-
cles, where initially few flits are present throughout the
system, results in a sequence of manageable state spaces
of ever-increasing size. With bursty flit generation, all
buffers periodically return to an empty state; the period is small enough for the entire state space to fit
into memory, i.e. buffers do not fill up far enough for the number of combinations of buffer states to grow
too large, if clock cycles are managed as rewards.

We also applied SMC, which however was limited in the case of every-other-cycle generation by
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Figure 5: Satellite routing scheduling toolchain for uncertain delay-tolerant networks [16]

noise events being relatively rare, and in the case of bursty generation by not being able to compete in
terms of runtime with the modified iteration technique that can compute the probabilities for the entire
sequence of values of t up to any upper bound in one go. Similarly, our attempts to use Storm’s binary
decision diagram-based state space exploration did not provide scalability improvements, possibly due
to the model not being as structured as we think it is, or simply due to a bad variable ordering in the
model. For further details on this first case study, we refer the interested reader to the original paper that
was presented at FMICS 2021 [44].

4 Routing in Satellite Constellations

Satellite networks in low-Earth orbit are increasingly used to collect and distribute information across
the globe, including access to the Internet. For real-time applications like Internet access, this requires
very large constellations (such as the Starlink constellation being deployed by SpaceX); even if low-cost
satellites based on off-the-shelf components that are not space-qualified are used, the entire constellation
becomes extremely expensive. A different and more sustainable approach is to relax the real-time con-
straint and leverage the store-carry-and-forward principle where nodes store received messages for later
forwarding to other nodes in the network, once a communication window—a contact—appears. This
gives rise to a delay-tolerant network.

N1:

N2:

N3:

N4:

T1 T2 T3 T4 T5Slot:

p1 = 0.9

p2 = 0.9

p3 = 0.5

p4 = 0.5

p5 = 0.1

Figure 4: Uncertain contact plan [16]

In satellite constellations, the orbits are known with suf-
ficient precision to calculate the upcoming contacts over the
next few days, giving rise to a contact plan. However, message
transmissions may fail for various reasons such as unreliable
(low-cost) components, contact mispredictions, or interference
during the wireless communication. If statistical data is avail-
able or the error margins of calculations are known, we can
assign a success probability to each contact, giving rise to an
uncertain contact plan. We show an abstract representation of
such a plan in Figure 4. This plan comprises four satellites
(or ground stations) N1 through N4 with contacts over five time
slots T1 through T5. The numbers annotating contacts are the transmission success probabilities.

Now, given the source and destination of a message, and a limit n on the number of message copies
present in the network to avoid exhausting the satellites’ limited resources, we would like to compute the
routing strategy that maximises the probability of message delivery within the time window covered by
the contact plan. Due to the combination of randomness (in transmission failures) with nondeterministic
decisions to be optimised (which contacts to use to send how many copies) in a discrete-time setting
(a sequence of contacts), MDP are the perfect match among the formalisms of Figure 1 to model this
problem. The goal is to find an optimal scheduler (i.e. routing strategy) for the MDP.
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We have tackled the problem by developing the toolchain outlined in Figure 5 that converts a con-
crete contact plan (with exact contact timings) into an abstract Modest MDP model. At that point, one
could apply PMC via e.g. mcsta to obtain the optimal scheduler. However, PMC works with complete,
global information: Consider the contact plan of Figure 4 with n = 2. N1 will definitely send one copy to
N2 in slot T1, and if successful, N2 will forward that copy in slot T2. In slot T3, the best course of action
computed by PMC for satellite N1 is to send its remaining copy to N3 if any only if N3 did not receive
the first copy. Thus the model checker “sees” the state of all satellites. Satellites, however, do not have
global information about the state of all other satellites in the constellation, making the optimal strate-
gies found by PMC potentially unimplementable. In fact, what we need are distributed schedulers [25].
Unfortunately, the model checking problem under distributed schedulers is undecidable, and even with
simplifications such as restricting to memoryless schedulers remains practically intractable [26]. Re-
cently, an approximative model checking-based approach that is specifically tailored to the uncertain
delay-tolerant networks case has become available [43], which however still remains limited by state
space explosion as n increases.

We instead propose to adapt the lightweight scheduler sampling (LSS) approach to sample distributed
schedulers [16]. In LSS, each scheduler is represented by a fixed-size (e.g. 32-bit) integer. Performing
an SMC analysis for each of m randomly sampled such integers and keeping the maximum (minimum)
estimate provides an underapproximation (overapproximation) for the maximum (minimum) probability
achievable with the unknown optimal schedulers. During an SMC analysis for scheduler i, when the
simulator needs to decide between k actions in state s, it concatenates the bitstring representations of s and
i, applies a hash function mapping this value to a fixed-size integer j, and selects the (( j mod k)+1)-th
action. To perform the same analysis w.r.t. distributed schedulers, all we need to change is the input
to the hash function: instead of the bitstring for s, we use that for a projection of s to the variables
observable by the currently active component (here: satellite). We also introduce a condition of good-
for-distribution models that, when satisfied, ensures that no two components may have a decision at the
same time instant, making a global arbiter to break such ties unnecessary. Our Modest models generated
for uncertain contact plans are good for distribution by construction.

We implemented LSS for distributed schedulers as described above in modes, and applied this im-
plementation to a small example contact plan as well as a realistic Walker-formation constellation. Our
results, presented at NFM 2020 [16], show that LSS is able to find good and implementable routing
strategies, and that restricting to distributed schedulers may actually result in better strategies than sam-
pling from all (global-information) schedulers by virtue of restricting the sampling space.

5 Optimally Attacking Bitcoin

The Bitcoin cryptocurrency records its transactions in a blockchain to which blocks are added via the
proof-of-work principle: participants need to solve a computationally intensive problem to be able to
generate or mine a valid block. Generally, the first new valid block mined gets appended to the chain,
and a certain number of Bitcoins is awarded to the participant that found the block as a reward. However,
as a distributed system spanning the globe via the Internet, Bitcoin has to deal with asynchrony: If
multiple participants find new blocks at roughly the same time, there are different alternative forks of the
Bitcoin blockchain, and a consensus must be reached on which is the valid one. In Bitcoin, the longest
available chain is considered the valid one.

As the computational power used for mining new blocks (the hash rate) changes, the Bitcoin network
periodically adjusts the hardness of the problem such that the average time to find a new block (the
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const real M; // fraction of hash rate controlled by malicious mining pool
const int CD; // confirmation depth required by victim
const int DB = CD; // attacker gives up when this far behind

action sln; // indicates that the honest pool mined a new block
action rst; // indicates that the attacker restarts from the public fork
action cnt; // indicates that the attacker continues

int(0..CD+1) m_len; // length of the secret fork
int(-DB..CD+1) m_diff = 0; // length of secret fork minus honest fork

process HonestPool()

{

rate(1/12 * (1 - M)) tau; // wait 12 / (1 − M) minutes on average
sln; // signal that a new block was found
HonestPool() // repeat

}

process TrustAttacker()

{

do {

:: rate((1/12) * M) {= m_len = min(CD, m_len + 1), m_diff++ =} // new secret block
:: sln {= m_diff-- =}; // public fork extended

alt { // strategy choice: restart or continue malicious fork
:: rst {= m_len = 0, m_diff = 0 =} // can always restart
:: when(m_diff > -DB) cnt // can continue if not too far behind
}

}

}

par {

:: HonestPool()

:: TrustAttacker()

}

Figure 6: Modest model for optimising the trust attack on Bitcoin [32]

confirmation time) is 10 minutes. In practice, the actual confirmation time varies; it was about 12 minutes
in 2017 [23]. This time is truly random, and the mining of new blocks can abstractly be modelled by a
CTMC in which the transition from a chain with n blocks to one with n+ 1 blocks has rate 1

12 , i.e. the
time until the transition is taken is exponentially distributed with that rate.

If a large amount of the hash rate (say M percent) is controlled by one malicious entity, they could
feasibly implement various attacks on the Bitcoin network by secretly working on their own fork until it
becomes longer than the “public” one, and then broadcasting the secret fork. For example, Bitcoins could
be spent twice: once on the public fork in block bi, and once on the secret fork that branches off from
publicly known block b j that is before bi in the chain. This behaviour can be integrated into an abstract
CTMC model of Bitcoin to e.g. compute the expected time until the attack succeeds for various values
of M. We built such a model in Modest and studied similar properties using mcsta and modes [32].

A more interesting and somewhat easier attack, which however does not have the individual benefit
of doubly-spent coins but rather attempts to undermine the public trust in Bitcoin, is to simply try to
obtain a secret fork that is longer than the official one by a certain margin, and then publish that fork.
If done repeatedly, regular users could no longer rely on the persistence of transactions that initially
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appeared to have become a part of the valid Bitcoin blockchain. In this attack, every time the public fork
is extended, the malicious entity may decide between (a) continuing to work on its current secret fork
and (b) restarting its secret fork from the new public block. This is because it is no longer necessary to
purge a specific block bi from the public chain as in the double-spending attack. Due to the presence of a
nondeterministic choice to be optimised, this attack can thus no longer be represented in a CTMC model.

The attack on trust in Bitcoin was first analysed by Fehnker and Chaudhary [23] using statistical
model checking with UPPAAL SMC [20]. As a consequence of using SMC, they had to run a separate
analysis for every possible strategy determining the conditions for when to continue and when to restart,
and their results came with a statistical error. We later modelled the same scenario as the Modest MA
model shown in Figure 6 and let mcsta synthesise the optimal strategy [32], which it could do in a matter
of a few seconds. We found that the optimal strategy is to restart the attack if (i) the public chain is
extended when the secret fork is still empty, (ii) the secret fork has one block and the public fork adds a
third new block, or (iii) the secret fork has ≥ 2 blocks and becomes three blocks shorter than the public
one, and to continue the attack in all other cases. If the malicious entity controls just 20 % of the hash
rate, which is not an uncommon situation for the Bitcoin network, then the expected time to success
under this strategy is only approximately 2.5 days.

6 Summary

Different case studies have different needs in terms of conceptual modelling power, modelling language
features, and analysis tool capabilities. I highlighted three examples that were modelled in the Modest
language and analysed using different tools from the Modest Toolset: First, in the case of power supply
noise in a NoC, the simple formalism of DTMC was sufficient. For the detailed concrete model, however,
the Modest language feature of declaring and using one’s own complex data types was very helpful.
PMC via mcsta was the analysis method of choice, however significant effort was needed to abstract
the model until it became tractable for PMC due to the state space explosion problem. Second, for
routing in satellite constellations, nondeterministic choices needed to be modelled, and optimised over
by the analysis tool. Here, MDP fit the problem very well with their ability to model decision-making
under uncertainty. We auto-generated Modest models from contact plans computed by domain-specific
software. Due to the need to find implementable routing strategies in the distributed-information setting
of satellite constellations, we could not use PMC; instead, we adapted the LSS approach to allow SMC
to handle both distributed information and nondeterminism. Finally, to optimally attack Bitcoin, we
showed that MA fit the problem well due to the combination of the stochastic time-to-next-block with
the nondeterministic choices between continuing and restarting the secret fork. Using PMC with mcsta
again, we were able to compute an optimal strategy with little computational effort.
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