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The syntax of modal graphs is defined in terms of the continuous cut and broken cut following

Charles Peirce’s notation in the gamma part of his graphical logic of existential graphs. Graphical

calculi for normal modal logics are developed based on a reformulation of the graphical calculus

for classical propositional logic. These graphical calculi are of the nature of deep inference. The

relationship between graphical calculi and sequent calculi for modal logics is shown by translations

between graphs and modal formulas.

1 Introduction

Sequent calculi for normal modal logics can be obtained uniformly from a basic calculus, as has been

observed in [23]. The search for generalized cut-free sequent calculi for modal logics has produced

display calculus ([3]), hypersequent calculus ([2]), labelled sequent calculus ([10]), hybrid logic calculus

([18]), and deep sequent calculus ([7, 8, 21, 22]). Among these efforts, there are two main approaches.

One is the semantic approach; the other largely syntactic. In the semantic approach, labelled calculi exist

for a number of complete modal logics. The syntactic approach does not use labels. Each sequent has an

obvious corresponding formula. Ordinary sequent calculi and hypersequent calculi for modal logics are

syntactic.

Deep inference systems for modal logics, such as deep sequent calculi developed by Brünnler [7, 8]

and Stouppa [22], are also largely syntactic. There exists also deep inference for hybrid logic ([19]).

The syntax of deep sequents is defined by assuming the negation normal form in classical modal logic

and nested sequents. The central idea of deep inference is that deep structures are transformed into

appropriate shapes at any position in a derivation that allows the transformation. It has turned out that

cut-free sequent calculi can be developed systematically and modularly for normal modal logics.

As often is the case, what is syntactic and what semantic may interestingly overlap, as is the case

in the hybrid and two-sided approaches. Also in the graphical and diagrammatic systems the distinction

between syntax and semantics is not, and was not originally meant to be by Peirce, razor-sharp, which

professes to gain some flexibility when dealing with some more complicated and non-standard systems.

The aim of the present paper is to provide a different kind of deep inference system for normal

modal logics. The language is given by Peirce’s alpha and gamma graphs as presented in his theory of

existential graphs (see e.g. [13, 14, 17, 24]). Graphs are scribed on the sheet of assertion. Inference rules

are formulated as transformation rules from one graph to another graph. In non-modal propositional

logic (alpha graphs) and first-order logic (beta graphs), there are basically only two general kinds of

transformations: insertions to the graphs and erasures from the graphs. In graphical modal logic, there

are two additional kinds of transformations: merges and splits. In a sense also merges and splits are
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instances of the operations of insertions and erasures. Thus the fundamental proof rules also in the

modal extensions of graphical logic can be classified into two general classes. As usual, these operations

are allowed only in certain positions in a graph. It is the notion of a position that is made explicit in

graphical logic. This makes such graphical calculi the natural home for deep inference.

Peirce’s theory of existential graphs was generalized into conceptual graphs by Sowa [20] in 1984.

Since then conceptual graphs have been widely used within artificial intelligence and cognitive science.

Diagrammatic reasoning and their history and philosophy has been studied for many years (see e.g. [1,

15, 16]). As far as modal logics are concerned, van den Berg [4] defines a graphical system for modal

logic K which is complete with respect to the Hilbert-style axiomatic system of K. Braüner [5] defines a

Peircean graphical system for the modal logic S5, which is also complete with respect to the Hilbert-style

axiomatic system of S5. This type of graphical system is also extended by Braüner and Øhrstrøm [6] to

modal logics S4 and KD45. In distinction from the above works, the graphical systems for modal logics

presented in this paper are shown to be equivalent to algebraic sequent systems. This means that a range

of modal graphical systems can be developed in a systematic and modular fashion.

2 The syntax of modal graphs

We fix a denumerable set of simple propositions Prop the elements of which are primitive graphs. They

occur in a compound graph as basic parts. According to Peirce, the sheet of assertion, or the blank where

nothing is scribed on it, is also a primitive graph. It corresponds to tautology ⊤. Henceforth, we denote

the blank by SA or omit it altogether when no confusion arises. A primitive graph is a simple proposition

or the blank (SA).

The modal graphs are defined inductively from primitive graphs using two special notations: the

continuous cut and the broken cut . The continuous cut means negation. The broken cut means

logical contingency (non-necessity). The continuous and broken cuts are called primitive cuts uniformly.

There are four combinations of cuts:

(1) Double continuous cut: ;

(2) Double broken cut: ;

(3) Possibility cut: ;

(4) Necessity cut: .

The compound cuts consist of two cuts, one nested within the other, with nothing between them. The

two primitive cuts and the four compound cuts stated above are called cuts uniformly. They are used as

single graph operations that form new graphs from the given ones.

Definition 1. The set of all modal graphs GM is defined inductively by:

GM ∋ G ::= p | SA | G | G | G1 G2

where p ∈ Prop. The graphs G and G are read as “the continuous cut of G” and “the broken cut of

G” respectively. The graph G1 G2 is called the juxtaposition of G1 and G2 on the sheet of assertion.

Henceforth, when we talk about graphs we mean modal graphs. Given two graphs G and H , we

define shorthand notations G > H , G ⊃ H and G ≡ H as below:

G > H := G H ; G ⊃ H := G H ; G ≡ H := G H H G .

Definition 2. For any graph G, the parsing tree of G, denoted by T (G), is defined inductively as follows:

1. T (p) is a single root node p.
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2. T (SA) is a single root node SA.

3. T (G1G2) is a root node G1G2 with children nodes T (G1) and T (G2).

4. T ( G ) is a root node G with one child node T (G).

5. T ( G ) is a root node G with one child node T (G).

A partial graph of a graph G is a node in T (G).

For any graph G, the history of a node J in T (G), denoted by h(J), is the unique path from the root

to J. The position of the root is always on the sheet of assertion. We say that J is a positive (negative)

node of T (G) if there is an even (odd) number of cuts in h(J).

A position is a point on the area of a graph (but not on the boundary of the cut). Given any graph G,

a position in G is positive (negative) if it is enclosed by an even (odd) number of cuts. Graph are scribed

at positions. No two graphs, or their parts, can be scribed at the same position.

A graph context is a graph G{ } with a single slot { }, the empty context, which can be filled by other

graphs. The notation G{H} stands for the graph obtained from the graph context G{ } by filling the slot

by H . An occurrence of a graph J in a graph G is called positive (negative), notation G{J+} (G{J−}), if

it is a positive (negative) node in T (G).

3 The graphical calculi Kg

Graphical calculi for modal logics are presented by graphical rules. In general, a graphical rule is of the

form
G

H

where G and H are graphs. The graph G is called the premiss, and H is called the conclusion.

On the sheet of assertion, the syntax of graphs becomes diagrammatic. This means that the syntax is

two-dimensional, it has no separate notation for parentheses, and that its well-formed graphs are scribed

in the ambient space which is continuous, compact, open and non-oriented. The following equalities can

be thought of as identifying graphs:

(PM) G{H1H2}= G{H2H1}; (AS) G{H1(H2H3)}= G{(H1H2)H3}.

The permutation (PM) says that to distinguish positions of H1 and H2 in a partial graph H1H2 of G has no

significance. The associativity (AS) says that the order of forming the graphs indicated by the parentheses

in these rules is likewise immaterial. After all, these equalities follow from the basic properties of the

space and therefore need no separate statement in the system. Likewise, if two graphs, G and H , are

asserted on the sheet of assertion, the the juxtaposition of them, G H , is at once also asserted.

The continuous and broken cuts have different meanings in general. However, the continuous cut of

SA is tantamount to the broken cut of SA in the sense that it is impossible to falsify a tautology. Hence

we assume the following equality:

(Normality) =

This equality says that contradiction is impossible. Its algebraic meaning is the normality condition in

modal algebras (Section 5).

Definition 3. The graphical calculus Kg for the minimal normal modal logic K consists of the following

axiom and graphical rules:
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1. Axiom: SA (The Sheet of Assertion)

2. Alpha rules:

• Deletion:
G{H+}

G{SA}
(DEL)

Every positive partial graph H in a graph G can be deleted.

• Insertion:
G{H−}

G{(JH)−}
(INS)

Any graph can be inserted into a negative position in a graph G.

• Double cut:
G{H}

(DC1)
G{ H }

G{ H }
(DC2)

G{H}

Any partial graph H of a graph G can be replaced by the double cut of H, and vice versa.

• Iteration/deiteration:

K{GH{J}}

K{GH{GJ}}
(IT)

K{GH{GJ}}

K{GH{J}}
(DEIT)

where H{ } is a broken-cut-free graph context, namely, no broken cut occurs in H{ }. In a

graph K{GH{J}}, the partial graph G can be iterated or deiterated at any position in H.

3. Modal rules:

J{ GH }
(K1)

J{ G H }

J{ G H }
(K2)

J{ GH }

J{(G ⊃ H)+}
(DMN)

J{( H ⊃ G )+}

(K1) and (K2) mean that the necessity cut distributes over juxtaposition. We call the rule (K1)
splitting and (K2) merging. (DMN) is the rule of downward monotonicity.

A proof of a graph G in Kg is a finite sequence of graphs G0, . . . ,Gn such that Gn = G, and each Gi is

either SA or derived from previous graphs by a rule in Kg. A graph G is provable in Kg, notation ⊢Kg
G,

if it has a proof in Kg. A graphical derivation of H from G is admissible in Kg, if ⊢Kg
G implies ⊢Kg

H .

Remark 1. The restriction on the context H{ } in (IT) and (DEIT) rules is significant. Iteration/de-

iteration in a modal context may lead to invalid inferences. For example, consider the following two

inferences where the rules (IT) and (DEIT) are applied into the broken cut:

p q ⊃ p q

p q ⊃ p pq
(I)

p q ⊃ p q

p p q ⊃ p q
(II)

The premisses of (I) and (II) are valid, but their conclusions are not valid in the algebraic semantics

for Kg (Section 5). (I) is a counterexample to the validity of iteration into broken cut, and (II) is a

counterexample to the validity of deiteration from a broken cut.

Lemma 1. The graphs G ⊃ SA and G ⊃ G are derivable in Kg.
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Proof. We have the following proofs:

SA (DC1)

(INS)
G

SA (DC1)

(INS)
G

(IT)
G G

This completes the proof.

Proposition 1. The following rules are admissible in Kg:

1. De Morgan rules:

GH
(DM1)

G > H

G > H
(DM2)

GH

2. Contraposition and transitivity rules:

G ⊃ H

H ⊃ G
(CP)

G ⊃ H H ⊃ J

G ⊃ J
(TR)

3. Prefixing and Modus Ponens:

G

H ⊃ G
(PF)

G G ⊃ H

H
(MP)

4. Lattice rules:

Gi ⊃ H

G1G2 ⊃ H
(&L)

G ⊃ H G ⊃ J

G ⊃ HJ
(&R)

G ⊃ J H ⊃ J

G > H ⊃ J
(>L)

G ⊃ Hi

G ⊃ H1 > H2
(>L)

G ⊃ H > J

H G ⊃ J
(NL)

GH ⊃ J

H ⊃ G > J
(NR)

5. Residuation rules:
GH ⊃ J

G ⊃ (H ⊃ J)
(RG1)

G ⊃ (H ⊃ J)

GH ⊃ J
(RG2)

6. Distributivity:

G H J
(D1)

G H G J

G H G J
(D2)

G H J

7. Upward monotonicity:

G ⊃ H (UMN)
G ⊃ H

G ⊃ H (UMP)
G ⊃ H

G ⊃ H (UMDB)
G ⊃ H

8. Replacement of equivalents:
G ≡ H

J{G} ≡ J{H}
(RE)

9. Necessitation rule:
G

G
(Nec)
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Proof. For (DM1) and (DM2), we have the following simple proofs that only use the double-cut rules:

GH
(DC1)

G H
(DC1)

G H

G H
(DC2)

G H
(DC2)

GH

(TR) is shown as follows:

G J J H
(IT)

G J J H
(DEIT)

G J H
(DEL)

G H
(DC2)

G H

For (D1) and (D2), we have the following proofs ([9]):

G H J
(IT)

G GH J
(IT)

G GH GJ
(DEL)

GH GJ

GH GJ
(IT)

GH GJ GH GJ
(4 times DEL)

G G H J
(DEIT)

G H J
(DC2)

G H J

The rule (RE) is shown by induction on the construction of J{ } as follows. Assume G≡H . If J{ }= { },

the conclusion is the same as the premiss. Suppose J{ } = J′{ } . By induction hypothesis, we have

J′{G} ≡ J′{H}. Then it is easy to show J′{G} ≡ J′{H} . Assume J{ } = J1J2{ }. By induction

hypothesis, we have J2{G} ≡ J2{H}. Then it is easy to show J1J2{G} ≡ J1J2{H}.

The rule (UMN) is obtained from (DMN) by the rule of contraposition (CP). (Nec) is shown by (PF),

(UMN) and (TR). The other rules are easily shown.

Theorem 1 (Cut-elimination). The following cut-elimination rule

J{ G G }
(Cut-E)

J{SA}

is admissible in Kg.

Proof. Clearly G G ≡ SA is provable in Kg. By (RE), we have J{ G G } ≡ J{SA}. Assume

⊢Kg
J{ G G }. By (TR), we have ⊢Kg

J{SA}.

4 Extensions

Extensions of Kg can be obtained by adding some characteristic rules. The formulation of these char-

acteristic rules will make use of the cuts, including the six cuts (two primitive and four combined ones)



M. Ma and A.-V. Pietarinen 97

we introduced in Section 2. We say that the occurrence of a cut in a graph is positive (negative) if it is

enclosed evenly (oddly) by primitive cuts (continuous or broken cuts).

A normal modal graphical calculus is an extension of Kg with a set of graphical rules. Given a set

of rules Σ = {Ri | i ∈ I}, the notation KΣ denotes the calculus generated by rules in Σ. Let us have the

following rules of transformation as the basic rules for various systems of graphical modal logic:

(D) Any positive necessity cut can be transformed into a possibility cut. Any negative possibility cut

can be transformed into a necessity cut.

J{ G
+
}

J{ G
+
}
(D+)

J{ G
−
}

J{ G
−
}
(D−)

(T ) Any positive continuous cut can be transformed into a broken cut. Any negative broken cut can be

transformed into a continuous cut.

J{ G
+
}

J{ G
+
}
(T+)

J{ G
−
}

J{ G
−
}
(T−)

(4) Any positive necessity cut can be doubled. Any negative possibility cut can be doubled.

J{ G
+
}

J{ G
+

}

(4+)
J{ G

−
}

J{ G
−

}

(4−)

(B) Any positive double broken cut can be deleted. Any double broken cut can be inserted into a

negative position.

J{ G
+
}

J{G+}
(B+)

J{G−}

J{ G
−
}
(B−)

(5) Any positive double broken cut can be transformed into a necessity cut. Any negative possibility

cut can be transformed into a double broken cut.

J{ G
+
}

J{ G
+
}
(5+)

J{ G
−
}

J{ G
−
}
(5−)

Definition 4. Let (X) = {(X+),(X−)} for X ∈ {D,T,4,B,5}. We define the following graphical calculi:

KDg = Kg(D) KBg = Kg(B) K4g = Kg(4)

K5g = Kg(5) KTg = Kg(T ) KDBg = KDg(B)

KB4g = KBg(4) KD4g = KDg(4) KD5g = KDg(5)

KB5g = KBg(5) K45g = K4g(5) KTBg = KTg(B)

S4g = KTg(4) S5g = KTg(5)

Let S be any one of the systems in Definition 4. Let S+ and S− be the systems obtained from S by

dropping the negative and positive rules respectively.

Theorem 2. S+ = S = S−.



98 Graphical Sequent Calculi for Modal Logics

Proof. Consider KT+ = Kg(T
+). It suffices to show that (T−) is provable in KT+. Assume that

J{ G
−
} is provable in KT+. There are two cases:

Case 1. J{ G
−
} = J′ H G . First, it is easy to prove G ⊃ G in KT+. Then we have the

following proof:

G ⊃ G
(&L)

H G ⊃ G G ⊃ G
(TR)

H G ⊃ G

H ⊃ H
(&L)

H G ⊃ H
(&R)

H G ⊃ H G
(DMN)

H G ⊃ H G
(Alpha rules)

J′ H G ⊃ J′ H G

Case 2. J{ G
−
}= J′ H G . We have the following proof:

G ⊃ G
(Alpha rules)

H G ⊃ H G
(CP)

H G ⊃ H G
(Alpha rules)

J′ H G ⊃ J′ H G

Hence (T−) is provable in KT+. The remaining cases of S are shown similarly.

5 Graphical and sequent calculi

The set of all modal formulas LM is defined by the following inductive rule:

LM ∋ α ::= p | ⊤ | ¬α | (α ∧α) |�α ,

where p ∈ Prop. Other propositional connectives ⊥,∨,→ and ↔ are defined as usual. The dual operator

of ♦ is defined as ♦α := ¬�¬α . A basic sequent is an expression of the form α ⊢ β .

Definition 5. The basic sequent calculus SK consists of the following axioms and rules:

(1) Axioms:

(Id) α ⊢ α , (⊤) α ⊢ ⊤, (D) α ∧ (β ∨ γ) ⊢ (α ∧β )∨ (α ∧ γ),

(Em) ⊤ ⊢ α ∨¬α , (Gen) ⊤ ⊢�⊤, (�∧) �α ∧�β ⊢�(α ∧β ).

(2) Rules for propositional connectives:

¬α ⊢ β
(¬L)

¬β ⊢ α

α ⊢ ¬β
(¬R)

β ⊢ ¬α

α ⊢ β β ⊢ γ

α ⊢ γ
(Tr)

αi ⊢ β
(∧L)(i = 1,2)

α1 ∧α2 ⊢ β

β ⊢ α1 β ⊢ α2
(∧R)

β ⊢ α1 ∧α2

(3) Modal rule:
α ⊢ β

�α ⊢�β
(�)
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By the standard Lindenbaum–Tarski construction, one can easily obtain the following completeness

result:

Theorem 3. A sequent is derivable in SK iff it is valid in all modal algebras.

We shall present the translations between the modal language LM and the graphical language GM ,

and then prove the connections between the graphical calculus Kg and the sequent calculus SK.

Definition 6. The translation π : GM → LM is defined inductively by

π(p) = p; π(SA) =⊤; π( G ) = ¬π(G);

π( G ) = ♦¬π(G); π(G1 G2) = π(G1)∧π(G2).

The translation σ : LM → GM is defined inductively by

σ(p) = p; σ(⊤) = SA; σ(¬ϕ) = σ(ϕ) ;

σ(�ϕ) = σ(ϕ) ; σ(ϕ1 ∧ϕ2) = σ(ϕ1) σ(ϕ2).

The two translations π and σ are related to each other. The relationship can be presented by the

following result:

Proposition 2. There are functions δ : LM → LM and ρ : GM → GM such that the following diagrams

commute:

b b

b

LM GM

LM

σ

δ
π

(I)

b b

b

GM LM

GM

π

ρ σ

(II)

i.e., π ◦σ = δ and σ ◦π = ρ .

Proof. As we are using them later on, let us first define the two (redundant) functions δ and ρ as follows.

Define the function δ inductively by: δ (p) = p, δ (⊤) =⊤, δ (ϕ1 ∧ϕ2) = δ (ϕ1)∧δ (ϕ2), and δ (�φ) =
¬♦¬ϕ . By induction on the construction of a modal formula ϕ one can easily show σ(π(ϕ)) = δ (ϕ).
Hence (I) commutes. Define the function ρ inductively as follows:

ρ(p) = p, ρ(SA) = SA, ρ(G1 G2) = G1 G2,

ρ( G ) = G , ρ( G ) = G .

By induction on the construction of a graph G one can easily show that σ(π(G)) = ρ(G). Hence (II)
commutes.

A formula context is a formula structure α{ } with a single slot { } which can be filled with a formula.

Let α{β} be the formula obtained from α{ } by filling the slot by β . The notation α{β+} stands for

that β is positive in α , i.e., β is in the scope of an even number of negation symbols. Similarly we use

the notation α{β−}.

Lemma 2. The following hold in SK:
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(1) if α{β+} and β ⊢SK γ , then α{β} ⊢SK α{γ}.

(2) if α{β−} and β ⊢SK γ , then α{γ} ⊢SK α{β}.

(3) if β ⊢SK γ and γ ⊢SK β , then α{β} ⊢SK α{γ} and α{γ} ⊢SK α{β}.

Proof. By induction on the construction of α{ }. We sketch the proof of (1) and (2) by simultaneous

induction. The case α{ }= { } is obvious. Suppose α{β} :=¬α ′{β} and β ⊢SK γ . There are two cases:

Case 1. ¬α ′{β+}. Then α ′{β−}. By induction hypothesis, we have α ′{γ} ⊢SK α ′{β}. Then

¬α ′{β} ⊢SK ¬α ′{γ}.

Case 2. ¬α ′{β−}. Then α ′{β+}. By induction hypothesis, we have α ′{β} ⊢SK α ′{γ}. Then

¬α ′{γ} ⊢SK ¬α ′{β}.

The case α{ }= α1{ }∧α2 or α{ }= α1 ∧α2{ } is obvious. Suppose α{ }=�α ′{ } and β ⊢SK γ .

Assume �α ′{β+}. Then by induction hypothesis we have α ′{β} ⊢SK α ′{γ}. Then by (�) we have

�α ′{β} ⊢SK �α ′{γ}. The case for �α ′{β−} is similar.

Lemma 3. For any graph G, if ⊢Kg
G, then ⊤ ⊢SK π(G).

Proof. Assume ⊢Kg
G. Let G0, . . . ,Gn = G be a proof of G. We show ⊤ ⊢SK π(Gi) by induction on

i ≤ n. If Gi is SA, clearly we have ⊤ ⊢SK π(Gi). Assume that Gi is obtained from G′ by a rule (R). If

(R) is an alpha rule, it is easy to get the conclusion by induction hypothesis and Lemma 2. Suppose that

(R) is a modal rule.

(1). (R) = (K1) or (K2). Let Gi = J{ H K } and G′ = J{ HK }. By induction hypothesis, we

have ⊤ ⊢SK π(J){π( HK )}, i.e., ⊤ ⊢SK π(J){¬♦¬(π(H)∧π(K))}. Clearly ¬♦¬(π(H)∧π(K)) ⊢SK

¬♦¬π(H)∧¬♦¬π(K) and ¬♦¬π(H)∧¬♦¬π(K) ⊢SK ¬♦¬(π(H)∧π(K)). By Lemma 2 (3), we get

⊤ ⊢SK π(Gi). The case for (K2) is similar.

(2). (R) = (DMN). Let Gi = J{( K ⊃ H )+} and G′ = J{(H ⊃ K)+}. By induction hypothesis,

we have ⊤ ⊢SK π(J{(H ⊃ K)+}), i.e., ⊤ ⊢SK π(J){¬(π(H)∧π(K))}. Clearly, ¬(π(H)∧¬π(K)) ⊢SK

¬(♦¬π(K)∧♦¬¬π(H)). By Lemma 2 (1), we get ⊤ ⊢SK π(Gi).

Lemma 4. For any formula α , if ⊤ ⊢SK α , then ⊢Kg
σ(α).

Proof. By induction on the derivation of ⊤ ⊢ α in SK. The proof is omitted.

Lemma 5. For any graph G, ⊢Kg
G iff ⊢Kg

ρ(G).

Proof. By induction on the proof of G in Kg. The proof is omitted.

Theorem 4. For any graph G, ⊢Kg
G iff ⊤ ⊢SK π(G).

Proof. The ‘only if’ part is obtained by Lemma 3. Assume ⊤ ⊢SK π(G). By Lemma 4, we have ⊢Kg

σ ◦π(G). By Proposition 2, ⊢Kg
ρ(G). By Lemma 5, ⊢Kg

G.

Definition 7. A modal algebra is an algebra A = (A,∧,¬,�,1) where (A,∧,¬,1) is a Boolean algebra,

and � is a unary operator on A satisfying the conditions:

1. Additivity: for all a,b ∈ A, �(a∧b) =�a∧�b;

2. Normality: �1 = 1.
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Any formula α is interpreted as a function αA in a modal algebra A. A sequent α ⊢ β is valid in A

if αA ≤ β A whatever elements of A are assigned to variables in α or β . By the standard Lindenbaum–

Tarski construction, one can show the completeness of SK with respect to the class of all modal algebras,

i.e., α ⊢SK β if and only if α ⊢ β is valid in all modal algebras (Theorem 3).

A graph G is interpreted as the function GA = π(G)A. A graph G is valid in a modal algebra A if

⊤ ⊢ π(G) is valid in A. Then one can obtain the following completeness result:

Theorem 5. A graph G is provable in Kg iff it is valid in all modal algebras.

Proof. The soundness is shown by induction on the proof of G. For completeness, assume 6⊢Kg
G.

By Theorem 4, we have ⊤ 6⊢SK π(G). By the completeness of SK, there is a modal algebra A with

1 6≤ π(G)A. Then G is not valid in A.

For any set of modal formulas Σ, let Σ≤ = {⊤ ⊢ α | α ∈ Σ}. Then we have the basic sequent calculus

SKΣ⊢ which is obtained from SK by adding all sequents in Σ≤ as axioms. Let Alg(Σ) be the class of all

modal algebras that validate all sequents in Σ⊢. Then the sequent system SKΣ⊢, if consistent, is sound

and complete with respect to Alg(Σ).

For any set of modal formulas Σ, consider the set of graphical rules Σg = {⊤ ⊢ σ(α) | α ∈ Σ}. Let

KgΣg be the graphical calculus obtained from Kg by adding all rules in Σg.

For Σ ⊆ {D,T,4,B,5}, where D = ♦⊤, T = �α → α , 4 = �α → ��α , B = α → �♦α and 5 =
♦α →�♦α , one can show that the calculus KgΣg is equivalent to SKΣ⊢ by the translation π . The proof

is similar to Theorem 4. Moreover, the graphical calculi KgΣg are sound and complete with respect to

Alg(Σ).

6 Conclusion

Graphical calculi for modal logics developed in the present paper are systematic and modular. They

are modal graphical versions of Gentzen-style sequent systems. They follow closely Peirce’s original

presentation in another sense as well: the rules arise systematically from Peirce’s presentation of broken-

cut gamma graphs and their rules (R 467, 478). Only (DMN), (B) and (5) are new.1 In the basic

system Kg, identifying a vacant broken-cut with a vacant continuous cut dispenses with necessitation

as a primitive rule. Moreover, the basic rules are perfectly symmetrical. Thanks to the diagrammatic

syntax, graphs need not assume negation normal form. Thus there are good prospects for developing

deep inference proof systems for non-normal and intuitionistic modal logics in a similar fashion. The

notions of position in the areas of cuts and the polarity of positions likewise result immediately from the

diagrammatic language that these systems are built upon. Thus diagrammatic syntax can be considered

1We find Peirce’s own remarks suggesting that he was not keen to have (B) or (5) as rules in his modal gamma systems:

“There is not much utility in a double broken cut. Yet it may be worth notice that g and g can neither of the be inferred from

the other. The outer of the two broken cuts is not only relative to a state of information but to a state of reflection. The graph

g asserts that it is possible that the truth of the graph g is necessary. It is only because I have not sufficiently reflected upon

the subject that I can have any doubt of whether it is so or not” (R 467, 1903). The rule (5) uses a principle that is contrary

to Peirce’s own rules of (T+) and (T−). Since Peirce’s preferred interpretation of the broken cut modality was an epistemic

one, he would not have recommended (5) as a good rule for knowledge. The previous quotation indeed continues as follows:

“It becomes evident, in this way, that a modal proposition is a simple assertion not about the universe of things but about the

universe of facts that one is in a state of information sufficient to know. The graph g without any selective, merely asserts

that there is a possible state of information in which the knower is not in a condition to know that the graph g is true, while g

asserts that there is no such possible state of information”.
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to be an advantage when compared to languages and notations that are used in other deep inference

systems. Labels are likewise not needed.

As to some other future work, the specific sense of the cut-elimination process suggests that there

are interesting decision procedures that we can get from proof searches in the proposed calculi. The

desirable property is the subformula property, as well as a syntactic calculation of interpolants, among

others.
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[8] K. Brünnler. Deep sequent systems for modal logic. Archive for Mathematical Logic, 48:551–577, 2009.

doi:10.1007/s00153-009-0137-3

[9] M. Ma and A.-V. Pietarinen. Peirce’s sequent proofs of distributivity. In: S. Ghosh and S. Prasad

(eds.), Logic and Its Applications: Proceedings of the 7th Indian Logic Conference, LNCS 10119, 2017.

doi:10.1007/978-3-662-54069-5 13.

[10] S. Nergi. Proof analysis in modal logic. Journal of Philosophical Logic, 34:507–544, 2005.

[11] C. S. Peirce. Lowell Lectures of 1903. Lecture IV. Manuscript at the Houghton Library of Harvard University,

1903. (R 467)

[12] C. S. Peirce. Lowell Lectures of 1903. Syllabus for Certain Topics of Logic. Manuscript at the Houghton

Library of Harvard University, 1903. (R 478)

[13] A.-V. Pietarinen. Peirce’s diagrammatic logic in IF perspective. In: A. Blackwell, K. Marriott and A.

Shimojima (eds.), Diagrammatic Representation and Inference: Third International Conference, Diagrams

2004. LNAI, vol. 2980, pp. 97–111. Springer-Verlag, Berlin, 2004. doi:10.1007/978-3-540-25931-2 11

[14] A.-V. Pietarinen. Signs of Logic: Peircean Themes on the Philosophy of Language, Games, and Communi-

cation, Springer, Dordrecht, 2006.

http://dx.doi.org/10.1007/BF00284976
http://dx.doi.org/10.1007/BFb0054919
http://dx.doi.org/10.1007/s00153-009-0137-3
http://dx.doi.org/10.1007/978-3-662-54069-5_13
http://dx.doi.org/10.1007/978-3-540-25931-2_11


M. Ma and A.-V. Pietarinen 103

[15] A.-V. Pietarinen. Moving Pictures of Thought II: Graphs, Games, and Pragmaticism’s Proof. Semiotica,

2011(186), 315–331, 2011. doi:10.1515/semi.2011.058

[16] A.-V. Pietarinen. Extensions of Euler Diagrams in Peirce’s Four Manuscripts on Logical Graphs. In:

M. Jamnik, Y. Uesaka and S. E. Schwartz (eds.), Diagrammatic Representation and Inference: Ninth In-

ternational Conference, Diagrams 2016. LNAI, vol. 9781, pp. 139–156. Springer-Verlag, Berlin, 2016.

doi:10.1007/978-3-319-42333-3 11

[17] D. D. Roberts. The Existential Graphs of Charles S. Peirce. Mouton, The Hague, 1973.

[18] J. Seligman. The Logic of Correct Description. In: M. de Rijke (ed.), Advances in Intensional Logic, pp.

107-135. Kluwer, Dordrecht, 1997. doi:10.1007/978-94-015-8879-9 5

[19] L. Straßburger. Deep Inference for Hybrid Logic. Proceedings of International Workshop of Hybrid Logic

2007, pp. 13–22.

[20] J. F. Sowa. Conceptual Structures: Information Processing in Mind and Machine. Addison-Wesley, Reading,

1984. doi:10.1016/0004-3702(88)90069-0

[21] C. Stewart and P. Stouppa. A systematic proof theory for several modal logics. In: R. Schmidt, I. Pratt-

Hartmann, M. Reynolds and H. Wansing (eds.). Advances in Modal Logic, vol. 5, pp. 309–333. King’s Col-

lege Publications, London, 2005.

[22] P. Stouppa. A deep inference system for the modal logic S5. Studia Logica, 85(2):199–214, 2007.

doi:10.1007/s11225-007-9028-y

[23] H. Wansing. Sequent systems for modal logics. In: Gabbay, D., Guenther, F. (eds.) Handbook of Philosoph-

ical Logic, vol. 8, 2nd edition, pp. 61–145. Kluwer, Dordrecht, 2002. doi:10.1007/978-94-010-0387-2 2

[24] J. Zeman. The Graphical Logic of Charles S. Peirce. Ph.D. dissertation. University of Chicago, 1964.

[25] J. Zeman. Peirce’s Graphs. In: D. Lukose et al. (eds), Proceedings of Fifth International Conference on

Conceptual Structures, LNCS 1257, pp. 12–24. Springer-Verlag, Berlin, 1997. doi:10.1007/BFb0027877

http://dx.doi.org/10.1515/semi.2011.058
http://dx.doi.org/10.1007/978-3-319-42333-3_11
http://dx.doi.org/10.1007/978-94-015-8879-9_5
http://dx.doi.org/10.1016/0004-3702(88)90069-0
http://dx.doi.org/10.1007/s11225-007-9028-y
http://dx.doi.org/10.1007/978-94-010-0387-2_2
http://dx.doi.org/10.1007/BFb0027877

	1 Introduction
	2 The syntax of modal graphs
	3 The graphical calculi Kg
	4 Extensions
	5 Graphical and sequent calculi
	6 Conclusion

